1
|
Townsend M, Jeewa A, Khoury M, Cunningham C, George K, Conway J. Unique Aspects of Hypertrophic Cardiomyopathy in Children. Can J Cardiol 2024; 40:907-920. [PMID: 38244986 DOI: 10.1016/j.cjca.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/03/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a primary heart muscle disease characterized by left ventricular hypertrophy that can be asymptomatic or with presentations that vary from left ventricular outflow tract obstruction, heart failure from diastolic dysfunction, arrhythmias, and/or sudden cardiac death. Children younger than 1 year of age tend to have worse outcomes and often have HCM secondary to inborn errors of metabolism or syndromes such as RASopathies. For children who survive or are diagnosed after 1 year of age, HCM outcomes are often favourable and similar to those seen in adults. This is because of sudden cardiac death risk stratification and medical and surgical innovations. Genetic testing and timely cardiac screening are paving the way for disease-modifying treatment as gene-specific therapies are being developed.
Collapse
Affiliation(s)
- Madeleine Townsend
- Department of Cardiology, Cleveland Clinic Children's Hospital, Cleveland, Ohio, USA
| | - Aamir Jeewa
- Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael Khoury
- Division of Pediatric Cardiology, Stollery Children's Hospital, Edmonton, Alberta, Canada
| | | | - Kristen George
- Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jennifer Conway
- Division of Pediatric Cardiology, Stollery Children's Hospital, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
Houweling AC, Lekanne Deprez RH, Wilde AAM. Human Genetics of Cardiomyopathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:977-990. [PMID: 38884765 DOI: 10.1007/978-3-031-44087-8_63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The identification of a disease-causing variant in a patient diagnosed with cardiomyopathy allows for presymptomatic testing in at risk relatives. Carriers of a pathogenic variant can subsequently be screened at intervals by a cardiologist to assess the risk for potentially life-threatening arrhythmias which can be life-saving. In addition, gene-specific recommendations for risk stratification and disease specific pharmacological options for therapy are beginning to emerge. The large variability in disease penetrance, symptoms, and prognosis, and in some families even in cardiomyopathy subtype, makes genetic counseling both of great importance and complicated.
Collapse
Affiliation(s)
- Arjan C Houweling
- Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
| | - Ronald H Lekanne Deprez
- Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Arthur A M Wilde
- Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Rani DS, Kasala A, Dhandapany PS, Muthusami U, Kunnoth S, Rathinavel A, Ayapati DR, Thangaraj K. Novel MYBPC3 Mutations in Indian Population with Cardiomyopathies. Pharmgenomics Pers Med 2023; 16:883-893. [PMID: 37750083 PMCID: PMC10518145 DOI: 10.2147/pgpm.s407179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023] Open
Abstract
Background Mutations in Myosin Binding Protein C (MYBPC3) are one of the most frequent causes of cardiomyopathies in the world, but not much data are available in India. Methods We carried out targeted direct sequencing of MYBPC3 in 115 hypertrophic (HCM) and 127 dilated (DCM) cardiomyopathies against 197 ethnically matched healthy controls from India. Results We detected 34 single nucleotide variations in MYBPC3, of which 19 were novel. We found a splice site mutation [(IVS6+2T) T>G] and 16 missense mutations in Indian cardiomyopathies [5 in HCM; E258K, T262S, H287L, R408M, V483A: 4 in DCM; T146N, V321L, A392T, E393K and 7 in both HCM and DCM; L104M, V158M, S236G, R272C, T290A, G522E, A626V], but those were absent in 197 normal healthy controls. Interestingly, we found 7 out of 16 missense mutations (V158M, E258K, R272C, A392T, V483A, G522E, and A626V) in MYBPC3 were altering the evolutionarily conserved native amino acids, accounted for 8.7% and 6.3% in HCM and DCM, respectively. The bioinformatic tools predicted that those 7 missense mutations were pathogenic. Moreover, the co-segregation of those 7 mutations in families further confirmed their pathogenicity. Remarkably, we also identified compound mutations within the MYBPC3 gene of 6 cardiomyopathy patients (5%) with more severe disease phenotype; of which, 3 were HCM (2.6%) [(1. K244K + E258K + (IVS6+2T) T>G); (2. L104M + G522E + A626V); (3. P186P + G522E + A626V]; and 3 were DCM (2.4%) [(1. 5'UTR + A392T; 2. V158M+G522E; and 3.V158M + T262T + A626V]. Conclusion The present comprehensive study on MYBPC3 has revealed both single and compound mutations in MYBPC3 and their association with disease in Indian Population with Cardiomyopathies. Our findings may perhaps help in initiating diagnostic strategies and eventually recognizing the targets for therapeutic interventions.
Collapse
Grants
- Rani DS has been supported by the CSIR-CCMB, Hyderabad, Telangana, India. K Thangaraj has been supported by the JC Bose Fellowship
- SERB, DST, and The Government of India. However, the funders had no role in designing the study, the collection of data, the analysis of sequence data, the decision to publish, or the preparation of the manuscript
Collapse
Affiliation(s)
- Deepa Selvi Rani
- Department of Population and Medical Genomics, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Apoorva Kasala
- Department of Population and Medical Genomics, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Perundurai S Dhandapany
- Department of Cardiovascular Biology and Medicine, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, Karnataka, India
| | - Uthiralingam Muthusami
- Department of Advanced Zoology and Biotechnology, Loyola College, Chennai, Tamil Nadu, India
| | - Sreejith Kunnoth
- Department of Advanced Zoology and Biotechnology, Loyola College, Chennai, Tamil Nadu, India
| | - Andiappan Rathinavel
- Department of Cardiology, Government Rajaji Hospital, Madurai, Tamil Nadu, India
| | - Dharma Rakshak Ayapati
- Department of Cardiology, Nizam’s Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Kumarasamy Thangaraj
- Department of Population and Medical Genomics, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
- DBT-Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| |
Collapse
|
4
|
Redin C, Pavlidou DC, Bhuiyan Z, Porretta AP, Monney P, Bedoni N, Maurer F, Sekarski N, Atallah I, Émeline D, Jeanrenaud X, Pruvot E, Fellay J, Superti-Furga A. The «Amish» NM_000256.3:c.3330+2T>G splice variant in MYBPC3 associated with hypertrophic cardiomyopathy is an ancient Swiss mutation. Eur J Med Genet 2022; 65:104627. [PMID: 36162733 DOI: 10.1016/j.ejmg.2022.104627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/05/2022] [Accepted: 09/19/2022] [Indexed: 11/03/2022]
Abstract
MYBPC3 is the most frequently mutated gene in hypertrophic cardiomyopathy (HCM). Several loss-of-function founder variants have been reported in MYBPC3 from various geographic regions, altogether suggestive of a modest or absent effect of these variants on reproductive fitness. One of them, a MYBPC3 splice variant, NM_000256.3:c.3330+2T > G, was first described in homozygous state in newborns presenting with a severe, recessive form of HCM among the Amish population and was later associated with adult-onset dominant HCM in heterozygous carriers. We here report this splice variant in heterozygous state in eight unrelated Swiss families with HCM, making it the most prevalent cardiomyopathy variant in western Switzerland. This variant was identified in patients using targeted (n = 5) or full-genome sequencing (n = 3). Given the prevalence of this variant in the Old Order Amish, Mennonites and Swiss populations, and given that both Amish and Mennonites founders originated from the Bern Canton in Switzerland, the MYBPC3, NM_000256.3:c.3330+2T > G variant appears to be of Swiss origin. Neighboring regions that hosted the first Amish settlements (Alsace, South Germany) should be on the lookout for that variant. The existence of MYBPC3 founder variants in different populations suggests that individuals with early-onset clinical disease may be the tip of the iceberg of a much larger number of asymptomatic carriers. Alternatively, reproductive fitness could even be slightly increased in some variant carriers to compensate for the reduction of fitness in the more severely affected ones, but this remains to be investigated.
Collapse
Affiliation(s)
- Claire Redin
- Precision Medicine Unit, Lausanne University Hospital (CHUV), Lausanne, 1011, Switzerland.
| | - Despina Christina Pavlidou
- Division of Genetic Medicine, Lausanne University Hospital (CHUV), Lausanne, 1011, Switzerland; University of Lausanne, Lausanne, 1011, Switzerland
| | - Zahurul Bhuiyan
- Division of Genetic Medicine, Lausanne University Hospital (CHUV), Lausanne, 1011, Switzerland; University of Lausanne, Lausanne, 1011, Switzerland
| | - Alessandra Pia Porretta
- Service of Cardiology, Lausanne University Hospital (CHUV), Lausanne, 1011, Switzerland; Department of Clinical-Surgical Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Pierre Monney
- University of Lausanne, Lausanne, 1011, Switzerland; Service of Cardiology, Lausanne University Hospital (CHUV), Lausanne, 1011, Switzerland
| | - Nicola Bedoni
- Division of Genetic Medicine, Lausanne University Hospital (CHUV), Lausanne, 1011, Switzerland; University of Lausanne, Lausanne, 1011, Switzerland
| | - Fabienne Maurer
- Division of Genetic Medicine, Lausanne University Hospital (CHUV), Lausanne, 1011, Switzerland; University of Lausanne, Lausanne, 1011, Switzerland
| | - Nicole Sekarski
- Pediatric Cardiology, Women-Mother-Child Department, Lausanne University Hospital (CHUV), Lausanne, 1011, Switzerland
| | - Isis Atallah
- Division of Genetic Medicine, Lausanne University Hospital (CHUV), Lausanne, 1011, Switzerland; University of Lausanne, Lausanne, 1011, Switzerland
| | - Davoine Émeline
- Division of Genetic Medicine, Lausanne University Hospital (CHUV), Lausanne, 1011, Switzerland; University of Lausanne, Lausanne, 1011, Switzerland
| | - Xavier Jeanrenaud
- Service of Cardiology, Lausanne University Hospital (CHUV), Lausanne, 1011, Switzerland
| | - Etienne Pruvot
- Service of Cardiology, Lausanne University Hospital (CHUV), Lausanne, 1011, Switzerland
| | - Jacques Fellay
- Precision Medicine Unit, Lausanne University Hospital (CHUV), Lausanne, 1011, Switzerland
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital (CHUV), Lausanne, 1011, Switzerland; University of Lausanne, Lausanne, 1011, Switzerland.
| |
Collapse
|
5
|
Field E, Norrish G, Acquaah V, Dady K, Cicerchia MN, Ochoa JP, Syrris P, McLeod K, McGowan R, Fell H, Lopes LR, Cervi E, Kaski JPP. Cardiac myosin binding protein-C variants in paediatric-onset hypertrophic cardiomyopathy: natural history and clinical outcomes. J Med Genet 2022; 59:768-775. [PMID: 34400558 PMCID: PMC7613139 DOI: 10.1136/jmedgenet-2021-107774] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/14/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Variants in the cardiac myosin-binding protein C gene (MYBPC3) are a common cause of hypertrophic cardiomyopathy (HCM) in adults and have been associated with late-onset disease, but there are limited data on their role in paediatric-onset HCM. The objective of this study was to describe natural history and clinical outcomes in a large cohort of children with HCM and pathogenic/likely pathogenic (P/LP) MYBPC3 variants. METHODS AND RESULTS Longitudinal data from 62 consecutive patients diagnosed with HCM under 18 years of age and carrying at least one P/LP MYBPC3 variant were collected from a single specialist referral centre. The primary patient outcome was a major adverse cardiac event (MACE). Median age at diagnosis was 10 (IQR: 2-14) years, with 12 patients (19.4%) diagnosed in infancy. Forty-seven (75%) were boy and 31 (50%) were probands. Median length of follow-up was 3.1 (IQR: 1.6-6.9) years. Nine patients (14.5%) experienced an MACE during follow-up and five (8%) died. Twenty patients (32.3%) had evidence of ventricular arrhythmia, including 6 patients (9.7%) presenting with out-of-hospital cardiac arrest. Five-year freedom from MACE for those with a single or two MYBPC3 variants was 95.2% (95% CI: 78.6% to 98.5%) and 68.4% (95% CI: 40.6% to 88.9%), respectively (HR 4.65, 95% CI: 1.16 to 18.66, p=0.03). CONCLUSIONS MYBPC3 variants can cause childhood-onset disease, which is frequently associated with life-threatening ventricular arrhythmia. Clinical outcomes in this cohort vary substantially from aetiologically and genetically mixed paediatric HCM cohorts described previously, highlighting the importance of identifying specific genetic subtypes for clinical management of childhood HCM.
Collapse
Affiliation(s)
- Ella Field
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Gabrielle Norrish
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Vanessa Acquaah
- Institute of Cardiovascular Science, University College London, London, UK
| | - Kathleen Dady
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | | | | | - Petros Syrris
- Institute of Cardiovascular Science, University College London, London, UK
| | - Karen McLeod
- Department of Paediatric Cardiology, Royal Hospital for Children, Glasgow, UK
| | - Ruth McGowan
- West of Scotland Centre for Genomic Medicine, Glasgow, UK
| | - Hannah Fell
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Luis R Lopes
- Institute of Cardiovascular Science, University College London, London, UK
- Inherited Cardiovascular Disease Unit, Saint Bartholomew's Hospital Barts Heart Centre, London, UK
| | - Elena Cervi
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Juan Pablo Pablo Kaski
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| |
Collapse
|
6
|
Li X, Tang J, Li J, Lin S, Wang T, Zhou K, Li Y, Hua Y. Genetic Clues on Implantable Cardioverter-Defibrillator Placement in Young-Age Hypertrophic Cardiomyopathy: A Case Report of Novel MYH7 Mutation and Literature Review. Front Cardiovasc Med 2022; 8:810291. [PMID: 35004917 PMCID: PMC8733160 DOI: 10.3389/fcvm.2021.810291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Hypertrophic cardiomyopathy (HCM) is the second most common cardiomyopathy in childhood with a life-threatening risk. Implantable cardioverter-defibrillator (ICD) placement is recommended for early prevention if there are two or more clinical risk factors. Pediatric patients with HCM are at a higher risk of sudden cardiac death (SCD), but there are limited reports on indications for ICD implantation in children. Herein we describe the case of Myh7 mutation-induced HCM and cardiac arrest in a patient and evaluated information originating from genetic background to guide ICD administration. Case Presentation: The patient was a girl aged 7 years and 8 months who had been diagnosed with cardiomyopathy in utero 8 years prior. She had had recurrent cardiac arrests within the last 4 years. Electrocardiography indicated abnormalities in conduction, and ST segment changes. Echocardiography indicated significant left ventricular hypertrophy and hypertrophic systolic interventricular septum. Cardiac magnetic resonance imaging depicted general heart enlargement with hypertrophy, and delayed enhancement in myocardium with perfusion defect was also evident. Whole exon sequencing identified a de novo c.2723T>C (p.L908P) heterozygous mutation in the MYH7 gene. MYH7 p.L908P predicted unstable protein structure and impaired function. The patient was scheduled for ICD implantation. There were no complications after ICD implantation, and she was discharged from hospital on the 10th day. Regular oral beta-blockers, amiodarone, spironolactone, and enalapril were administered, and she was required to attend hospital regularly for follow-up. During follow-up there were no cardiac arrests. Literature review of clinical prognoses associated with genetic mutations of MYH7, MYBPC3, TNNI3, TNNT2, and TPM1 in pediatric HCM patients with and without ICD implantation indicated that they were totally differently. Previous reports also indicated that gene mutations predicted earlier onset of cardiac hypertrophy, and increase likelihood of SCD. Conclusion: Variant burden and variant type contribute to the risk of adverse events in pediatric HCM. Early recognition and intervention are vital in children. Gene mutation could be considered an indication for early ICD placement during standard risk stratification of HCM patients. Whether this extends to the majority of pediatric patients requires further investigation.
Collapse
Affiliation(s)
- Xing Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jie Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jinhui Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Sha Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Tao Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Blagova O, Alieva I, Kogan E, Zaytsev A, Sedov V, Chernyavskiy S, Surikova Y, Kotov I, Zaklyazminskaya EV. Mixed Hypertrophic and Dilated Phenotype of Cardiomyopathy in a Patient With Homozygous In-Frame Deletion in the MyBPC3 Gene Treated as Myocarditis for a Long Time. Front Pharmacol 2020; 11:579450. [PMID: 33101033 PMCID: PMC7546790 DOI: 10.3389/fphar.2020.579450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/09/2020] [Indexed: 11/13/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited disease, with a prevalence of 1:200 worldwide. The cause of HCM usually presents with an autosomal dominant mutation in the genes encoding one of more than 20 sarcomeric proteins, incomplete penetrance, and variable expressivity. HCM classically manifests as an unexplained thickness of the interventricular septum (IVS) and left ventricular (LV) walls, with or without the obstruction of the LV outflow tract (LVOT), and variable cardiac arrhythmias. Here, we present a rare case of mixed cardiomyopathy (cardiac hypertrophy and dilation) and erythrocytosis in a young patient. A 27-year-old man was admitted to the clinic due to biventricular heart failure (HF) NYHA class III. Personal medical records included a diagnosis of dilated cardiomyopathy (DCM) since the age of 4 years and were, at the time, considered an outcome of myocarditis. Severe respiratory infection led to circulatory decompensation and acute femoral thrombosis. The combination of non-obstructive LV hypertrophy (LV walls up to 15 mm), LV dilatation, decreased contractility (LV EF 24%), and LV apical thrombosis were seen. Cardiac MRI showed a complex pattern of late gadolinium enhancement (LGE). Endomyocardial biopsy (EMB) revealed primary cardiomyopathy with intravascular coagulation and an inflammatory response. No viral genome was detected in the plasma or EMB samples. Whole exome sequencing (WES) revealed a homozygous in-frame deletion p.2711_2737del in the MyBPC3 gene. The clinically unaffected mother was a heterozygous carrier of this deletion, and the father was unavailable for clinical and genetic testing. Essential erythrocytosis remains unexplained. No significant improvement was achieved by conventional treatment, including prednisolone 40 mg therapy. ICD was implanted due to sustained VT and high risk of SCD. Orthotopic heart transplantation (HTx) was considered optimal. Early manifestation combined hypertrophic and dilated phenotype, and progression may reflect a complex genotype with more than one pathogenic allele and/or a combination of genetic diseases in one patient.
Collapse
Affiliation(s)
- Olga Blagova
- Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - Indira Alieva
- Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - Eugenia Kogan
- Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - Alexander Zaytsev
- Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - Vsevolod Sedov
- Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - S Chernyavskiy
- Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - Yulia Surikova
- Medical Genetics Laboratory, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Ilya Kotov
- Department of Bioinformatics, Centre of Genetics and Reproductive Medicine "Genetico", Moscow, Russia
| | | |
Collapse
|
8
|
Carrier L. Targeting the population for gene therapy with MYBPC3. J Mol Cell Cardiol 2020; 150:101-108. [PMID: 33049255 DOI: 10.1016/j.yjmcc.2020.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/02/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most prevalent inherited myocardial disease characterized by unexplained left ventricular hypertrophy, diastolic dysfunction and myocardial disarray. Clinical heterogeneity is wide, ranging from asymptomatic individuals to heart failure, arrhythmias and sudden death. HCM is often caused by mutations in genes encoding components of the sarcomere. Among them, MYBPC3, encoding cardiac myosin-myosin binding protein C is the most frequently mutated gene. Three quarter of pathogenic or likely pathogenic mutations in MYBPC3 are truncating and the resulting protein was not detected in HCM myectomy samples. The overall prognosis of the patients is excellent if managed with contemporary therapy, but still remains a significant disease-related health burden, and carriers with double heterozygous, compound heterozygous and homozygous mutations often display a more severe clinical phenotype than single heterozygotes. We propose these individuals as a good target population for MYBPC3 gene therapy.
Collapse
Affiliation(s)
- Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg, Kiel, Lübeck, Germany.
| |
Collapse
|
9
|
Holmes JB, Doh CY, Mamidi R, Li J, Stelzer JE. Strategies for targeting the cardiac sarcomere: avenues for novel drug discovery. Expert Opin Drug Discov 2020; 15:457-469. [PMID: 32067508 PMCID: PMC7065952 DOI: 10.1080/17460441.2020.1722637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/24/2020] [Indexed: 01/10/2023]
Abstract
Introduction: Heart failure remains one of the largest clinical challenges in the United States. Researchers have continually searched for more effective heart failure treatments that target the cardiac sarcomere but have found few successes despite numerous expensive cardiovascular clinical trials. Among many reasons, the high failure rate of cardiovascular clinical trials may be partly due to incomplete characterization of a drug candidate's complex interaction with cardiac physiology.Areas covered: In this review, the authors address the issue of preclinical cardiovascular studies of sarcomere-targeting heart failure therapies. The authors consider inherent tradeoffs made between mechanistic transparency and physiological fidelity for several relevant preclinical techniques at the atomic, molecular, heart muscle fiber, whole heart, and whole-organism levels. Thus, the authors suggest a comprehensive, bottom-up approach to preclinical cardiovascular studies that fosters scientific rigor and hypothesis-driven drug discovery.Expert opinion: In the authors' opinion, the implementation of hypothesis-driven drug discovery practices, such as the bottom-up approach to preclinical cardiovascular studies, will be imperative for the successful development of novel heart failure treatments. However, additional changes to clinical definitions of heart failure and current drug discovery culture must accompany the bottom-up approach to maximize the effectiveness of hypothesis-driven drug discovery.
Collapse
Affiliation(s)
- Joshua B Holmes
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Chang Yoon Doh
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jiayang Li
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
10
|
Phosphomimetic cardiac myosin-binding protein C partially rescues a cardiomyopathy phenotype in murine engineered heart tissue. Sci Rep 2019; 9:18152. [PMID: 31796859 PMCID: PMC6890639 DOI: 10.1038/s41598-019-54665-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
Phosphorylation of cardiac myosin-binding protein C (cMyBP-C), encoded by MYBPC3, increases the availability of myosin heads for interaction with actin thus enhancing contraction. cMyBP-C phosphorylation level is lower in septal myectomies of patients with hypertrophic cardiomyopathy (HCM) than in non-failing hearts. Here we compared the effect of phosphomimetic (D282) and wild-type (S282) cMyBP-C gene transfer on the HCM phenotype of engineered heart tissues (EHTs) generated from a mouse model carrying a Mybpc3 mutation (KI). KI EHTs showed lower levels of mutant Mybpc3 mRNA and protein, and altered gene expression compared with wild-type (WT) EHTs. Furthermore, KI EHTs exhibited faster spontaneous contractions and higher maximal force and sensitivity to external [Ca2+] under pacing. Adeno-associated virus-mediated gene transfer of D282 and S282 similarly restored Mybpc3 mRNA and protein levels and suppressed mutant Mybpc3 transcripts. Moreover, both exogenous cMyBP-C proteins were properly incorporated in the sarcomere. KI EHTs hypercontractility was similarly prevented by both treatments, but S282 had a stronger effect than D282 to normalize the force-Ca2+-relationship and the expression of dysregulated genes. These findings in an in vitro model indicate that S282 is a better choice than D282 to restore the HCM EHT phenotype. To which extent the results apply to human HCM remains to be seen.
Collapse
|
11
|
Popa-Fotea NM, Micheu MM, Bataila V, Scafa-Udriste A, Dorobantu L, Scarlatescu AI, Zamfir D, Stoian M, Onciul S, Dorobantu M. Exploring the Continuum of Hypertrophic Cardiomyopathy-From DNA to Clinical Expression. ACTA ACUST UNITED AC 2019; 55:medicina55060299. [PMID: 31234582 PMCID: PMC6630598 DOI: 10.3390/medicina55060299] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 12/29/2022]
Abstract
The concepts underlying hypertrophic cardiomyopathy (HCM) pathogenesis have evolved greatly over the last 60 years since the pioneering work of the British pathologist Donald Teare, presenting the autopsy findings of “asymmetric hypertrophy of the heart in young adults”. Advances in human genome analysis and cardiac imaging techniques have enriched our understanding of the complex architecture of the malady and shaped the way we perceive the illness continuum. Presently, HCM is acknowledged as “a disease of the sarcomere”, where the relationship between genotype and phenotype is not straightforward but subject to various genetic and nongenetic influences. The focus of this review is to discuss key aspects related to molecular mechanisms and imaging aspects that have prompted genotype–phenotype correlations, which will hopefully empower patient-tailored health interventions.
Collapse
Affiliation(s)
- Nicoleta Monica Popa-Fotea
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania.
| | - Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania.
| | - Vlad Bataila
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania.
| | - Alexandru Scafa-Udriste
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania.
- Department 4-Cardiothoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania.
| | - Lucian Dorobantu
- Cardiomyopathy Center, Monza Hospital, Tony Bulandra Street 27, 021968 Bucharest, Romania.
| | - Alina Ioana Scarlatescu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania.
| | - Diana Zamfir
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania.
| | - Monica Stoian
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania.
| | - Sebastian Onciul
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania.
- Department 4-Cardiothoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania.
| | - Maria Dorobantu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania.
- Department 4-Cardiothoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania.
| |
Collapse
|
12
|
Fatal neonatal hypertrophic cardiomyopathy caused by compound heterozygous truncating MYBPC3 mutation. Neth Heart J 2019; 27:282-283. [PMID: 30742251 PMCID: PMC6470222 DOI: 10.1007/s12471-019-1245-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
13
|
Mamidi R, Li J, Doh CY, Verma S, Stelzer JE. Impact of the Myosin Modulator Mavacamten on Force Generation and Cross-Bridge Behavior in a Murine Model of Hypercontractility. J Am Heart Assoc 2018; 7:e009627. [PMID: 30371160 PMCID: PMC6201428 DOI: 10.1161/jaha.118.009627] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/27/2018] [Indexed: 01/09/2023]
Abstract
Background Recent studies suggest that mavacamten (Myk461), a small myosin-binding molecule, decreases hypercontractility in myocardium expressing hypertrophic cardiomyopathy-causing missense mutations in myosin heavy chain. However, the predominant feature of most mutations in cardiac myosin binding protein-C ( cMyBPC ) that cause hypertrophic cardiomyopathy is reduced total cMyBPC expression, and the impact of Myk461 on cMyBPC -deficient myocardium is currently unknown. Methods and Results We measured the impact of Myk461 on steady-state and dynamic cross-bridge ( XB ) behavior in detergent-skinned mouse wild-type myocardium and myocardium lacking cMyBPC (knockout (KO)). KO myocardium exhibited hypercontractile XB behavior as indicated by significant accelerations in rates of XB detachment (krel) and recruitment (kdf) at submaximal Ca2+ activations. Incubation of KO and wild-type myocardium with Myk461 resulted in a dose-dependent force depression, and this impact was more pronounced at low Ca2+ activations. Interestingly, Myk461-induced force depressions were less pronounced in KO myocardium, especially at low Ca2+ activations, which may be because of increased acto-myosin XB formation and potential disruption of super-relaxed XB s in KO myocardium. Additionally, Myk461 slowed krel in KO myocardium but not in wild-type myocardium, indicating increased XB " on" time. Furthermore, the greater degree of Myk461-induced slowing in kdf and reduction in XB recruitment magnitude in KO myocardium normalized the XB behavior back to wild-type levels. Conclusions This is the first study to demonstrate that Myk461-induced force depressions are modulated by cMyBPC expression levels in the sarcomere, and emphasizes that clinical use of Myk461 may need to be optimized based on the molecular trigger that underlies the hypertrophic cardiomyopathy phenotype.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Physiology and BiophysicsSchool of MedicineCase Western Reserve UniversityClevelandOH
| | - Jiayang Li
- Department of Physiology and BiophysicsSchool of MedicineCase Western Reserve UniversityClevelandOH
| | - Chang Yoon Doh
- Department of Physiology and BiophysicsSchool of MedicineCase Western Reserve UniversityClevelandOH
| | - Sujeet Verma
- Department of Horticulture SciencesIFAS, Gulf Coast Research and Education CenterUniversity of FloridaWimauma
| | - Julian E. Stelzer
- Department of Physiology and BiophysicsSchool of MedicineCase Western Reserve UniversityClevelandOH
| |
Collapse
|
14
|
Prondzynski M, Mearini G, Carrier L. Gene therapy strategies in the treatment of hypertrophic cardiomyopathy. Pflugers Arch 2018; 471:807-815. [PMID: 29971600 DOI: 10.1007/s00424-018-2173-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 12/26/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is an inherited myocardial disease with an estimated prevalence of 1:200 caused by mutations in sarcomeric proteins. It is associated with hypertrophy of the left ventricle, increased interstitial fibrosis, and diastolic dysfunction for heterozygous mutation carriers. Carriers of double heterozygous, compound heterozygous, and homozygous mutations often display more severe forms of cardiomyopathies, ultimately leading to premature death. So far, there is no curative treatment against HCM, as current therapies are focused on symptoms relief by pharmacological intervention and not on the cause of HCM. In the last decade, several strategies have been developed to remove genetic defects, including genome editing, exon skipping, allele-specific silencing, spliceosome-mediated RNA trans-splicing, and gene replacement. Most of these technologies have already been tested for efficacy and efficiency in animal- or human-induced pluripotent stem cell models of HCM with promising results. We will summarize recent technological advances and their implication as gene therapy options in HCM with a special focus on treating MYBPC3 mutations and its potential for being a successful bench to bedside example.
Collapse
Affiliation(s)
- Maksymilian Prondzynski
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Giulia Mearini
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
15
|
Zebrafish heart failure models: opportunities and challenges. Amino Acids 2018; 50:787-798. [DOI: 10.1007/s00726-018-2578-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/24/2018] [Indexed: 01/03/2023]
|
16
|
Montag J, Petersen B, Flögel AK, Becker E, Lucas-Hahn A, Cost GJ, Mühlfeld C, Kraft T, Niemann H, Brenner B. Successful knock-in of Hypertrophic Cardiomyopathy-mutation R723G into the MYH7 gene mimics HCM pathology in pigs. Sci Rep 2018; 8:4786. [PMID: 29555974 PMCID: PMC5859159 DOI: 10.1038/s41598-018-22936-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/01/2018] [Indexed: 11/09/2022] Open
Abstract
Familial Hypertrophic Cardiomyopathy (HCM) is the most common inherited cardiac disease. About 30% of the patients are heterozygous for mutations in the MYH7 gene encoding the ß-myosin heavy chain (MyHC). Hallmarks of HCM are cardiomyocyte disarray and hypertrophy of the left ventricle, the symptoms range from slight arrhythmias to sudden cardiac death or heart failure. To gain insight into the underlying mechanisms of the diseases' etiology we aimed to generate genome edited pigs with an HCM-mutation. We used TALEN-mediated genome editing and successfully introduced the HCM-point mutation R723G into the MYH7 gene of porcine fibroblasts and subsequently cloned pigs that were heterozygous for the HCM-mutation R723G. No off-target effects were determined in the R723G-pigs. Surprisingly, the animals died within 24 h post partem, probably due to heart failure as indicated by a shift in the a/ß-MyHC ratio in the left ventricle. Most interestingly, the neonatal pigs displayed features of HCM, including mild myocyte disarray, malformed nuclei, and MYH7-overexpression. The finding of HCM-specific pathology in neonatal R723G-piglets suggests a very early onset of the disease and highlights the importance of novel large animal models for studying causative mechanisms and long-term progression of human cardiac diseases.
Collapse
Affiliation(s)
- J Montag
- Institute for Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - B Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Hoeltystrasse 10, Mariensee, 31535, Neustadt, Germany.,REBIRTH, Cluster of Excellence, Hannover Medical School, Hannover, 30625, Germany
| | - A K Flögel
- Institute for Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - E Becker
- Institute for Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - A Lucas-Hahn
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Hoeltystrasse 10, Mariensee, 31535, Neustadt, Germany
| | - G J Cost
- Sangamo Therapeutics, 501 Canal Boulevard, CA, 94804, Richmond, USA.,Casebia Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - C Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - T Kraft
- Institute for Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,REBIRTH, Cluster of Excellence, Hannover Medical School, Hannover, 30625, Germany
| | - H Niemann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Hoeltystrasse 10, Mariensee, 31535, Neustadt, Germany.,REBIRTH, Cluster of Excellence, Hannover Medical School, Hannover, 30625, Germany
| | - B Brenner
- Institute for Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,REBIRTH, Cluster of Excellence, Hannover Medical School, Hannover, 30625, Germany
| |
Collapse
|
17
|
Mathew J, Zahavich L, Lafreniere-Roula M, Wilson J, George K, Benson L, Bowdin S, Mital S. Utility of genetics for risk stratification in pediatric hypertrophic cardiomyopathy. Clin Genet 2017; 93:310-319. [DOI: 10.1111/cge.13157] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/17/2017] [Accepted: 09/27/2017] [Indexed: 12/29/2022]
Affiliation(s)
- J. Mathew
- Cardiology Department; The Royal Children’s Hospital; Melbourne Victoria Australia
| | - L. Zahavich
- Division of Cardiology, Department of Pediatrics; Hospital for Sick Children, University of Toronto; Toronto Ontario Canada
| | - M. Lafreniere-Roula
- Division of Cardiology, Department of Pediatrics; Hospital for Sick Children, University of Toronto; Toronto Ontario Canada
| | - J. Wilson
- Division of Cardiology, Department of Pediatrics; Hospital for Sick Children, University of Toronto; Toronto Ontario Canada
| | - K. George
- Division of Cardiology, Department of Pediatrics; Hospital for Sick Children, University of Toronto; Toronto Ontario Canada
| | - L. Benson
- Division of Cardiology, Department of Pediatrics; Hospital for Sick Children, University of Toronto; Toronto Ontario Canada
| | - S. Bowdin
- Division of Cardiology, Department of Pediatrics; Hospital for Sick Children, University of Toronto; Toronto Ontario Canada
| | - S. Mital
- Division of Cardiology, Department of Pediatrics; Hospital for Sick Children, University of Toronto; Toronto Ontario Canada
| |
Collapse
|
18
|
Marian AJ, Braunwald E. Hypertrophic Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, and Therapy. Circ Res 2017; 121:749-770. [PMID: 28912181 DOI: 10.1161/circresaha.117.311059] [Citation(s) in RCA: 775] [Impact Index Per Article: 110.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic disorder that is characterized by left ventricular hypertrophy unexplained by secondary causes and a nondilated left ventricle with preserved or increased ejection fraction. It is commonly asymmetrical with the most severe hypertrophy involving the basal interventricular septum. Left ventricular outflow tract obstruction is present at rest in about one third of the patients and can be provoked in another third. The histological features of HCM include myocyte hypertrophy and disarray, as well as interstitial fibrosis. The hypertrophy is also frequently associated with left ventricular diastolic dysfunction. In the majority of patients, HCM has a relatively benign course. However, HCM is also an important cause of sudden cardiac death, particularly in adolescents and young adults. Nonsustained ventricular tachycardia, syncope, a family history of sudden cardiac death, and severe cardiac hypertrophy are major risk factors for sudden cardiac death. This complication can usually be averted by implantation of a cardioverter-defibrillator in appropriate high-risk patients. Atrial fibrillation is also a common complication and is not well tolerated. Mutations in over a dozen genes encoding sarcomere-associated proteins cause HCM. MYH7 and MYBPC3, encoding β-myosin heavy chain and myosin-binding protein C, respectively, are the 2 most common genes involved, together accounting for ≈50% of the HCM families. In ≈40% of HCM patients, the causal genes remain to be identified. Mutations in genes responsible for storage diseases also cause a phenotype resembling HCM (genocopy or phenocopy). The routine applications of genetic testing and preclinical identification of family members represents an important advance. The genetic discoveries have enhanced understanding of the molecular pathogenesis of HCM and have stimulated efforts designed to identify new therapeutic agents.
Collapse
Affiliation(s)
- Ali J Marian
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, Department of Medicine, University of Texas Health Sciences Center at Houston (A.J.M.); Texas Heart Institute, Houston (A.J.M.); and TIMI Study Group, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.B.).
| | - Eugene Braunwald
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, Department of Medicine, University of Texas Health Sciences Center at Houston (A.J.M.); Texas Heart Institute, Houston (A.J.M.); and TIMI Study Group, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.B.)
| |
Collapse
|
19
|
Vermeer AMC, Clur SAB, Blom NA, Wilde AAM, Christiaans I. Penetrance of Hypertrophic Cardiomyopathy in Children Who Are Mutation Positive. J Pediatr 2017; 188:91-95. [PMID: 28396031 DOI: 10.1016/j.jpeds.2017.03.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 03/06/2017] [Accepted: 03/10/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVES To investigate the presence of hypertrophic cardiomyopathy (HCM) at first cardiac evaluation and during follow-up and cardiac events in predictively tested children who are mutation positive. STUDY DESIGN The study included 119 predictively tested children who were mutation positive, with a mean age of 12.1 years. A family history and clinical variables from all cardiac evaluations after predictive genetic testing were recorded. Outcome measures were a clinical diagnosis of HCM, death, and cardiac events. RESULTS No child died during a mean follow-up of 6.9 ± 3.8 years: 95 children were evaluated more than once. Eight (6.7%) children who were mutation positive were diagnosed with HCM at one or more cardiac evaluation(s), some with severe hypertrophy. In one patient who fulfilled the diagnostic criteria for HCM a cardiac event occurred during follow-up. She received an appropriate implantable cardioverter-defibrillator shock 4 years after a prophylactic implantable cardioverter-defibrillator was implanted. CONCLUSION The risk for predictively tested children who are mutation positive to develop HCM during childhood and the risk of cardiac events in children who are phenotype negative are low. In children who are phenotype positive, however, severe hypertrophy and cardiac events can develop. Further research is necessary to study whether the interval between cardiac evaluations in children can be increased after a normal first evaluation and whether risk stratification for sudden cardiac death is necessary in children who are phenotype negative.
Collapse
Affiliation(s)
- Alexa M C Vermeer
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Heart Centre, Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Sally-Ann B Clur
- Department of Pediatric Cardiology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Nico A Blom
- Department of Pediatric Cardiology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Arthur A M Wilde
- Heart Centre, Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Imke Christiaans
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Prondzynski M, Krämer E, Laufer SD, Shibamiya A, Pless O, Flenner F, Müller OJ, Münch J, Redwood C, Hansen A, Patten M, Eschenhagen T, Mearini G, Carrier L. Evaluation of MYBPC3 trans-Splicing and Gene Replacement as Therapeutic Options in Human iPSC-Derived Cardiomyocytes. MOLECULAR THERAPY. NUCLEIC ACIDS 2017. [PMID: 28624223 PMCID: PMC5458066 DOI: 10.1016/j.omtn.2017.05.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gene therapy is a promising option for severe forms of genetic diseases. We previously provided evidence for the feasibility of trans-splicing, exon skipping, and gene replacement in a mouse model of hypertrophic cardiomyopathy (HCM) carrying a mutation in MYBPC3, encoding cardiac myosin-binding protein C (cMyBP-C). Here we used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from an HCM patient carrying a heterozygous c.1358-1359insC MYBPC3 mutation and from a healthy donor. HCM hiPSC-CMs exhibited ∼50% lower MYBPC3 mRNA and cMyBP-C protein levels than control, no truncated cMyBP-C, larger cell size, and altered gene expression, thus reproducing human HCM features. We evaluated RNA trans-splicing and gene replacement after transducing hiPSC-CMs with adeno-associated virus. trans-splicing with 5' or 3' pre-trans-splicing molecules represented ∼1% of total MYBPC3 transcripts in healthy hiPSC-CMs. In contrast, gene replacement with the full-length MYBPC3 cDNA resulted in ∼2.5-fold higher MYBPC3 mRNA levels in HCM and control hiPSC-CMs. This restored the cMyBP-C level to 81% of the control level, suppressed hypertrophy, and partially restored gene expression to control level in HCM cells. This study provides evidence for (1) the feasibility of trans-splicing, although with low efficiency, and (2) efficient gene replacement in hiPSC-CMs with a MYBPC3 mutation.
Collapse
Affiliation(s)
- Maksymilian Prondzynski
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Elisabeth Krämer
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Sandra D Laufer
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; Hamburg Zentrum für Experimentelle Therapieforschung (HEXT) Stem Cell Facility, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Aya Shibamiya
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; Hamburg Zentrum für Experimentelle Therapieforschung (HEXT) Stem Cell Facility, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ole Pless
- Fraunhofer IME Screening-Port, 22525 Hamburg, Germany
| | - Frederik Flenner
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Oliver J Müller
- Department of Cardiology, Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Julia Münch
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; University Heart Center Hamburg, 20246 Hamburg, Germany
| | - Charles Redwood
- Radcliffe Department of Medicine, University of Oxford, Oxford OX1 3PA, UK
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Monica Patten
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; University Heart Center Hamburg, 20246 Hamburg, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Giulia Mearini
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany.
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany.
| |
Collapse
|
21
|
Kim D, Kim Y, Son N, Kang C, Kim A. Recent omics technologies and their emerging applications for personalised medicine. IET Syst Biol 2017; 11:87-98. [DOI: 10.1049/iet-syb.2016.0016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Dong‐Hyuk Kim
- School of Life ScienceHandong Global UniversityPohangGyungbuk37554South Korea
| | - Young‐Sook Kim
- School of Life ScienceHandong Global UniversityPohangGyungbuk37554South Korea
| | - Nam‐Il Son
- School of Life ScienceHandong Global UniversityPohangGyungbuk37554South Korea
| | - Chan‐Koo Kang
- School of Life ScienceHandong Global UniversityPohangGyungbuk37554South Korea
| | - Ah‐Ram Kim
- School of Life ScienceHandong Global UniversityPohangGyungbuk37554South Korea
| |
Collapse
|
22
|
Fourey D, Care M, Siminovitch KA, Weissler-Snir A, Hindieh W, Chan RH, Gollob MH, Rakowski H, Adler A. Prevalence and Clinical Implication of Double Mutations in Hypertrophic Cardiomyopathy. ACTA ACUST UNITED AC 2017; 10:CIRCGENETICS.116.001685. [DOI: 10.1161/circgenetics.116.001685] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 02/07/2017] [Indexed: 11/16/2022]
Abstract
Background—
Available data suggests that double mutations in patients with hypertrophic cardiomyopathy are not rare and are associated with a more severe phenotype. Most of this data, however, is based on noncontemporary variant classification.
Methods and Results—
Clinical data of all hypertrophic cardiomyopathy patients with 2 rare genetic variants were retrospectively reviewed and compared with a group of patients with a single disease-causing variant. Furthermore, a literature search was performed for all studies with information on prevalence and outcome of patients with double mutations. Classification of genetic variants was reanalyzed according to current guidelines. In our cohort (n=1411), 9% of gene-positive patients had 2 rare variants in sarcomeric genes but only in 1 case (0.4%) were both variants classified as pathogenic. Patients with 2 rare variants had a trend toward younger age at presentation when compared with patients with a single mutation. All other clinical variables were similar. In data pooled from cohort studies in the literature, 8% of gene-positive patients were published to have double mutations. However, after reanalysis of reported variants, this prevalence diminished to 0.4%. All patients with 2 radical mutations in
MYBPC3
in the literature had severe disease with death or heart transplant during the first year of life. Data on other specific genotype–phenotype correlations were scarce.
Conclusions—
Double mutations in patients with hypertrophic cardiomyopathy are much less common than previously estimated. With the exception of double radical
MYBPC3
mutations, there is little data to guide clinical decision making in cases with double mutations.
Collapse
Affiliation(s)
- Dana Fourey
- From the Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, Toronto, Ontario, Canada (D.F., A.W.-S., W.H., R.H.C., M.H.G., H.R., A.A.); Fred A. Litwin & Family Center in Genetic Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada (M.C., K.A.S.)
| | - Melanie Care
- From the Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, Toronto, Ontario, Canada (D.F., A.W.-S., W.H., R.H.C., M.H.G., H.R., A.A.); Fred A. Litwin & Family Center in Genetic Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada (M.C., K.A.S.)
| | - Katherine A. Siminovitch
- From the Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, Toronto, Ontario, Canada (D.F., A.W.-S., W.H., R.H.C., M.H.G., H.R., A.A.); Fred A. Litwin & Family Center in Genetic Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada (M.C., K.A.S.)
| | - Adaya Weissler-Snir
- From the Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, Toronto, Ontario, Canada (D.F., A.W.-S., W.H., R.H.C., M.H.G., H.R., A.A.); Fred A. Litwin & Family Center in Genetic Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada (M.C., K.A.S.)
| | - Waseem Hindieh
- From the Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, Toronto, Ontario, Canada (D.F., A.W.-S., W.H., R.H.C., M.H.G., H.R., A.A.); Fred A. Litwin & Family Center in Genetic Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada (M.C., K.A.S.)
| | - Raymond H. Chan
- From the Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, Toronto, Ontario, Canada (D.F., A.W.-S., W.H., R.H.C., M.H.G., H.R., A.A.); Fred A. Litwin & Family Center in Genetic Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada (M.C., K.A.S.)
| | - Michael H. Gollob
- From the Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, Toronto, Ontario, Canada (D.F., A.W.-S., W.H., R.H.C., M.H.G., H.R., A.A.); Fred A. Litwin & Family Center in Genetic Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada (M.C., K.A.S.)
| | - Harry Rakowski
- From the Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, Toronto, Ontario, Canada (D.F., A.W.-S., W.H., R.H.C., M.H.G., H.R., A.A.); Fred A. Litwin & Family Center in Genetic Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada (M.C., K.A.S.)
| | - Arnon Adler
- From the Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, Toronto, Ontario, Canada (D.F., A.W.-S., W.H., R.H.C., M.H.G., H.R., A.A.); Fred A. Litwin & Family Center in Genetic Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada (M.C., K.A.S.)
| |
Collapse
|
23
|
Huke S. Linking myofilaments to sudden cardiac death: recent advances. J Physiol 2017; 595:3939-3947. [PMID: 28205229 DOI: 10.1113/jp273047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/06/2017] [Indexed: 12/11/2022] Open
Abstract
The major goal of this focused review is to highlight some of the recent advances and remaining open questions about how a mutation in a myofilament protein leads to an increased risk for sudden cardiac death (SCD). The link between myofilaments and SCD has been known for over 25 years, but identifying mutation carriers at risk for SCD is still a challenge and currently the only effective prevention is implantation of a defibrillator (ICD). In addition to recognized risk factors, other contributing factors need to be considered and assessed, e.g. 'microvascular dysfunction', to calibrate individual risk more accurately. Similarly, improving our understanding about the underlying mechanisms of SCD in patients with sarcomeric mutations will also allow us to design new and less invasive treatment options that will minimize risk and hopefully make implantation of an ICD unnecessary.
Collapse
Affiliation(s)
- Sabine Huke
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
24
|
Li L, Bainbridge MN, Tan Y, Willerson JT, Marian AJ. A Potential Oligogenic Etiology of Hypertrophic Cardiomyopathy: A Classic Single-Gene Disorder. Circ Res 2017; 120:1084-1090. [PMID: 28223422 DOI: 10.1161/circresaha.116.310559] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 12/16/2022]
Abstract
RATIONALE Hypertrophic cardiomyopathy (HCM) is a prototypic single-gene disease caused mainly by mutations in genes encoding sarcomere proteins. Despite the remarkable advances, the causal genes in ≈40% of the HCM cases remain unknown, typically in small families and sporadic cases, wherein cosegregation could not be established. OBJECTIVE To test the hypothesis that the missing causal genes in HCM is, in part, because of an oligogenic cause, wherein the pathogenic variants do not cosegregate with the phenotype. METHODS AND RESULTS A clinically affected trio with HCM underwent clinical evaluation, electrocardiography, echocardiography, magnetic resonance imaging, and whole exome sequencing. Pathogenic variants in the whole exome sequencing data were identified using established algorithms. Family members were genotyped by Sanger sequencing and cosegregation was analyzed. The siblings had a severe course, whereas the mother had a mild course. Variant analysis showed that the trio shared 145 heterozygous pathogenic variants in 139 genes, including 2 in cardiomyopathy genes TTN and ALPK3. The siblings also had the pathogenic variant p.Ala13Thr variant in MYL2, a known gene for HCM. The sibling's father also carried the p.Ala13Thr variant, in whom an unambiguous diagnosis of HCM could not be made because of concomitant severe aortic stenosis. The TTN variant segregated with HCM, except in a 7-year-old boy, who had a normal phenotype. The ALPK3 variant, shared by the affected trio, did not segregate with the phenotype. CONCLUSIONS We posit that a subset of HCM might be oligogenic caused by multiple pathogenic variants that do not perfectly cosegregate with the phenotype.
Collapse
Affiliation(s)
- Lili Li
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, and Texas Heart Institute
| | - Matthew Neil Bainbridge
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, and Texas Heart Institute
| | - Yanli Tan
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, and Texas Heart Institute
| | - James T Willerson
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, and Texas Heart Institute
| | - Ali J Marian
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, and Texas Heart Institute.
| |
Collapse
|
25
|
Zhao Y, Cao H, Song Y, Feng Y, Ding X, Pang M, Zhang Y, Zhang H, Ding J, Xia X. Identification of novel mutations including a double mutation in patients with inherited cardiomyopathy by a targeted sequencing approach using the Ion Torrent PGM system. Int J Mol Med 2016; 37:1511-20. [PMID: 27082122 PMCID: PMC4867886 DOI: 10.3892/ijmm.2016.2565] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 04/08/2016] [Indexed: 12/19/2022] Open
Abstract
Inherited cardiomyopathy is the major cause of sudden cardiac death (SCD) and heart failure (HF). The disease is associated with extensive genetic heterogeneity; pathogenic mutations in cardiac sarcomere protein genes, cytoskeletal protein genes and nuclear envelope protein genes have been linked to its etiology. Early diagnosis is conducive to clinical monitoring and allows for presymptomatic interventions as needed. In the present study, the entire coding sequences and flanking regions of 12 major disease (cardiomyopathy)-related genes [namely myosin, heavy chain 7, cardiac muscle, β (MYH7); myosin binding protein C, cardiac (MYBPC3); lamin A/C (LMNA); troponin I type 3 (cardiac) (TNNI3); troponin T type 2 (cardiac) (TNNT2); actin, α, cardiac muscle 1 (ACTC1); tropomyosin 1 (α) (TPM1); sodium channel, voltage gated, type V alpha subunit (SCN5A); myosin, light chain 2, regulatory, cardiac, slow (MYL2); myosin, heavy chain 6, cardiac muscle, α (MYH6); myosin, light chain 3, alkali, ventricular, skeletal, slow (MYL3); and protein kinase, AMP-activated, gamma 2 non-catalytic subunit (PRKAG2)] in 8 patients with dilated cardiomyopathy (DCM) and in 8 patients with hypertrophic cardiomyopathy (HCM) were amplified and then sequenced using the Ion Torrent Personal Genome Machine (PGM) system. As a result, a novel heterozygous mutation (MYH7, p.Asn885Thr) and a variant of uncertain significance (TNNT2, p.Arg296His) were identified in 2 patients with HCM. These 2 missense mutations, which were absent in the samples obtained from the 200 healthy control subjects, altered the amino acid that was evolutionarily conserved among a number of vertebrate species; this illustrates that these 2 non-synonymous mutations play a role in the pathogenesis of HCM. Moreover, a double heterozygous mutation (PRKAG2, p.Gly100Ser plus MYH7, p.Arg719Trp) was identified in a patient with severe familial HCM, for the first time to the best of our knowledge. This patient provided us with more information regarding the genotype-phenotype correlation between mutations of MYH7 and PRKAG2. Taken together, these findings provide insight into the molecular mechanisms underlying inherited cardiomyopathy. The mutations identified in this study may be further investigated in the future in order to improve the diagnosis and treatment of patients with inherited cardiomyopathy. Furthermore, our findings indicated that sequencing using the Ion Torrent PGM system is a useful approach for the identification of pathogenic mutations associated with inherited cardiomyopathy, and it may be used for the risk evaluation of individuals with a possible susceptibility to inherited cardiomyopathy.
Collapse
Affiliation(s)
- Yue Zhao
- Faculty of Life Science and Technology, Research Center for Molecular Medicine in Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Hong Cao
- Department of Cardiology, The First Hospital of Yunnan Province, Kunming, Yunnan 650034, P.R. China
| | - Yindi Song
- Department of Cardiology, The First Hospital of Yunnan Province, Kunming, Yunnan 650034, P.R. China
| | - Yue Feng
- Faculty of Life Science and Technology, Research Center for Molecular Medicine in Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Xiaoxue Ding
- Department of Cardiology, The First Hospital of Yunnan Province, Kunming, Yunnan 650034, P.R. China
| | - Mingjie Pang
- Department of Cardiology, The First Hospital of Yunnan Province, Kunming, Yunnan 650034, P.R. China
| | - Yunmei Zhang
- Department of Cardiology, The First Hospital of Yunnan Province, Kunming, Yunnan 650034, P.R. China
| | - Hong Zhang
- Department of Cardiology, The First Hospital of Yunnan Province, Kunming, Yunnan 650034, P.R. China
| | - Jiahuan Ding
- Faculty of Life Science and Technology, Research Center for Molecular Medicine in Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Research Center for Molecular Medicine in Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
26
|
Cardiac myosin-binding protein C (MYBPC3) in cardiac pathophysiology. Gene 2015; 573:188-97. [PMID: 26358504 DOI: 10.1016/j.gene.2015.09.008] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/21/2015] [Accepted: 09/01/2015] [Indexed: 12/27/2022]
Abstract
More than 350 individual MYPBC3 mutations have been identified in patients with inherited hypertrophic cardiomyopathy (HCM), thus representing 40–50% of all HCM mutations, making it the most frequently mutated gene in HCM. HCM is considered a disease of the sarcomere and is characterized by left ventricular hypertrophy, myocyte disarray and diastolic dysfunction. MYBPC3 encodes for the thick filament associated protein cardiac myosin-binding protein C (cMyBP-C), a signaling node in cardiac myocytes that contributes to the maintenance of sarcomeric structure and regulation of contraction and relaxation. This review aims to provide a succinct overview of how mutations in MYBPC3 are considered to affect the physiological function of cMyBP-C, thus causing the deleterious consequences observed inHCM patients. Importantly, recent advances to causally treat HCM by repairing MYBPC3 mutations by gene therapy are discussed here, providing a promising alternative to heart transplantation for patients with a fatal form of neonatal cardiomyopathy due to bi-allelic truncating MYBPC3 mutations.
Collapse
|
27
|
Targeted Mybpc3 Knock-Out Mice with Cardiac Hypertrophy Exhibit Structural Mitral Valve Abnormalities. J Cardiovasc Dev Dis 2015; 2:48-65. [PMID: 26819945 PMCID: PMC4725593 DOI: 10.3390/jcdd2020048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
MYBPC3 mutations cause hypertrophic cardiomyopathy, which is frequently associated with mitral valve (MV) pathology. We reasoned that increased MV size is caused by localized growth factors with paracrine effects. We used high-resolution echocardiography to compare Mybpc3-null, heterozygous, and wild-type mice (n = 84, aged 3–6 months) and micro-CT for MV volume (n = 6, age 6 months). Mybpc3-null mice showed left ventricular hypertrophy, dilation, and systolic dysfunction compared to heterozygous and wild-type mice, but no systolic anterior motion of the MV or left ventricular outflow obstruction. Compared to wild-type mice, echocardiographic anterior leaflet length (adjusted for left ventricular size) was greatest in Mybpc3-null mice (1.92 ± 0.08 vs. 1.72 ± 0.08 mm, p < 0.001), as was combined leaflet thickness (0.23 ± 0.04 vs. 0.15 ± 0.02 mm, p < 0.001). Micro-CT analyses of Mybpc3-null mice demonstrated increased MV volume (0.47 ± 0.06 vs. 0.15 ± 0.06 mm3, p = 0.018) and thickness (0.35 ± 0.04 vs. 0.12 ± 0.04 mm, p = 0.002), coincident with increased markers of TGFβ activity compared to heterozygous and wild-type littermates. Similarly, excised MV from a patient with MYBPC3 mutation showed increased TGFβ activity. We conclude that MYBPC3 deficiency causes hypertrophic cardiomyopathy with increased MV leaflet length and thickness despite the absence of left ventricular outflow-tract obstruction, in parallel with increased TGFβ activity. MV changes in hypertrophic cardiomyopathy may be due to paracrine effects, which represent targets for therapeutic studies.
Collapse
|
28
|
van der Velden J, Ho CY, Tardiff JC, Olivotto I, Knollmann BC, Carrier L. Research priorities in sarcomeric cardiomyopathies. Cardiovasc Res 2015; 105:449-56. [PMID: 25631582 PMCID: PMC4375392 DOI: 10.1093/cvr/cvv019] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/04/2015] [Accepted: 01/09/2015] [Indexed: 12/12/2022] Open
Abstract
The clinical variability in patients with sarcomeric cardiomyopathies is striking: a mutation causes cardiomyopathy in one individual, while the identical mutation is harmless in a family member. Moreover, the clinical phenotype varies ranging from asymmetric hypertrophy to severe dilatation of the heart. Identification of a single phenotype-associated disease mechanism would facilitate the design of targeted treatments for patient groups with different clinical phenotypes. However, evidence from both the clinic and basic knowledge of functional and structural properties of the sarcomere argues against a 'one size fits all' therapy for treatment of one clinical phenotype. Meticulous clinical and basic studies are needed to unravel the initial and progressive changes initiated by sarcomere mutations to better understand why mutations in the same gene can lead to such opposing phenotypes. Ultimately, we need to design an 'integrative physiology' approach to fully realize patient/gene-tailored therapy. Expertise within different research fields (cardiology, genetics, cellular biology, physiology, and pharmacology) must be joined to link longitudinal clinical studies with mechanistic insights obtained from molecular and functional studies in novel cardiac muscle systems. New animal models, which reflect both initial and more advanced stages of sarcomeric cardiomyopathy, will also aid in achieving these goals. Here, we discuss current priorities in clinical and preclinical investigation aimed at increasing our understanding of pathophysiological mechanisms leading from mutation to disease. Such information will provide the basis to improve risk stratification and to develop therapies to prevent/rescue cardiac dysfunction and remodelling caused by sarcomere mutations.
Collapse
Affiliation(s)
- Jolanda van der Velden
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands ICIN-Netherlands Heart Institute, Utrecht, The Netherlands
| | - Carolyn Y Ho
- Brigham and Women's Hospital, Cardiology, Boston, MA, USA
| | - Jil C Tardiff
- Department of Medicine and Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Iacopo Olivotto
- Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy
| | - Bjorn C Knollmann
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| |
Collapse
|
29
|
Abstract
Heart failure is highly influenced by heritability, and nearly 100 genes link to familial cardiomyopathy. Despite the marked genetic diversity that underlies these complex cardiovascular phenotypes, several key genes and pathways have emerged. Hypertrophic cardiomyopathy is characterized by increased contractility and a greater energetic cost of cardiac output. Dilated cardiomyopathy is often triggered by mutations that disrupt the giant protein titin. The energetic consequences of these mutations offer molecular targets and opportunities for new drug development and gene correction therapies.
Collapse
Affiliation(s)
- Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - David Y Barefield
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Megan J Puckelwartz
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
30
|
Tardiff JC, Carrier L, Bers DM, Poggesi C, Ferrantini C, Coppini R, Maier LS, Ashrafian H, Huke S, van der Velden J. Targets for therapy in sarcomeric cardiomyopathies. Cardiovasc Res 2015; 105:457-70. [PMID: 25634554 DOI: 10.1093/cvr/cvv023] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To date, no compounds or interventions exist that treat or prevent sarcomeric cardiomyopathies. Established therapies currently improve the outcome, but novel therapies may be able to more fundamentally affect the disease process and course. Investigations of the pathomechanisms are generating molecular insights that can be useful for the design of novel specific drugs suitable for clinical use. As perturbations in the heart are stage-specific, proper timing of drug treatment is essential to prevent initiation and progression of cardiac disease in mutation carrier individuals. In this review, we emphasize potential novel therapies which may prevent, delay, or even reverse hypertrophic cardiomyopathy caused by sarcomeric gene mutations. These include corrections of genetic defects, altered sarcomere function, perturbations in intracellular ion homeostasis, and impaired myocardial energetics.
Collapse
Affiliation(s)
- Jil C Tardiff
- Department of Medicine and Cellular and Molecular Medicine, University of Arizona, 1656 East Mabel Street, MRB 312, Tucson, AZ 85724-5217, USA
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Corrado Poggesi
- Center of Molecular Medicine and Applied Biophysics (CIMMBA), University of Florence, Florence, Italy
| | - Cecilia Ferrantini
- Center of Molecular Medicine and Applied Biophysics (CIMMBA), University of Florence, Florence, Italy
| | - Raffaele Coppini
- Center of Molecular Medicine and Applied Biophysics (CIMMBA), University of Florence, Florence, Italy
| | - Lars S Maier
- Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum, Regensburg, Germany
| | - Houman Ashrafian
- Experimental Therapeutics and Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sabine Huke
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jolanda van der Velden
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands ICIN-Netherlands Heart Institute, Utrecht, the Netherlands
| |
Collapse
|
31
|
Ho CY, Charron P, Richard P, Girolami F, Van Spaendonck-Zwarts KY, Pinto Y. Genetic advances in sarcomeric cardiomyopathies: state of the art. Cardiovasc Res 2015; 105:397-408. [PMID: 25634555 PMCID: PMC4349164 DOI: 10.1093/cvr/cvv025] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Genetic studies in the 1980s and 1990s led to landmark discoveries that sarcomere mutations cause both hypertrophic and dilated cardiomyopathies. Sarcomere mutations also likely play a role in more complex phenotypes and overlap cardiomyopathies with features of hypertrophy, dilation, diastolic abnormalities, and non-compaction. Identification of the genetic cause of these important conditions provides unique opportunities to interrogate and characterize disease pathogenesis and pathophysiology, starting from the molecular level and expanding from there. With such insights, there is potential for clinical translation that may transform management of patients and families with inherited cardiomyopathies. If key pathways for disease development can be identified, they could potentially serve as targets for novel disease-modifying or disease-preventing therapies. By utilizing gene-based diagnostic testing, we can identify at-risk individuals prior to the onset of clinical disease, allowing for disease-modifying therapy to be initiated early in life, at a time that such treatment may be most successful. In this section, we review the current application of genetics in clinical management, focusing on hypertrophic cardiomyopathy as a paradigm; discuss state-of-the-art genetic testing technology; review emerging knowledge of gene expression in sarcomeric cardiomyopathies; and discuss both the prospects, as well as the challenges, of bringing genetics to medicine.
Collapse
Affiliation(s)
- Carolyn Y Ho
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Philippe Charron
- Centre de référence maladies cardiaques héréditaires, ICAN, Inserm UMR_1166, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France Université de Versailles-Saint Quentin, Hôpital Ambroise Paré, AP-HP, Boulogne-Billancourt, France
| | - Pascale Richard
- Centre de référence maladies cardiaques héréditaires, ICAN, Inserm UMR_1166, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | | | - Karin Y Van Spaendonck-Zwarts
- Department of Clinical Genetics, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Yigal Pinto
- Department of Cardiology, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Mybpc3 gene therapy for neonatal cardiomyopathy enables long-term disease prevention in mice. Nat Commun 2014; 5:5515. [PMID: 25463264 DOI: 10.1038/ncomms6515] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/08/2014] [Indexed: 01/24/2023] Open
Abstract
Homozygous or compound heterozygous frameshift mutations in MYBPC3 encoding cardiac myosin-binding protein C (cMyBP-C) cause neonatal hypertrophic cardiomyopathy (HCM), which rapidly evolves into systolic heart failure and death within the first year of life. Here we show successful long-term Mybpc3 gene therapy in homozygous Mybpc3-targeted knock-in (KI) mice, which genetically mimic these human neonatal cardiomyopathies. A single systemic administration of adeno-associated virus (AAV9)-Mybpc3 in 1-day-old KI mice prevents the development of cardiac hypertrophy and dysfunction for the observation period of 34 weeks and increases Mybpc3 messenger RNA (mRNA) and cMyBP-C protein levels in a dose-dependent manner. Importantly, Mybpc3 gene therapy unexpectedly also suppresses accumulation of mutant mRNAs. This study reports the first successful long-term gene therapy of HCM with correction of both haploinsufficiency and production of poison peptides. In the absence of alternative treatment options except heart transplantation, gene therapy could become a realistic treatment option for severe neonatal HCM.
Collapse
|
33
|
Wessels MW, Herkert JC, Frohn-Mulder IM, Dalinghaus M, van den Wijngaard A, de Krijger RR, Michels M, de Coo IF, Hoedemaekers YM, Dooijes D. Compound heterozygous or homozygous truncating MYBPC3 mutations cause lethal cardiomyopathy with features of noncompaction and septal defects. Eur J Hum Genet 2014; 23:922-8. [PMID: 25335496 DOI: 10.1038/ejhg.2014.211] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 08/08/2014] [Accepted: 09/09/2014] [Indexed: 02/02/2023] Open
Abstract
Familial hypertrophic cardiomyopathy (HCM) is usually caused by autosomal dominant pathogenic mutations in genes encoding sarcomeric or sarcomere-associated cardiac muscle proteins. The disease mainly affects adults, although young children with severe HCM have also been reported. We describe four unrelated neonates with lethal cardiomyopathy, and performed molecular studies to identify the genetic defect. We also present a literature overview of reported patients with compound heterozygous or homozygous pathogenic MYBPC3 mutations and describe their clinical characteristics. All four children presented with feeding difficulties, failure to thrive, and dyspnea. They died from cardiac failure before age 13 weeks. Features of left ventricular noncompaction were diagnosed in three patients. In the fourth, hypertrabeculation was not a clear feature, but could not be excluded. All of them had septal defects. Two patients were compound heterozygotes for the pathogenic c.2373dup p.(Trp792fs) and c.2827C>T p.(Arg943*) mutations, and two were homozygous for the c.2373dup and c.2827C>T mutations. All patients with biallelic truncating pathogenic mutations in MYBPC3 reported so far (n=21) were diagnosed with severe cardiomyopathy and/or died within the first few months of life. In 62% (13/21), septal defects or a patent ductus arteriosus accompanied cardiomyopathy. In contrast to heterozygous pathogenic mutations, homozygous or compound heterozygous truncating pathogenic MYBPC3 mutations cause severe neonatal cardiomyopathy with features of left ventricular noncompaction and septal defects in approximately 60% of patients.
Collapse
Affiliation(s)
- Marja W Wessels
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Johanna C Herkert
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ingrid M Frohn-Mulder
- Department of Pediatric Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Michiel Dalinghaus
- Department of Pediatric Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Arthur van den Wijngaard
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Michelle Michels
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Irenaeus Fm de Coo
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Yvonne M Hoedemaekers
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dennis Dooijes
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
34
|
Schaefer E, Millat G. Authors' response to the Letter to the Editor “Left ventricular noncompaction associated with a compound heterozygous MYBPC3 mutation”. Eur J Med Genet 2014; 57:350-1. [DOI: 10.1016/j.ejmg.2014.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 04/13/2014] [Indexed: 10/25/2022]
|
35
|
Next-generation sequencing (NGS) as a fast molecular diagnosis tool for left ventricular noncompaction in an infant with compound mutations in the MYBPC3 gene. Eur J Med Genet 2014; 57:129-32. [PMID: 24602869 DOI: 10.1016/j.ejmg.2014.02.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 02/21/2014] [Indexed: 11/22/2022]
Abstract
Left ventricular noncompaction (LVNC) is a clinically heterogeneous disorder characterized by a trabecular meshwork and deep intertrabecular myocardial recesses that communicate with the left ventricular cavity. LVNC is classified as a rare genetic cardiomyopathy. Molecular diagnosis is a challenge for the medical community as the condition shares morphologic features of hypertrophic and dilated cardiomyopathies. Several genetic causes of LVNC have been reported, with variable modes of inheritance, including autosomal dominant and X-linked inheritance, but relatively few responsible genes have been identified. In this report, we describe a case of a severe form of LVNC leading to death at 6 months of life. NGS sequencing using a custom design for hypertrophic cardiomyopathy panel allowed us to identify compound heterozygosity in the MYBPC3 gene (p.Lys505del, p.Pro955fs) in 3 days, confirming NGS sequencing as a fast molecular diagnosis tool. Other studies have reported neonatal presentation of cardiomyopathies associated with compound heterozygous or homozygous MYBPC3 mutations. In this family and in families in which parental truncating MYBPC3 mutations are identified, preimplantation or prenatal genetic screening should be considered as these genotypes leads to neonatal mortality and morbidity.
Collapse
|
36
|
Dunn KE, Caleshu C, Cirino AL, Ho CY, Ashley EA. A clinical approach to inherited hypertrophy: the use of family history in diagnosis, risk assessment, and management. ACTA ACUST UNITED AC 2013; 6:118-31. [PMID: 23424256 DOI: 10.1161/circgenetics.110.959387] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Kyla E Dunn
- Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Stanford, CA 94305-5406, USA
| | | | | | | | | |
Collapse
|
37
|
Preuss C, Andelfinger G. Genetics of Heart Failure in Congenital Heart Disease. Can J Cardiol 2013; 29:803-10. [DOI: 10.1016/j.cjca.2013.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/27/2013] [Accepted: 03/06/2013] [Indexed: 01/09/2023] Open
|
38
|
Lopes LR, Rahman MS, Elliott PM. A systematic review and meta-analysis of genotype-phenotype associations in patients with hypertrophic cardiomyopathy caused by sarcomeric protein mutations. Heart 2013; 99:1800-11. [PMID: 23674365 DOI: 10.1136/heartjnl-2013-303939] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The genetic basis of familial hypertrophic cardiomyopathy (HCM) is well described, but the relation between genotype and clinical phenotype is still poorly characterised. OBJECTIVE To summarise and critically review the current literature on genotype-phenotype associations in patients with HCM and to perform a meta-analysis on selected clinical features. DATA SOURCES PubMed/Medline was searched up to January 2013. Retrieved articles were checked for additional publications. SELECTION CRITERIA Observational, cross-sectional and prospectively designed English language human studies that analysed the relationship between the presence of mutations in sarcomeric protein genes and clinical parameters. DATA EXTRACTION AND ANALYSIS The pooled analysis was confined to studies reporting on cohorts of unrelated and consecutive patients in which at least two sarcomere genes were sequenced. A random effect meta-regression model was used to determine the overall prevalence of predefined clinical features: age at presentation, gender, family history of HCM, family history of sudden cardiac death (SCD), and maximum left ventricular wall thickness (MLVWT). The I(2) statistic was used to estimate the proportion of total variability in the prevalence data attributable to the heterogeneity between studies. RESULTS Eighteen publications (corresponding to a total of 2459 patients) were selected for the pooled analysis. The presence of any sarcomere gene mutation was associated with a younger age at presentation (38.4 vs 46.0 years, p<0.0005), a family history of HCM (50.6% vs 23.1%, p<0.0005), a family history of SCD (27.0% vs 14.9%, p<0.0005) and greater MLVWT (21.0 vs 19.3 mm, p=0.03). There were no differences when the two most frequently affected genes, MYBPC3 and MYH7, were compared. A total of 53 family studies were also included in the review. These were characterised by pronounced variability and the majority of studies reporting on outcomes analysed small cross-sectional cohorts and were unsuitable for pooled analyses. CONCLUSIONS The presence of a mutation in any sarcomere gene is associated with a number of clinical features. The heterogeneous nature of the disease and the inconsistency of study design precludes the establishment of more precise genotype-phenotype relationships. Large scale studies examining the relation between genotype, disease severity, and prognosis are required.
Collapse
Affiliation(s)
- Luís R Lopes
- Institute of Cardiovascular Science, University College London, , London, UK
| | | | | |
Collapse
|
39
|
van Engelen K, Postma AV, van de Meerakker JBA, Roos-Hesselink JW, Helderman-van den Enden ATJM, Vliegen HW, Rahman T, Baars MJH, Sels JW, Bauer U, Pickardt T, Sperling SR, Moorman AFM, Keavney B, Goodship J, Klaassen S, Mulder BJM. Ebstein's anomaly may be caused by mutations in the sarcomere protein gene MYH7. Neth Heart J 2013; 21:113-7. [PMID: 21604106 PMCID: PMC3578524 DOI: 10.1007/s12471-011-0141-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Ebstein’s anomaly is a rare congenital heart malformation characterised by adherence of the septal and posterior leaflets of the tricuspid valve to the underlying myocardium. Associated abnormalities of left ventricular morphology and function including left ventricular noncompaction (LVNC) have been observed. An association between Ebstein’s anomaly with LVNC and mutations in the sarcomeric protein gene MYH7, encoding β-myosin heavy chain, has been shown by recent studies. This might represent a specific subtype of Ebstein’s anomaly with a Mendelian inheritance pattern. In this review we discuss the association of MYH7 mutations with Ebstein’s anomaly and LVNC and its implications for the clinical care for patients and their family members.
Collapse
Affiliation(s)
- K van Engelen
- Department of Cardiology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Merkulov S, Chen X, Chandler MP, Stelzer JE. In vivo cardiac myosin binding protein C gene transfer rescues myofilament contractile dysfunction in cardiac myosin binding protein C null mice. Circ Heart Fail 2012; 5:635-44. [PMID: 22855556 DOI: 10.1161/circheartfailure.112.968941] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Decreased expression of cardiac myosin binding protein C (cMyBPC) in the heart has been implicated as a consequence of mutations in cMyBPC that lead to abnormal contractile function at the myofilament level, thereby contributing to the development of hypertrophic cardiomyopathy in humans. It has not been established whether increasing the levels of cMyBPC in the intact heart can improve myofilament and in vivo contractile function and attenuate maladaptive remodeling processes because of reduced levels of cMyBPC. METHODS AND RESULTS We performed in vivo gene transfer of cMyBPC by direct injection into the myocardium of cMyBPC-deficient (cMyBPC(-/-)) mice, and mechanical experiments were conducted on skinned myocardium isolated from cMyBPC(-/-) hearts 21 days and 20 weeks after gene transfer. Cross-bridge kinetics in skinned myocardium isolated from cMyBPC(-/-) hearts after cMyBPC gene transfer were significantly slower compared with untreated cMyBPC(-/-) myocardium and were comparable to wild-type myocardium and cMyBPC(-/-) myocardium that was reconstituted with recombinant cMyBPC in vitro. cMyBPC content in cMyBPC(-/-) skinned myocardium after in vivo cMyBPC gene transfer or in vitro cMyBPC reconstitution was similar to wild-type levels. In vivo echocardiography studies of cMyBPC(-/-) hearts after cMyBPC gene transfer revealed improved systolic and diastolic contractile function and reductions in left ventricular wall thickness. CONCLUSIONS This proof-of-concept study demonstrates that gene therapy designed to increase expression of cMyBPC in the cMyBPC-deficient myocardium can improve myofilament and in vivo contractile function, suggesting that cMyBPC gene therapy may be a viable approach for treatment of cardiomyopathies because of mutations in cMyBPC.
Collapse
Affiliation(s)
- Sergei Merkulov
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
41
|
Chen PP, Patel JR, Powers PA, Fitzsimons DP, Moss RL. Dissociation of structural and functional phenotypes in cardiac myosin-binding protein C conditional knockout mice. Circulation 2012; 126:1194-205. [PMID: 22829020 DOI: 10.1161/circulationaha.111.089219] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiac myosin-binding protein C (cMyBP-C) is a sarcomeric protein that dynamically regulates thick-filament structure and function. In constitutive cMyBP-C knockout (cMyBP-C(-/-)) mice, loss of cMyBP-C has been linked to left ventricular dilation, cardiac hypertrophy, and systolic and diastolic dysfunction, although the pathogenesis of these phenotypes remains unclear. METHODS AND RESULTS We generated cMyBP-C conditional knockout (cMyBP-C-cKO) mice expressing floxed cMyBP-C alleles and a tamoxifen-inducible Cre-recombinase fused to 2 mutated estrogen receptors to study the onset and progression of structural and functional phenotypes caused by the loss of cMyBP-C. In adult cMyBP-C-cKO mice, knockdown of cMyBP-C over a 2-month period resulted in a corresponding impairment of diastolic function and a concomitant abbreviation of systolic ejection, although contractile function was largely preserved. No significant changes in cardiac structure or morphology were immediately evident; however, mild hypertrophy developed after near-complete knockdown of cMyBP-C. In response to pressure overload induced by transaortic constriction, cMyBP-C-cKO mice treated with tamoxifen also developed greater cardiac hypertrophy, left ventricular dilation, and reduced contractile function. CONCLUSIONS These results indicate that myocardial dysfunction is largely caused by the removal of cMyBP-C and occurs before the onset of cytoarchitectural remodeling in tamoxifen-treated cMyBP-C-cKO myocardium. Moreover, near ablation of cMyBP-C in adult myocardium primarily leads to the development of hypertrophic cardiomyopathy in contrast to the dilated phenotype evident in cMyBP-C(-/-) mice, which highlights the importance of additional factors such as loading stress in determining the expression and progression of cMyBP-C-associated cardiomyopathy.
Collapse
Affiliation(s)
- Peter P Chen
- Department of Cellular and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, 601 Science Dr, Madison, WI 53711, USA
| | | | | | | | | |
Collapse
|
42
|
Kassem HS, Girolami F, Sanoudou D. Molecular genetics made simple. Glob Cardiol Sci Pract 2012; 2012:6. [PMID: 25610837 PMCID: PMC4239820 DOI: 10.5339/gcsp.2012.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/01/2012] [Indexed: 01/24/2023] Open
Abstract
Genetics have undoubtedly become an integral part of biomedical science and clinical practice, with important implications in deciphering disease pathogenesis and progression, identifying diagnostic and prognostic markers, as well as designing better targeted treatments. The exponential growth of our understanding of different genetic concepts is paralleled by a growing list of genetic terminology that can easily intimidate the unfamiliar reader. Rendering genetics incomprehensible to the clinician however, defeats the very essence of genetic research: its utilization for combating disease and improving quality of life. Herein we attempt to correct this notion by presenting the basic genetic concepts along with their usefulness in the cardiology clinic. Bringing genetics closer to the clinician will enable its harmonious incorporation into clinical care, thus not only restoring our perception of its simple and elegant nature, but importantly ensuring the maximal benefit for our patients.
Collapse
Affiliation(s)
- Heba Sh Kassem
- Pathology Department and Clinical Genomics Center, Alexandria Faculty of Medicine, Egypt ; Magdi Yacoub Foundation Serving Egypt, Egypt
| | | | - Despina Sanoudou
- Department of Pharmacology, Medical School, University of Athens, Greece
| |
Collapse
|
43
|
Lev A, Simon AJ, Amariglio N, Rechavi G, Somech R. Selective clinical and immune response of the oligoclonal autoreactive T cells in Omenn patients after cyclosporin A treatment. Clin Exp Immunol 2012; 167:338-45. [PMID: 22236011 DOI: 10.1111/j.1365-2249.2011.04508.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The immunological hallmark of Omenn syndrome (OS) is the expansion and activation of an oligoclonal population of autoreactive T cells. These cells should be controlled rapidly by immunosuppressive agents, such as cyclosporin A (CsA), to avoid tissue infiltration and to improve the general outcome of the patients. Here we studied the clinical and the immune response to CsA in two Omenn patients and also examined the gene expression profile associated with good clinical response to such therapy. T cell receptor diversity was studied in cells obtained from OS patients during CsA therapy. Characterization of gene expression in these cells was carried out by using the TaqMan low-density array. One patient showed complete resolution of his symptoms after CsA therapy. The other patient showed selective response of his oligoclonal T cell population and combination therapy was required to control his symptoms. Transcriptional profile associated with good clinical response to CsA therapy revealed significant changes in 26·6% of the tested genes when compared with the transcriptional profile of the cells before treatment. Different clinical response to CsA in two OS patients is correlated with their immunological response. Varying clonal expansions in OS patients can cause autoimmune features and can respond differently to immunosuppressive therapy; therefore, additional treatment is sometimes indicated. CsA for OS patients causes regulation of genes that are involved closely with self-tolerance and autoimmunity.
Collapse
Affiliation(s)
- A Lev
- Cancer Research Center, Edmond and Lily Safra Children's Hospital, Tel Hashomer, Israel
| | | | | | | | | |
Collapse
|
44
|
Marziliano N, Merlini PA, Vignati G, Orsini F, Motta V, Bandiera L, Intrieri M, Veronese S. A case of compound mutations in the MYBPC3 gene associated with biventricular hypertrophy and neonatal death. Neonatology 2012; 102:254-8. [PMID: 22907696 DOI: 10.1159/000339847] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 06/03/2012] [Indexed: 11/19/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is a familial, genetically determined, primary cardiomyopathy caused by mutations in genes coding for proteins of the sarcomere, or, less frequently, genes involved in storage diseases. In pediatric settings, pure HCM has an estimated incidence of 4.7 per million children. The disease is often sub-clinical and goes unrecognized mainly because most patients with HCM have only mild symptoms, if any. However, sudden cardiac death, the most dramatic clinical occurrence and the primary concern for patients and physicians alike, may be the first manifestation of the disease. We describe a case of compound heterozygosity in the MYBPC3 gene (p.Glu258Lys and IVS25-1G>A) associated with biventricular hypertrophy, atrial enlargement and subsequent neonatal death 33 days postpartum. Other studies have reported compound and/or double heterozygosis in the same or different sarcomeric genes during childhood and adulthood, and neonatal presentations have also been described. Our observations show that the combination of a missense (p.Glu258Lys) and a splice-site mutation (IVS25-1G>A) profoundly affects the clinical course. In families in which parental mutations are known, preimplantation (where ethically and legally feasible) or prenatal genetic screening should be adopted because: (1) neonatal HCM in genetic heterozygosity is potentially lethal and (2) heart disease is the most common developmental malformation and the leading cause of neonatal mortality and morbidity.
Collapse
|
45
|
Christiaans I, Nannenberg EA, Dooijes D, Jongbloed RJE, Michels M, Postema PG, Majoor-Krakauer D, van den Wijngaard A, Mannens MMAM, van Tintelen JP, van Langen IM, Wilde AAM. Founder mutations in hypertrophic cardiomyopathy patients in the Netherlands. Neth Heart J 2011; 18:248-54. [PMID: 20505798 DOI: 10.1007/bf03091771] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In this part of a series on cardiogenetic founder mutations in the Netherlands, we review the Dutch founder mutations in hypertrophic cardiomyopathy (HCM) patients. HCM is a common autosomal dominant genetic disease affecting at least one in 500 persons in the general population. Worldwide, most mutations in HCM patients are identified in genes encoding sarcomeric proteins, mainly in the myosin-binding protein C gene (MYBPC3, OMIM #600958) and the beta myosin heavy chain gene (MYH7, OMIM #160760). In the Netherlands, the great majority of mutations occur in the MYBPC3, involving mainly three Dutch founder mutations in the MYBPC3 gene, the c.2373_2374insG, the c.2864_2865delCT and the c.2827C>T mutation. In this review, we describe the genetics of HCM, the genotype-phenotype relation of Dutch founder MYBPC3 gene mutations, the prevalence and the geographic distribution of the Dutch founder mutations, and the consequences for genetic counselling and testing. (Neth Heart J 2010;18:248-54.).
Collapse
Affiliation(s)
- I Christiaans
- Department of Clinical Genetics, Academic Medical Centre, Amsterdam, the Netherlands These authors contributed equally
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang H, Xin B. Hypertrophic cardiomyopathy in the Amish community — What we may learn from it. PROGRESS IN PEDIATRIC CARDIOLOGY 2011. [DOI: 10.1016/j.ppedcard.2011.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Christiaans I, Birnie E, Bonsel GJ, Mannens MMAM, Michels M, Majoor-Krakauer D, Dooijes D, van Tintelen JP, van den Berg MP, Volders PGA, Arens YH, van den Wijngaard A, Atsma DE, Helderman-van den Enden ATJM, Houweling AC, de Boer K, van der Smagt JJ, Hauer RNW, Marcelis CLM, Timmermans J, van Langen IM, Wilde AAM. Manifest disease, risk factors for sudden cardiac death, and cardiac events in a large nationwide cohort of predictively tested hypertrophic cardiomyopathy mutation carriers: determining the best cardiological screening strategy. Eur Heart J 2011; 32:1161-70. [DOI: 10.1093/eurheartj/ehr092] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Affiliation(s)
- Jamshid Shirani
- Department of Cardiology, Geisinger Medical Center, Danville, PA 17822-2160, USA.
| | | |
Collapse
|
49
|
Pinto YM, Wilde AA, van Rijsingen IA, Christiaans I, Deprez RHL, Elliott PM. Clinical utility gene card for: hypertrophic cardiomyopathy (type 1-14). Eur J Hum Genet 2011; 19:ejhg2010243. [PMID: 21267010 DOI: 10.1038/ejhg.2010.243] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yigal M Pinto
- Heart Failure Research Centre, Department of Cardiology, Academic Medical Centre, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
50
|
Meder B, Haas J, Keller A, Heid C, Just S, Borries A, Boisguerin V, Scharfenberger-Schmeer M, Stähler P, Beier M, Weichenhan D, Strom TM, Pfeufer A, Korn B, Katus HA, Rottbauer W. Targeted next-generation sequencing for the molecular genetic diagnostics of cardiomyopathies. ACTA ACUST UNITED AC 2011; 4:110-22. [PMID: 21252143 DOI: 10.1161/circgenetics.110.958322] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Today, mutations in more than 30 different genes have been found to cause inherited cardiomyopathies, some associated with very poor prognosis. However, because of the genetic heterogeneity and limitations in throughput and scalability of current diagnostic tools up until now, it is hardly possible to genetically characterize patients with cardiomyopathy in a fast, comprehensive, and cost-efficient manner. METHODS AND RESULTS We established an array-based subgenomic enrichment followed by next-generation sequencing to detect mutations in patients with hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). With this approach, we show that the genomic region of interest can be enriched by a mean factor of 2169 compared with the coverage of the whole genome, resulting in high sequence coverage of selected disease genes and allowing us to define the genetic pathogenesis of cardiomyopathies in a single sequencing run. In 6 patients, we detected disease-causing mutations, 2 microdeletions, and 4 point mutations. Furthermore, we identified several novel nonsynonymous variants, which are predicted to be harmful, and hence, might be potential disease mutations or modifiers for DCM or HCM. CONCLUSIONS The approach presented here allows for the first time a comprehensive genetic screening in patients with hereditary DCM or HCM in a fast and cost-efficient manner.
Collapse
Affiliation(s)
- Benjamin Meder
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|