1
|
Faradz SMH, Listyasari N, Utari A, Ariani MD, Juniarto AZ, Santosa A, Ediati A, Rinne TK, Westra D, Claahsen-van der Grinten H, de Jong FH, Drop SLS, Ayers K, Sinclair A. Lessons Learned from 17 Years of Multidisciplinary Care for Differences of Sex Development Patients at a Single Indonesian Center. Sex Dev 2023; 17:170-180. [PMID: 37699373 PMCID: PMC11232949 DOI: 10.1159/000534085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/08/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Our multidisciplinary team (MDT) is a large specialized team based in Semarang, Indonesia, that cares for a wide variety of pediatric and adult individuals with differences of sex development (DSD) from across Indonesia. Here, we describe our work over the last 17 years. METHODS We analyzed phenotypic, hormonal, and genetic findings from clinical records for all patients referred to our MDT during the period 2004-2020. RESULTS Among 1,184 DSD patients, 10% had sex chromosome DSD, 67% had 46,XY DSD, and 23% had 46,XX DSD. The most common sex chromosome anomaly was Turner syndrome (45,X) (55 cases). For patients with 46,XY DSD under-masculinization was the most common diagnosis (311 cases), and for 46,XX DSD, a defect of Müllerian development was most common (131 cases) followed by congenital adrenal hyperplasia (CAH) (116 cases). Sanger sequencing, MLPA, and targeted gene sequencing of 257 patients with 46,XY DSD found likely causative variants in 21% (55 cases), with 13 diagnostic genes implicated. The most affected gene codes for the androgen receptor. Molecular analysis identified a diagnosis for 69 of 116 patients with CAH, with 62 carrying variants in CYP21A2 including four novel variants, and 7 patients carrying variants in CYP11B1. In many cases, these genetic diagnoses influenced the clinical management of patients and their families. CONCLUSIONS Our work has highlighted the occurrence of different DSDs in Indonesia. By applying sequencing technologies as part of our clinical care, we have delivered a number of genetic diagnoses and identified novel pathogenic variants in some genes, which may be clinically specific to Indonesia. Genetics can inform many aspects of DSD clinical management, and while many of our patients remain undiagnosed, we hope that future testing may provide answers for even more.
Collapse
Affiliation(s)
- Sultana M H Faradz
- Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro/Diponegoro National Hospital, Semarang, Indonesia
- Post Graduate School, Universitas YARSI, Jakarta, Indonesia
| | - Nurin Listyasari
- Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro/Diponegoro National Hospital, Semarang, Indonesia,
| | - Agustini Utari
- Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro/Diponegoro National Hospital, Semarang, Indonesia
- Department of Pediatrics, Diponegoro National Hospital/Dr. Kariadi Hospital, Semarang, Indonesia
| | - Mahayu Dewi Ariani
- Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro/Diponegoro National Hospital, Semarang, Indonesia
| | - Achmad Zulfa Juniarto
- Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro/Diponegoro National Hospital, Semarang, Indonesia
| | - Ardy Santosa
- Department of Urology, Dr. Kariadi Hospital, Semarang, Indonesia
| | | | - Tuula K Rinne
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dineke Westra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Frank H de Jong
- Department of Internal Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Stenvert L S Drop
- Division of Endocrinology, Department of Pediatrics, Sophia Children's Hospital/Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Katie Ayers
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Pediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew Sinclair
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Pediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Pan L, Li Z, Su Z, Su W, Zheng R, Chen W, He X, Song J, Li S, Wen P. Case Report: Long-term follow-up of desert hedgehog variant caused 46, XY gonadal dysgenesis with multiple complications in a Chinese child. Front Genet 2022; 13:954288. [PMID: 36072668 PMCID: PMC9441908 DOI: 10.3389/fgene.2022.954288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/04/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Desert hedgehog (DHH), as a member of the Hedgehog (HH) family, is mainly involved in testicular development and peripheral nerve sheath formation. A DHH variant has been identified in patients with 46, XY gonadal dysgenesis (46, XY GD) with or without neuropathy, but few reports mention the involvement of other complications. Case presentation: Here, we report a Chinese female patient who was hospitalized at 14.3 years old due to slow breast development for more than 1 year. She had a female genitalia phenotype and breast development started at 13 years old but progressed slowly. She was not yet menarche on admission, and she had intermittent muscle cramps in her hands and feet. Her karyotype analysis was 46, XY and the SRY gene was positive. Surgical exploration revealed no uterus or ovaries, and the pathology of bilateral gonads was dysplastic testis tissue, which was consistent with partial gonadal dysgenesis (PGD). Genetic analysis identified a homozygous pathogenic variant in DHH exon 3 (c.1027T>C, p. Cys343Arg). During the 6-year follow-up, she received estrogen replacement therapy, resulting in breast development progression without gender dysphoria. However, her peripheral neuropathy became more obvious, and a nerve conduction study (NCS) indicated decreased nerve conduction velocity and action potential. In addition, she also suffered complications such as obesity, insulin resistance, fatty liver, and gastric ulcers. Conclusion: In the present study, we reported a case of 46, XY GD with minifascicular neuropathy caused by a DHH homozygous variant, and we summarized the reported cases worldwide. For the first time in such patients, we showed a comparison of NCS changes with age as well as the presence of multiple complications not previously reported.
Collapse
Affiliation(s)
- Lili Pan
- Department of Endocrinology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Zhuoguang Li
- Department of Endocrinology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Zhe Su
- Department of Endocrinology, Shenzhen Children’s Hospital, Shenzhen, China
- *Correspondence: Zhe Su,
| | - Wei Su
- Department of Endocrinology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Rongfei Zheng
- Department of Endocrinology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Weiyan Chen
- Department of Neural Electrophysiology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Xuezhi He
- Department of Ultrasonography, Shenzhen Children’s Hospital, Shenzhen, China
| | - Jianming Song
- Department of Pathology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Shoulin Li
- Department of Urology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Pengqiang Wen
- Shenzhen Institute of Pediatrics, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
3
|
Abstract
In 46,XY men, testis is determined by a genetic network(s) that both promotes testis formation and represses ovarian development. Disruption of this process results in a lack of testis-determination and affected individuals present with 46,XY gonadal dysgenesis (GD), a part of the spectrum of Disorders/Differences of Sex Development/Determination (DSD). A minority of all cases of GD are associated with pathogenic variants in key players of testis-determination, SRY, SOX9, MAP3K1 and NR5A1. However, most of the cases remain unexplained. Recently, unbiased exome sequencing approaches have revealed new genes and loci that may cause 46,XY GD. We critically evaluate the evidence to support causality of these factors and describe how functional studies are continuing to improve our understanding of genotype-phenotype relationships in genes that are established causes of GD. As genomic data continues to be generated from DSD cohorts, we propose several recommendations to help interpret the data and establish causality.
Collapse
Affiliation(s)
- Maëva Elzaiat
- Human Developmental Genetics, Institut Pasteur, Paris, France
| | - Ken McElreavey
- Human Developmental Genetics, Institut Pasteur, Paris, France
| | - Anu Bashamboo
- Human Developmental Genetics, Institut Pasteur, Paris, France.
| |
Collapse
|
4
|
Pachernegg S, Georges E, Ayers K. The Desert Hedgehog Signalling Pathway in Human Gonadal Development and Differences of Sex Development. Sex Dev 2021; 16:98-111. [PMID: 34518472 DOI: 10.1159/000518308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/31/2021] [Indexed: 11/19/2022] Open
Abstract
While the Hedgehog signalling pathway is implicated in numerous developmental processes and maladies, variants in the Desert Hedgehog (DHH) ligand underlie a condition characterised by 46,XY gonadal dysgenesis with or without peripheral neuropathy. We discuss here the role and regulation of DHH and its signalling pathway in the developing gonads and examine the current understanding of how disruption to this pathway causes this difference of sex development (DSD) in humans.
Collapse
Affiliation(s)
- Svenja Pachernegg
- Reproductive Development Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Elizabeth Georges
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Katie Ayers
- Reproductive Development Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
DHH pathogenic variants involved in 46,XY disorders of sex development differentially impact protein self-cleavage and structural conformation. Hum Genet 2020; 139:1455-1470. [PMID: 32504121 DOI: 10.1007/s00439-020-02189-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
Abstract
In humans, pathogenic variants in the DHH gene underlie cases of 46,XY gonadal dysgenesis. DHH is part of the Hedgehog family of proteins, which require extensive processing, including self-cleavage of the precursor for efficient signalling. In our work, we have assessed the effect of several human DHH pathogenic variants involved in recessive complete or partial gonadal dysgenesis, on protein processing and sub-cellular localization. We found that a subset of variants was unable to perform self-cleavage, which correlated albeit not perfectly with an altered subcellular localization of the resulting proteins. For the processing-proficient variants, we used structural modelling tools and molecular dynamic (MD) simulations to predict the potential impact of the variants on protein conformation and/or interaction with partners. Our study contributes to a better understanding of the molecular mechanisms involved in DHH dysfunction leading to 46,XY disorders of sex development.
Collapse
|
6
|
Szczerbal I, Switonski M. Genetic disorders of sex development in cats: An update. Anim Reprod Sci 2020; 216:106353. [PMID: 32414464 DOI: 10.1016/j.anireprosci.2020.106353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 12/17/2022]
Abstract
Disorders of sex development (DSD) are rarely reported in cats, but this does not mean these occurrences are an insignificant reproductive and health problem in this species. The DSD condition affects reproduction and can be associated with an increased risk of gonadal tumorigenesis. In this review, an overview of findings since 2012 are presented that focus on cytogenetic and molecular genetic studies of cats with abnormal external genitalia. Results from advanced cytogenetic analysis of sex chromosomes indicate there is a range of abnormalities, including aneuploidies, structural rearrangements and freemartinism, which manifests as leukocyte XX/XY chimerism. The molecular abnormalities that result in feline monogenic and multifactorial DSD (such as hypospadias and cryptorchidism) are very few. There are only two mutations of genes (CYP11B1 and TAC3) which are known to be responsible for syndromes associated with abnormal sexual development. Several candidate genes (SRY, AR, SRD5A2, MAMLD1, DHH, HSD3B2, and HSD17B3) have also been examined, but no associations were identified between these polymorphisms and DSD phenotypes. The findings in developing the present review indicate sex chromosome abnormalities are quite common causes of feline DSD. The study of the molecular disorders that lead to the development of DSD in cats with normal XX or XY sex chromosome complements is still in its infancy, and further research is needed into this topic. It can be anticipated that the use of next generation sequencing technologies to study the genetic disorders that result in the DSD condition in cats will lead to an increase the detection of several causative mutations.
Collapse
Affiliation(s)
- I Szczerbal
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland
| | - M Switonski
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland.
| |
Collapse
|
7
|
Buonocore F, Clifford-Mobley O, King TFJ, Striglioni N, Man E, Suntharalingham JP, del Valle I, Lin L, Lagos CF, Rumsby G, Conway GS, Achermann JC. Next-Generation Sequencing Reveals Novel Genetic Variants (SRY, DMRT1, NR5A1, DHH, DHX37) in Adults With 46,XY DSD. J Endocr Soc 2019; 3:2341-2360. [PMID: 31745530 PMCID: PMC6855215 DOI: 10.1210/js.2019-00306] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022] Open
Abstract
CONTEXT The genetic basis of human sex development is slowly being elucidated, and >40 different genetic causes of differences (or disorders) of sex development (DSDs) have now been reported. However, reaching a specific diagnosis using traditional approaches can be difficult, especially in adults where limited biochemical data may be available. OBJECTIVE We used a targeted next-generation sequencing approach to analyze known and candidate genes for DSDs in individuals with no specific molecular diagnosis. PARTICIPANTS AND DESIGN We studied 52 adult 46,XY women attending a single-center adult service, who were part of a larger cohort of 400 individuals. Classic conditions such as17β-hydroxysteroid dehydrogenase deficiency type 3, 5α-reductase deficiency type 2, and androgen insensitivity syndrome were excluded. The study cohort had broad working diagnoses of complete gonadal dysgenesis (CGD) (n = 27) and partially virilized 46,XY DSD (pvDSD) (n = 25), a group that included partial gonadal dysgenesis and those with a broad "partial androgen insensitivity syndrome" label. Targeted sequencing of 180 genes was undertaken. RESULTS Overall, a likely genetic cause was found in 16 of 52 (30.8%) individuals (22.2% CGD, 40.0% pvDSD). Pathogenic variants were found in sex-determining region Y (SRY; n = 3), doublesex and mab-3-related transcription factor 1 (DMRT1; n = 1), NR5A1/steroidogenic factor-1 (SF-1) (n = 1), and desert hedgehog (DHH; n = 1) in the CGD group, and in NR5A1 (n = 5), DHH (n = 1), and DEAH-box helicase 37 (DHX37; n = 4) in the pvDSD group. CONCLUSIONS Reaching a specific diagnosis can have clinical implications and provides insight into the role of these proteins in sex development. Next-generation sequencing approaches are invaluable, especially in adult populations or where diagnostic biochemistry is not possible.
Collapse
Affiliation(s)
- Federica Buonocore
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | | | - Tom F J King
- Reproductive Medicine Unit, University College London Hospitals, London, United Kingdom
| | - Niccolò Striglioni
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Elim Man
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Jenifer P Suntharalingham
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Ignacio del Valle
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Lin Lin
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Carlos F Lagos
- Chemical Biology and Drug Discovery Laboratory, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Gill Rumsby
- Clinical Biochemistry, University College London Hospitals, London, United Kingdom
| | - Gerard S Conway
- Reproductive Medicine Unit, University College London Hospitals, London, United Kingdom
| | - John C Achermann
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|