1
|
Russo ML, Sousa AMM, Bhattacharyya A. Consequences of trisomy 21 for brain development in Down syndrome. Nat Rev Neurosci 2024; 25:740-755. [PMID: 39379691 DOI: 10.1038/s41583-024-00866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/10/2024]
Abstract
The appearance of cognitive deficits and altered brain morphology in newborns with Down syndrome (DS) suggests that these features are driven by disruptions at the earliest stages of brain development. Despite its high prevalence and extensively characterized cognitive phenotypes, relatively little is known about the cellular and molecular mechanisms that drive the changes seen in DS. Recent technical advances, such as single-cell omics and the development of induced pluripotent stem cell (iPSC) models of DS, now enable in-depth analyses of the biochemical and molecular drivers of altered brain development in DS. Here, we review the current state of knowledge on brain development in DS, focusing primarily on data from human post-mortem brain tissue. We explore the biological mechanisms that have been proposed to lead to intellectual disability in DS, assess the extent to which data from studies using iPSC models supports these hypotheses, and identify current gaps in the field.
Collapse
Affiliation(s)
- Matthew L Russo
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - André M M Sousa
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Delabar JM, Gomes MAGB, Fructuoso M, Sarrazin N, George N, Fleary-Roberts N, Sun H, Bui LC, Rodrigues-Lima F, Janel N, Dairou J, Maria EJ, Dodd RH, Cariou K, Potier MC. EGCG-like non-competitive inhibitor of DYRK1A rescues cognitive defect in a down syndrome model. Eur J Med Chem 2024; 265:116098. [PMID: 38171148 DOI: 10.1016/j.ejmech.2023.116098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/23/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Overexpression of the chromosome 21 DYRK1A gene induces morphological defects and cognitive impairments in individuals with Down syndrome (DS) and in DS mice models. Aging neurons of specific brain regions of patients with Alzheimer's disease, DS and Pick's disease have increased DYRK1A immunoreactivity suggesting a possible association of DYRK1A with neurofibrillary tangle pathology. Epigallocatechin-3-gallate (EGCG) displays appreciable inhibition of DYRK1A activity and, contrary to all other published inhibitors, EGCG is a non-competitive inhibitor of DYRK1A. Prenatal exposure to green tea polyphenols containing EGCG protects from brain defects induced by overexpression of DYRK1A. In order to produce more robust and possibly more active analogues of the natural compound EGCG, here we synthetized new EGCG-like molecules with several structural modifications to the EGCG skeleton. We replaced the ester boun of EGCG with a more resistant amide bond. We also replaced the oxygen ring by a methylene group. And finally, we positioned a nitrogen atom within this ring. The selected compound was shown to maintain the non-competitive property of EGCG and to correct biochemical and behavioral defects present in a DS mouse model. In addition it showed high stability and specificity.
Collapse
Affiliation(s)
- Jean M Delabar
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France.
| | - Marco Antônio G B Gomes
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette, France
| | - Marta Fructuoso
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
| | - Nadège Sarrazin
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
| | - Nicolas George
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette, France
| | - Nadia Fleary-Roberts
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette, France
| | - Hua Sun
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Linh Chi Bui
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Fernando Rodrigues-Lima
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Nathalie Janel
- Team Degenerative Process, Stress and Aging, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Julien Dairou
- Université Paris cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, 45 rue des Saints Pères, F-75006 Paris, France
| | - Edmilson J Maria
- Laboratório de Ciências Químicas, Centro de Ciências e Tecnologia, Universidade Estadual do Norte Fluminense-Darcy Ribeiro, Av. Alberto Lamego, 2000-Parque Califórnia, 28013-602, Campos dos Goytacazes/RJ, Brazil
| | - Robert H Dodd
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette, France
| | - Kevin Cariou
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette, France; current address: Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Marie-Claude Potier
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France.
| |
Collapse
|
3
|
Dalton SE, Workalemahu T, Allshouse AA, Page JM, Reddy UM, Saade GR, Pinar H, Goldenberg RL, Dudley DJ, Silver RM. Copy number variants and fetal growth in stillbirths. Am J Obstet Gynecol 2023; 228:579.e1-579.e11. [PMID: 36356697 PMCID: PMC10149588 DOI: 10.1016/j.ajog.2022.11.1274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Fetal growth abnormalities are associated with a higher incidence of stillbirth, with small and large for gestational age infants incurring a 3 to 4- and 2 to 3-fold increased risk, respectively. Although clinical risk factors such as diabetes, hypertension, and placental insufficiency have been associated with fetal growth aberrations and stillbirth, the role of underlying genetic etiologies remains uncertain. OBJECTIVE This study aimed to assess the relationship between abnormal copy number variants and fetal growth abnormalities in stillbirths using chromosomal microarray. STUDY DESIGN A secondary analysis utilizing a cohort study design of stillbirths from the Stillbirth Collaborative Research Network was performed. Exposure was defined as abnormal copy number variants including aneuploidies, pathogenic copy number variants, and variants of unknown clinical significance. The outcomes were small for gestational age and large for gestational age stillbirths, defined as a birthweight <10th percentile and greater than the 90th percentile for gestational age, respectively. RESULTS Among 393 stillbirths with chromosomal microarray and birthweight data, 16% had abnormal copy number variants. The small for gestational age outcome was more common among those with abnormal copy number variants than those with a normal microarray (29.5% vs 16.5%; P=.038). This finding was consistent after adjusting for clinically important variables. In the final model, only abnormal copy number variants and maternal age remained significantly associated with small for gestational age stillbirths, with an adjusted odds ratio of 2.22 (95% confidence interval, 1.12-4.18). Although large for gestational age stillbirths were more likely to have an abnormal microarray: 6.2% vs 3.3% (P=.275), with an odds ratio of 2.35 (95% confidence interval, 0.70-7.90), this finding did not reach statistical significance. CONCLUSION Genetic abnormalities are more common in the setting of small for gestational age stillborn fetuses. Abnormal copy number variants not detectable by traditional karyotype make up approximately 50% of the genetic abnormalities in this population.
Collapse
Affiliation(s)
- Susan E Dalton
- University of Utah Health, Salt Lake City, UT; Intermountain Healthcare, Salt Lake City, UT
| | | | | | | | | | - George R Saade
- University of Texas Medical Branch at Galveston, Galveston, TX
| | - Halit Pinar
- Brown University School of Medicine, Providence, RI
| | | | | | - Robert M Silver
- University of Utah Health, Salt Lake City, UT; Intermountain Healthcare, Salt Lake City, UT.
| |
Collapse
|
4
|
Mallik S, Tawfik DS, Levy ED. How gene duplication diversifies the landscape of protein oligomeric state and function. Curr Opin Genet Dev 2022; 76:101966. [PMID: 36007298 PMCID: PMC9548406 DOI: 10.1016/j.gde.2022.101966] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
Abstract
Oligomeric proteins are central to cellular life and the duplication and divergence of their genes is a key driver of evolutionary innovations. The duplication of a gene coding for an oligomeric protein has numerous possible outcomes, which motivates questions on the relationship between structural and functional divergence. How do protein oligomeric states diversify after gene duplication? In the simple case of duplication of a homo-oligomeric protein gene, what properties can influence the fate of descendant paralogs toward forming independent homomers or maintaining their interaction as a complex? Furthermore, how are functional innovations associated with the diversification of oligomeric states? Here, we review recent literature and present specific examples in an attempt to illustrate and answer these questions.
Collapse
Affiliation(s)
- Saurav Mallik
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Dan S Tawfik
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Emmanuel D Levy
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
5
|
Triarico S, Trombatore G, Capozza MA, Romano A, Mastrangelo S, Attinà G, Maurizi P, Ruggiero A. Hematological disorders in children with Down syndrome. Expert Rev Hematol 2022; 15:127-135. [PMID: 35184659 DOI: 10.1080/17474086.2022.2044780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Silvia Triarico
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy
| | | | | | - Alberto Romano
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy
| | - Stefano Mastrangelo
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy
| | - Giorgio Attinà
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy
| | - Palma Maurizi
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
6
|
Al-Kurbi AA, Da'as SI, Aamer W, Krishnamoorthy N, Poggiolini I, Abdelrahman D, Elbashir N, Al-Shabeeb Akil A, Glass GE, Fakhro KA. A recessive variant in SIM2 in a child with complex craniofacial anomalies and global developmental delay. Eur J Med Genet 2022; 65:104455. [PMID: 35182808 DOI: 10.1016/j.ejmg.2022.104455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 02/02/2022] [Accepted: 02/14/2022] [Indexed: 11/26/2022]
Abstract
Rare deletions and duplications on the long arm of Chromosome 21 have previously been reported in many patients with craniofacial and developmental phenotypes. However, this Down Syndrome Critical Region (DSCR) contains multiple genes, making identifying a single causative gene difficult. Here, we report a case of a boy with bicoronal craniosynostosis, facial dysmorphism, developmental delay, and intellectual impairment who was found by whole genome sequencing to have a homozygous missense mutation in the Single-Minded Homolog 2 (SIM2) gene (c.461 A > G, p.Tyr154Cys) within the DSCR. SIM2 encodes an essential bHLH and PAS domain transcription factor expressed during fetal brain development and acts as a master regulator of neurogenesis. This variant is globally very rare, segregates in the family, and is predicted to be highly deleterious by in silico analysis, 3D molecular modeling of protein structure, and functional analysis of zebrafish models. Zebrafish expressing the human SIM2p.Y154C variant displayed a progressed microcephaly-like phenotype and head shape abnormalities. When combined with careful phenotyping of the patient vis-à-vis previously reported cases harboring structural variants in this critical 21q22 region, the data support a pathogenic role of SIM2 in this complex syndrome and demonstrates the utility of next-generation sequencing in prioritizing genes in contiguous deletions/duplications syndromes and diagnosing microarray-negative patients in the craniofacial clinic.
Collapse
Affiliation(s)
- Alya A Al-Kurbi
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, 34110, Qatar; Department of Human Genetics, Sidra Medicine, 26999, Doha, Qatar
| | - Sahar Isa Da'as
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, 34110, Qatar; Department of Human Genetics, Sidra Medicine, 26999, Doha, Qatar
| | - Waleed Aamer
- Department of Human Genetics, Sidra Medicine, 26999, Doha, Qatar
| | | | | | - Doua Abdelrahman
- Department of Human Genetics, Sidra Medicine, 26999, Doha, Qatar
| | - Najwa Elbashir
- Department of Human Genetics, Sidra Medicine, 26999, Doha, Qatar
| | | | - Graeme E Glass
- Division of Plastic and Craniofacial Surgery, Sidra Medicine, 26999, Doha, Qatar
| | - Khalid A Fakhro
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, 34110, Qatar; Department of Human Genetics, Sidra Medicine, 26999, Doha, Qatar; Department of Genetic Medicine, Weill Cornell Medical College, Doha, 24144, Qatar.
| |
Collapse
|
7
|
Aboushady Y, Gabr M, ElHady AK, Salah M, Abadi AH, Wilms G, Becker W, Abdel-Halim M, Engel M. Discovery of Hydroxybenzothiazole Urea Compounds as Multitargeted Agents Suppressing Major Cytotoxic Mechanisms in Neurodegenerative Diseases. ACS Chem Neurosci 2021; 12:4302-4318. [PMID: 34726394 DOI: 10.1021/acschemneuro.1c00475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Multiple factors are causally responsible and/or contribute to the progression of Alzheimer's and Parkinson's diseases. The protein kinase Dyrk1A was identified as a promising target as it phosphorylates tau protein, α-synuclein, and parkin. The first goal of our study was to optimize our previously identified Dyrk1A inhibitors of the 6-hydroxy benzothiazole urea chemotype in terms of potency and selectivity. Our efforts led to the development of the 3-fluorobenzyl amide derivative 16b, which displayed the highest potency against Dyrk1A (IC50 = 9.4 nM). In general, the diversification of the benzylamide moiety led to an enhanced selectivity over the most homologous isoform, Dyrk1B, which was a meaningful indicator, as the high selectivity could be confirmed in an extended selectivity profiling of 3b and 16b. Eventually, we identified the novel phenethyl amide derivative 24b as a triple inhibitor of Dyrk1A kinase activity (IC50 = 119 nM) and the aggregation of tau and α-syn oligomers. We provide evidence that the novel combination of selective Dyrk1A inhibition and suppression of tau and α-syn aggregations of our new lead compound confers efficacy in several established cellular models of neurotoxic mechanisms relevant to neurodegenerative diseases, including α-syn- and 6-hydroxydopamine-induced cytotoxicities.
Collapse
Affiliation(s)
- Youssef Aboushady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Moustafa Gabr
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Ahmed K. ElHady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Administrative Capital, Cairo 11311, Egypt
| | - Mohamed Salah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts, Cairo 12451, Egypt
| | - Ashraf H. Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Gerrit Wilms
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, Aachen 52074, Germany
| | - Walter Becker
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, Aachen 52074, Germany
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3 Saarbrücken D-66123, Germany
| |
Collapse
|
8
|
Zhou X, Chen X, Hong T, Zhang M, Cai Y, Cui L. TTC3-Mediated Protein Quality Control, A Potential Mechanism for Cognitive Impairment. Cell Mol Neurobiol 2021; 42:1659-1669. [PMID: 33638766 PMCID: PMC9239942 DOI: 10.1007/s10571-021-01060-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/11/2021] [Indexed: 01/14/2023]
Abstract
The tetrapeptide repeat domain 3 (TTC3) gene falls within Down's syndrome (DS) critical region. Cognitive impairment is a common phenotype of DS and Alzheimer’s disease (AD), and overexpression of TTC3 can accelerate cognitive decline, but the specific mechanism is unknown. The TTC3-mediated protein quality control (PQC) mechanism, similar to the PQC system, is divided into three parts: it acts as a cochaperone to assist proteins in folding correctly; it acts as an E3 ubiquitin ligase (E3s) involved in protein degradation processes through the ubiquitin–proteasome system (UPS); and it may also eventually cause autophagy by affecting mitochondrial function. Thus, this article reviews the research progress on the structure, function, and metabolism of TTC3, including the recent research progress on TTC3 in DS and AD; the role of TTC3 in cognitive impairment through PQC in combination with the abovementioned attributes of TTC3; and the potential targets of TTC3 in the treatment of such diseases.
Collapse
Affiliation(s)
- Xu Zhou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Tingting Hong
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Miaoping Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China.
| |
Collapse
|
9
|
Gough G, O'Brien NL, Alic I, Goh PA, Yeap YJ, Groet J, Nizetic D, Murray A. Modeling Down syndrome in cells: From stem cells to organoids. PROGRESS IN BRAIN RESEARCH 2019; 251:55-90. [PMID: 32057312 DOI: 10.1016/bs.pbr.2019.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Down Syndrome (DS) is a complex chromosomal disorder, with neurological issues, featuring among the symptoms. Primary neuronal cells and tissues are extremely useful, but limited both in supply and experimental manipulability. To better understand the cellular, molecular and pathological mechanisms involved in DS neurodevelopment and neurodegeneration, a range of different cellular models have been developed over the years including human: mouse hybrid cells, transchromosomic mouse embryonic stem cells (ESCs) and human ESC and induced pluripotent stem cells derived from different sources. All of these model systems have provided useful information in the study of DS. Furthermore, different technologies to genetically modify or correct trisomy of either single genes or the whole chromosome have been developed using these cellular models. New techniques and protocols to allow better modeling of cellular mechanisms and disease processes are being developed and the use of cerebral organoids offers great promise for future research into the neural phenotypes seen in DS.
Collapse
Affiliation(s)
- Gillian Gough
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Niamh L O'Brien
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, United Kingdom; LonDownS Consortium, London, United Kingdom
| | - Ivan Alic
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Pollyanna A Goh
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, United Kingdom; LonDownS Consortium, London, United Kingdom
| | - Yee Jie Yeap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jurgen Groet
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, United Kingdom; LonDownS Consortium, London, United Kingdom
| | - Dean Nizetic
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, United Kingdom; LonDownS Consortium, London, United Kingdom.
| | - Aoife Murray
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
10
|
Watanabe K. Recent advances in the understanding of transient abnormal myelopoiesis in Down syndrome. Pediatr Int 2019; 61:222-229. [PMID: 30593694 DOI: 10.1111/ped.13776] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 12/08/2018] [Accepted: 12/28/2018] [Indexed: 12/26/2022]
Abstract
Neonates with Down syndrome (DS) have a propensity to develop the unique myeloproliferative disorder, transient abnormal myelopoiesis (TAM). TAM usually resolves spontaneously in ≤3 months, but approximately 10% of patients with TAM die from hepatic or multi-organ failure. After remission, 20% of patients with TAM develop acute myeloid leukemia associated with Down syndrome (ML-DS). Blasts in both TAM and ML-DS have trisomy 21 and GATA binding protein 1 (GATA1) mutations. Recent studies have shown that infants with DS and no clinical signs of TAM or increases in peripheral blood blasts can have minor clones carrying GATA1 mutations, referred to as silent TAM. Low-dose cytarabine can improve the outcomes of patients with TAM and high white blood cell count. A number of studies using fetal liver cells, mouse models, or induced pluripotent stem cells have elucidated the roles of trisomy 21 and GATA1 mutations in the development of TAM. Next-generation sequencing of TAM and ML-DS patient samples identified additional mutations in genes involved in epigenetic regulation. Xenograft models of TAM demonstrate the genetic heterogeneity of TAM blasts and mimic the process of clonal selection and expansion of TAM clones that leads to ML-DS. DNA methylation analysis suggests that epigenetic dysregulation may be involved in the progression from TAM to ML-DS. Unraveling the mechanisms underlying leukemogenesis and identification of factors that predict progression to leukemia could assist in development of strategies to prevent progression to ML-DS. Investigation of TAM, a unique pre-leukemic condition, will continue to strongly influence basic and clinical research into the development of hematological malignancies.
Collapse
Affiliation(s)
- Kenichiro Watanabe
- Department of Hematology and Oncology, Shizuoka Children's Hospital, Aoi-ku, Shizuoka, Japan
| |
Collapse
|
11
|
Arbones ML, Thomazeau A, Nakano-Kobayashi A, Hagiwara M, Delabar JM. DYRK1A and cognition: A lifelong relationship. Pharmacol Ther 2019; 194:199-221. [PMID: 30268771 DOI: 10.1016/j.pharmthera.2018.09.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The dosage of the serine threonine kinase DYRK1A is critical in the central nervous system (CNS) during development and aging. This review analyzes the functions of this kinase by considering its interacting partners and pathways. The role of DYRK1A in controlling the differentiation of prenatal newly formed neurons is presented separately from its role at the pre- and post-synaptic levels in the adult CNS; its effects on synaptic plasticity are also discussed. Because this kinase is positioned at the crossroads of many important processes, genetic dosage errors in this protein produce devastating effects arising from DYRK1A deficiency, such as in MRD7, an autism spectrum disorder, or from DYRK1A excess, such as in Down syndrome. Effects of these errors have been shown in various animal models including Drosophila, zebrafish, and mice. Dysregulation of DYRK1A levels also occurs in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Finally, this review describes inhibitors that have been assessed in vivo. Accurate targeting of DYRK1A levels in the brain, with either inhibitors or activators, is a future research challenge.
Collapse
Affiliation(s)
- Maria L Arbones
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain.
| | - Aurore Thomazeau
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Akiko Nakano-Kobayashi
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Jean M Delabar
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| |
Collapse
|
12
|
Schnabel F, Smogavec M, Funke R, Pauli S, Burfeind P, Bartels I. Down syndrome phenotype in a boy with a mosaic microduplication of chromosome 21q22. Mol Cytogenet 2018; 11:62. [PMID: 30619508 PMCID: PMC6310980 DOI: 10.1186/s13039-018-0410-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/02/2018] [Indexed: 12/14/2022] Open
Abstract
Background Down syndrome, typically caused by trisomy 21, may also be associated by duplications of the Down syndrome critical region (DSCR) on chromosome 21q22. However, patients with small duplications of DSCR without accompanying deletions have rarely been reported. Case presentation Here we report a 5½-year-old boy with clinical features of Down syndrome including distinct craniofacial dysmorphism and sandal gaps as well as developmental delay. Conventional karyotype was normal, whereas interphase FISH analysis revealed three signals for DSCR in approximately 40% of lymphocytes and 80% of buccal mucosa cells. Array-CGH analysis confirmed a 2.56 Mb duplication of chromosome 21q22.13q22.2 encompassing DYRK1A. Conclusion This presents one of the smallest duplications within DSCR leading to a Down syndrome phenotype. Since the dosage sensitive gene DYRK1A is the only duplicated candidate DSCR gene in our patient, this finding supports the hypothesis that DYRK1A contributes to dysmorphic and intellectual features of Down syndrome even in a mosaic state.
Collapse
Affiliation(s)
- Franziska Schnabel
- 1Institute of Human Genetics, University Medical Center, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany
| | - Mateja Smogavec
- 1Institute of Human Genetics, University Medical Center, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany
| | - Rudolf Funke
- Department of Neuropediatrics, Sozialpädiatrisches Zentrum, Mönchebergstr. 41-43, 34125 Kassel, Germany
| | - Silke Pauli
- 1Institute of Human Genetics, University Medical Center, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany
| | - Peter Burfeind
- 1Institute of Human Genetics, University Medical Center, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany
| | - Iris Bartels
- 1Institute of Human Genetics, University Medical Center, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany
| |
Collapse
|
13
|
Zhou Q, Reekie TA, Abbassi RH, Indurthi Venkata D, Font JS, Ryan RM, Munoz L, Kassiou M. Synthesis and in vitro evaluation of diverse heterocyclic diphenolic compounds as inhibitors of DYRK1A. Bioorg Med Chem 2018; 26:5852-5869. [PMID: 30401502 DOI: 10.1016/j.bmc.2018.10.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 12/21/2022]
Abstract
Dual-specificity tyrosine phosphorylation-related kinase 1A (DYRK1A) is a dual-specificity protein kinase that catalyses phosphorylation and autophosphorylation. Higher DYRK1A expression correlates with cancer, in particular glioblastoma present within the brain. We report here the synthesis and biological evaluation of new heterocyclic diphenolic derivatives designed as novel DYRK1A inhibitors. The generation of these heterocycles such as benzimidazole, imidazole, naphthyridine, pyrazole-pyridines, bipyridine, and triazolopyrazines was made based on the structural modification of the lead DANDY and tested for their ability to inhibit DYRK1A. None of these derivatives showed significant DYRK1A inhibition but provide valuable knowledge around the importance of the 7-azaindole moiety. These data will be of use for developing further structure-activity relationship studies to improve the selective inhibition of DYRK1A.
Collapse
Affiliation(s)
- Qingqing Zhou
- School of Chemistry, The University of Sydney, New South Wales 2006, Australia
| | - Tristan A Reekie
- School of Chemistry, The University of Sydney, New South Wales 2006, Australia
| | - Ramzi H Abbassi
- School of Medical Sciences, Discipline of Pathology and Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia
| | - Dinesh Indurthi Venkata
- School of Medical Sciences, Discipline of Pathology and Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia
| | - Josep S Font
- School of Medical Sciences, Discipline of Pharmacology, The University of Sydney, New South Wales 2006, Australia
| | - Renae M Ryan
- School of Medical Sciences, Discipline of Pharmacology, The University of Sydney, New South Wales 2006, Australia
| | - Lenka Munoz
- School of Medical Sciences, Discipline of Pathology and Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, New South Wales 2006, Australia.
| |
Collapse
|
14
|
Transcriptome analysis of Xenopus orofacial tissues deficient in retinoic acid receptor function. BMC Genomics 2018; 19:795. [PMID: 30390632 PMCID: PMC6215681 DOI: 10.1186/s12864-018-5186-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Development of the face and mouth is orchestrated by a large number of transcription factors, signaling pathways and epigenetic regulators. While we know many of these regulators, our understanding of how they interact with each other and implement changes in gene expression during orofacial development is still in its infancy. Therefore, this study focuses on uncovering potential cooperation between transcriptional regulators and one important signaling pathway, retinoic acid, during development of the midface. RESULTS Transcriptome analyses was performed on facial tissues deficient for retinoic acid receptor function at two time points in development; early (35 hpf) just after the neural crest migrates and facial tissues are specified and later (60 hpf) when the mouth has formed and facial structures begin to differentiate. Functional and network analyses revealed that retinoic acid signaling could cooperate with novel epigenetic factors and calcium-NFAT signaling during early orofacial development. At the later stage, retinoic acid may work with WNT and BMP and regulate homeobox containing transcription factors. Finally, there is an overlap in genes dysregulated in Xenopus embryos with median clefts with human genes associated with similar orofacial defects. CONCLUSIONS This study uncovers novel signaling pathways required for orofacial development as well as pathways that could interact with retinoic acid signaling during the formation of the face. We show that frog faces are an important tool for studying orofacial development and birth defects.
Collapse
|
15
|
Bhola SL, Nieuwint AWM, Stuurman KE. A prenatal case of partial trisomy 21 (q22.2q22.3), resulting from a paternal insertion translocation ins(16;21) and uncovered by QF-PCR, and characterized by array CGH and FISH. Clin Case Rep 2018; 6:1313-1316. [PMID: 29988599 PMCID: PMC6028365 DOI: 10.1002/ccr3.1563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 01/19/2018] [Accepted: 03/24/2018] [Indexed: 11/30/2022] Open
Abstract
In addition to detecting trisomies of whole chromosomes, QF-PCR can also detect partial trisomies of the chromosomes 13, 18, and 21, which can suggest an unbalanced translocation. Additional testing with other techniques, such as microarray or FISH, is recommended when an unbalanced translocation is suspected.
Collapse
Affiliation(s)
- Shama L. Bhola
- Department of Clinical GeneticsVU University Medical CenterAmsterdamThe Netherlands
| | - Aggie W. M. Nieuwint
- Department of Clinical GeneticsVU University Medical CenterAmsterdamThe Netherlands
| | - Kyra E. Stuurman
- Department of Clinical GeneticsErasmus Medical CenterRotterdamThe Netherlands
| |
Collapse
|
16
|
Çağlayan ES. Generation of improved human cerebral organoids from single copy DYRK1A knockout induced pluripotent stem cells in trisomy 21: hypothetical solutions for neurodevelopmental models and therapeutic alternatives in down syndrome. Cell Biol Int 2016; 40:1256-1270. [PMID: 27743462 DOI: 10.1002/cbin.10694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 10/12/2016] [Indexed: 01/02/2023]
Abstract
Dual-specificity thyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a strong therapeutic target to ameliorate cognitive functions of Down Syndrome (DS). Genetic normalization of Dyrk1a is sufficient to normalize early cortical developmental phenotypes in DS mouse models. Gyrencephalic human neocortical development is more complex than that in lissencephalic mice; hence, cerebral organoids (COs) can be used to model early neurodevelopmental defects of DS. Single copy DYRK1A knockout COs (scDYRK1AKO-COs) can be generated from manipulated DS derived (DS-) induced pluripotent stem cells (iPSCs) and genetic normalization of DYRK1A is expected to result in corrected neurodevelopmental phenotypes that can be reminiscent of normal COs. DYRK1A knock-in (DYRK1AKI) COs can be derived after genetic manipulations of normal iPSCs and would be valuable to evaluate impaired neocortical development as can be seen in DS-COs. DYRK1A mutations cause severe human primary microcephaly; hence, dose optimization studies of DYRK1A inhibitors will be critical for prenatal therapeutic applications in DS. Several doses of DYRK1A inhibitors can be tested in the neurodevelopment process of DS-COs and DS-scDYRK1AKO-COs would be used as optimum models for evaluating phenotypic ameliorations. Overdose drug exposure in DS-COs can be explained by similar defects present in DS-baDYRK1AKO-COs and DYRK1AKO-COs. There are several limitations in the current CO technology, which can be reduced by the generation of vascularized brain-like organoids giving opportunities to mimic late-stage corticogenesis and complete hippocampal development. In the future, improved DS-DYRK1AKO-COs can be efficient in studies that aim to generate efficiently transplantable and implantable neurons for tissue regeneration alternatives in DS individuals.
Collapse
Affiliation(s)
- E Sacide Çağlayan
- Faculty of Health Science, Department of Nutrition and Dietetics, Ankara Yıldırım Beyazıt University, Ankara, 06010, Turkey
| |
Collapse
|
17
|
A de novo 2.78-Mb duplication on chromosome 21q22.11 implicates candidate genes in the partial trisomy 21 phenotype. NPJ Genom Med 2016; 1. [PMID: 27840696 PMCID: PMC5102301 DOI: 10.1038/npjgenmed.2016.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Down syndrome (DS) is the most common genetic cause of intellectual disability (ID) and in the majority of cases is the result of complete trisomy 21. The hypothesis that the characteristic DS clinical features are due to a single DS critical region (DSCR) at distal chromosome 21q has been refuted by recently reported segmental trisomy 21 cases characterised by microarray-based comparative genomic hybridisation (aCGH). These rare cases have implicated multiple regions on chromosome 21 in the aetiology of distinct features of DS; however, the map of chromosome 21 copy-number aberrations and their associated phenotypes remains incompletely defined. We report a child with ID who was deemed very high risk for DS on antenatal screening (1 in 13) and has partial, but distinct, dysmorphologic features of DS without congenital heart disease (CHD). Oligonucleotide aCGH testing of the proband detected a previously unreported de novo 2.78-Mb duplication on chromosome 21q22.11 that includes 16 genes; however, this aberration does not harbour any of the historical DSCR genes (APP, DSCR1, DYRK1A and DSCAM). This informative case implicates previously under-recognised candidate genes (SOD1, SYNJ1 and ITSN1) in the pathogenesis of specific DS clinical features and supports a critical region for CHD located more distal on chromosome 21q. In addition, this unique case illustrates how the increasing resolution of microarray and high-throughput sequencing technologies can continue to reveal new biology and enhance understanding of widely studied genetic diseases that were originally described over 50 years ago.
Collapse
|
18
|
Abstract
Down syndrome (DS) is a relatively common genetic condition caused by the triplication of human chromosome 21. No therapies currently exist for the rescue of neurocognitive impairment in DS. This review presents exciting findings showing that it is possible to restore brain development and cognitive performance in mouse models of DS with therapies that can also apply to humans. This knowledge provides a potential breakthrough for the prevention of intellectual disability in DS.
Collapse
|
19
|
Weber S, Haferlach C, Jeromin S, Nadarajah N, Dicker F, Noël L, Zenger M, Alpermann T, Kern W, Haferlach T, Schnittger S. Gain of chromosome 21 or amplification of chromosome arm 21q is one mechanism for increased ERG expression in acute myeloid leukemia. Genes Chromosomes Cancer 2015; 55:148-57. [PMID: 26542308 DOI: 10.1002/gcc.22321] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 01/19/2023] Open
Abstract
In acute myeloid leukemia (AML), acquired genomic gains and losses are common and lead to altered expression of genes located within or nearby the affected regions. Increased expression of the ETS-related transcription factor gene ERG has been described in myeloid malignancies with chromosomal rearrangements involving chromosome band 21q22, but also in cytogenetically normal AML, where it is associated with adverse prognosis. In this study, fluorescence in situ hybridization on interphase nuclei disclosed an amplification of the ERG gene (more than six copies) in 33 AML patients with structural rearrangements of 21q22. Array comparative genomic hybridization of these cases disclosed a minimal amplified region at the position 39.6-40.0 Mbp from pter that harbors ERG as the only gene. Analysis by quantitative real-time reverse transcription polymerase chain reaction revealed significantly higher ERG mRNA expression in these patients and in a group of 95 AML patients with complete or partial gain of chromosome 21 (three to six copies) compared with 351 AML patients without gain of chromosome 21. Quantification of ERG DNA copy numbers revealed a strong correlation with ERG mRNA expression. Furthermore, in patients with gain of chromosome 21, higher ERG expression was found to be associated with RUNX1 mutations. Our results suggest that acquired gain of chromosome 21 or amplification of chromosome arm 21q is one mechanism contributing to increased ERG expression in AML.
Collapse
Affiliation(s)
| | | | | | | | | | - Louisa Noël
- MLL Munich Leukemia Laboratory, Munich, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Souchet B, Guedj F, Penke-Verdier Z, Daubigney F, Duchon A, Herault Y, Bizot JC, Janel N, Créau N, Delatour B, Delabar JM. Pharmacological correction of excitation/inhibition imbalance in Down syndrome mouse models. Front Behav Neurosci 2015; 9:267. [PMID: 26539088 PMCID: PMC4611057 DOI: 10.3389/fnbeh.2015.00267] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/21/2015] [Indexed: 01/25/2023] Open
Abstract
Cognitive impairment in Down syndrome (DS) has been linked to increased synaptic inhibition. The underlying mechanisms remain unknown, but memory deficits are rescued in DS mouse models by drugs targeting GABA receptors. Similarly, administration of epigallocatechin gallate (EGCG)-containing extracts rescues cognitive phenotypes in Ts65Dn mice, potentially through GABA pathway. Some developmental and cognitive alterations have been traced to increased expression of the serine-threonine kinase DYRK1A on Hsa21. To better understand excitation/inhibition balance in DS, we investigated the consequences of long-term (1-month) treatment with EGCG-containing extracts in adult mBACtgDyrk1a mice that overexpress Dyrk1a. Administration of POL60 rescued components of GABAergic and glutamatergic pathways in cortex and hippocampus but not cerebellum. An intermediate dose (60 mg/kg) of decaffeinated green tea extract (MGTE) acted on components of both GABAergic and glutamatergic pathways and rescued behavioral deficits as demonstrated on the alternating paradigm, but did not rescue protein level of GABA-synthesizing GAD67. These results indicate that excessive synaptic inhibition in people with DS may be attributable, in large part, to increased DYRK1A dosage. Thus, controlling the level of active DYRK1A is a clear issue for DS therapy. This study also defines a panel of synaptic markers for further characterization of DS treatments in murine models.
Collapse
Affiliation(s)
- Benoit Souchet
- Université Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR Centre National de la Recherche Scientifique 8251 Paris, France
| | - Fayçal Guedj
- Université Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR Centre National de la Recherche Scientifique 8251 Paris, France ; Tufts Medical Center, Mother Infant Research Institute Boston, MA, USA
| | - Zsuza Penke-Verdier
- Université Pierre-et-Marie-Curie Paris, 06 UMR S 1127, Centre National de la Recherche Scientifique UMR 7225, Institut National de la Santé et de la Recherche Médicale, U 1127, Sorbonne Universités, Institut du Cerveau et de la Moelle Epiniere Paris, France
| | - Fabrice Daubigney
- Université Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR Centre National de la Recherche Scientifique 8251 Paris, France
| | - Arnaud Duchon
- Institut Génétique Biologie Moléculaire Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, UMR7104, UMR964 Illkirch, France
| | - Yann Herault
- Institut Génétique Biologie Moléculaire Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, UMR7104, UMR964 Illkirch, France
| | | | - Nathalie Janel
- Université Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR Centre National de la Recherche Scientifique 8251 Paris, France
| | - Nicole Créau
- Université Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR Centre National de la Recherche Scientifique 8251 Paris, France
| | - Benoit Delatour
- Université Pierre-et-Marie-Curie Paris, 06 UMR S 1127, Centre National de la Recherche Scientifique UMR 7225, Institut National de la Santé et de la Recherche Médicale, U 1127, Sorbonne Universités, Institut du Cerveau et de la Moelle Epiniere Paris, France
| | - Jean M Delabar
- Université Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR Centre National de la Recherche Scientifique 8251 Paris, France ; Université Pierre-et-Marie-Curie Paris, 06 UMR S 1127, Centre National de la Recherche Scientifique UMR 7225, Institut National de la Santé et de la Recherche Médicale, U 1127, Sorbonne Universités, Institut du Cerveau et de la Moelle Epiniere Paris, France
| |
Collapse
|
21
|
Souchet B, Latour A, Gu Y, Daubigney F, Paul JL, Delabar JM, Janel N. Molecular rescue of DYRK1A overexpression in cystathionine beta synthase-deficient mouse brain by enriched environment combined with voluntary exercise. J Mol Neurosci 2015; 55:318-23. [PMID: 24819931 DOI: 10.1007/s12031-014-0324-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 05/02/2014] [Indexed: 11/28/2022]
Abstract
Hyperhomocysteinemia resulting from cystathionine beta synthase (CBS) deficiency can produce cognitive dysfunction. We recently found that CBS-deficient mice exhibit increased expression of the serine/threonine kinase dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A (DYRK1A) in the brain. When dysregulated, DYRK1A contributes to the neurodegeneration, neuronal death, and loss of function observed in neurodegenerative diseases. However, brain plasticity can be improved by interventions like enriched environment combined with voluntary exercise (EE/VE). The present study sought to assess the effects of EE/VE on molecular mechanisms linked to DYRK1A overexpression in the brain of CBS-deficient mice. EE/VE was applied to 3-month-old female CBS-deficient mice for 1 month. Without intervention, CBS-deficient mice exhibited increased DYRK1A and decreased brain-derived neurotrophic factor (BDNF) levels in the cortex and hippocampus. However, EE/VE rescued these altered DYRK1A and BDNF levels in the hippocampus of CBS-deficient mice. We conclude that exercise combined with enriched environment can restore the altered molecular mechanisms in the brain of CBS-deficient mice.
Collapse
Affiliation(s)
- Benoit Souchet
- Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251 CNRS, 75205, Paris, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Souchet B, Guedj F, Sahún I, Duchon A, Daubigney F, Badel A, Yanagawa Y, Barallobre MJ, Dierssen M, Yu E, Herault Y, Arbones M, Janel N, Créau N, Delabar JM. Excitation/inhibition balance and learning are modified by Dyrk1a gene dosage. Neurobiol Dis 2014; 69:65-75. [PMID: 24801365 DOI: 10.1016/j.nbd.2014.04.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 04/17/2014] [Accepted: 04/24/2014] [Indexed: 11/21/2022] Open
Abstract
Cognitive deficits in Down syndrome (DS) have been linked to increased synaptic inhibition, leading to an imbalance of excitation/inhibition (E/I). Various mouse models and studies from human brains have implicated an HSA21 gene, the serine/threonine kinase DYRK1A, as a candidate for inducing cognitive dysfunction. Here, consequences of alterations in Dyrk1a dosage were assessed in mouse models with varying copy numbers of Dyrk1a: mBACtgDyrk1a, Ts65Dn and Dp(16)1Yey (with 3 gene copies) and Dyrk1a(+/-) (one functional copy). Molecular (i.e. immunoblotting/immunohistochemistry) and behavioral analyses (e.g., rotarod, Morris water maze, Y-maze) were performed in mBACtgDyrk1a mice. Increased expression of DYRK1A in mBACtgDyrk1a induced molecular alterations in synaptic plasticity pathways, particularly expression changes in GABAergic and glutaminergic related proteins. Similar alterations were observed in models with partial trisomy of MMU16, Ts65Dn and Dp(16)1Yey, and were reversed in the Dyrk1a(+/-) model. Dyrk1a overexpression produced an increased number and signal intensity of GAD67 positive neurons, indicating enhanced inhibition pathways in three different models: mBACtgDyrk1a, hYACtgDyrk1a and Dp(16)1Yey. Functionally, Dyrk1a overexpression protected mice from PTZ-induced seizures related to GABAergic neuron plasticity. Our study shows that DYRK1A overexpression affects pathways involved in synaptogenesis and synaptic plasticity and influences E/I balance toward inhibition. Inhibition of DYRK1A activity offers a therapeutic target for DS, but its inhibition/activation may also be relevant for other psychiatric diseases with E/I balance alterations.
Collapse
Affiliation(s)
- Benoit Souchet
- Univ Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR CNRS 8251, 75205 Paris, France
| | - Fayçal Guedj
- Univ Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR CNRS 8251, 75205 Paris, France
| | - Ignasi Sahún
- Genomic Regulation Center, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| | - Arnaud Duchon
- IGBMC, CNRS, INSERM, UMR7104, UMR964, Illkirch, France
| | - Fabrice Daubigney
- Univ Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR CNRS 8251, 75205 Paris, France
| | - Anne Badel
- MTI, Univ Paris Diderot, Sorbonne Paris Cité, France
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine and JST, CREST, Japan
| | - Maria Jose Barallobre
- Plataforma de Recerca Aplicada en Animal de Laboratori (PRAAL), Parc Científic de Barcelona (PCB), Spain
| | - Mara Dierssen
- Genomic Regulation Center, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| | - Eugene Yu
- Children's Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Yann Herault
- IGBMC, CNRS, INSERM, UMR7104, UMR964, Illkirch, France
| | - Mariona Arbones
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain; Plataforma de Recerca Aplicada en Animal de Laboratori (PRAAL), Parc Científic de Barcelona (PCB), Spain
| | - Nathalie Janel
- Univ Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR CNRS 8251, 75205 Paris, France
| | - Nicole Créau
- Univ Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR CNRS 8251, 75205 Paris, France.
| | - Jean Maurice Delabar
- Univ Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR CNRS 8251, 75205 Paris, France.
| |
Collapse
|
23
|
Dekker AD, De Deyn PP, Rots MG. Epigenetics: The neglected key to minimize learning and memory deficits in Down syndrome. Neurosci Biobehav Rev 2014; 45:72-84. [DOI: 10.1016/j.neubiorev.2014.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/04/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
|
24
|
Natiq A, Elalaoui SC, Liehr T, Amzazi S, Sefiani A. Characterization of a rare short arm heteromorphism of chromosome 22 in a girl with down-syndrome like facies. INDIAN JOURNAL OF HUMAN GENETICS 2014; 20:89-91. [PMID: 24959023 PMCID: PMC4065488 DOI: 10.4103/0971-6866.132767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chromosomal heteromorphisms are described as interindividual variation of chromosomes without phenotypic consequence. Chromosomal polymorphisms detected include most regions of heterochromatin of chromosomes 1, 9, 16 and Y and the short arms of all acrocentric chromosomes. Here, we report a girl with Down-syndrome such as facies and tremendously enlarged short arm of a chromosome 22. Fluorescence in situ hybridization (FISH) with a probe specific for all acrocentric short arms revealed that the enlargement p arms of the chromosome 22 in question contained exclusively heterochromatic material derived from an acrocentric short arm. Parental studies identified a maternal origin of this heteromorphism. Cryptic trisomy 21 of the Down-syndrome critical region was excluded by a corresponding FISH-probe. Here, we report, to the best of our knowledge, largest ever seen chromosome 22 short arm, being ~×1.5 larger than the normal long arm.
Collapse
Affiliation(s)
- Abdelhafid Natiq
- Department of Medical Genetics, National Institute of Health, Morocco, Africa ; Department of Medical Genetics, Faculty of Sciences of Rabat, University Mohamed V Agdal, Morocco, Africa
| | - Siham Chafai Elalaoui
- Department of Medical Genetics, National Institute of Health, Morocco, Africa ; Human Genomic Center, University Mohamed V Souissi, Rabat, Morocco, Africa
| | - Thomas Liehr
- Department of Medical Genetics, University of Jena, Institute for Humangenetics, D-07740 Jena, Germany
| | - Saïd Amzazi
- Department of Medical Genetics, Faculty of Sciences of Rabat, University Mohamed V Agdal, Morocco, Africa
| | - Abdelaziz Sefiani
- Department of Medical Genetics, National Institute of Health, Morocco, Africa ; Human Genomic Center, University Mohamed V Souissi, Rabat, Morocco, Africa
| |
Collapse
|
25
|
Schifferli A, Hitzler J, Bartholdi D, Heinimann K, Hoeller S, Diesch T, Kühne T. Transient myeloproliferative disorder in neonates without Down syndrome: case report and review. Eur J Haematol 2014; 94:456-62. [DOI: 10.1111/ejh.12382] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Alexandra Schifferli
- Department of haematology/oncology; University Children's Hospital Basel; Basel Switzerland
| | - Johann Hitzler
- Department of haematology/oncology; The Hospital for Sick Children; Toronto Canada
| | | | - Karl Heinimann
- Department of genetic; University Hospital Basel; Basel Switzerland
| | - Sylvia Hoeller
- Department of pathology; University Hospital Basel; Basel Switzerland
| | - Tamara Diesch
- Department of haematology/oncology; University Children's Hospital Basel; Basel Switzerland
| | - Thomas Kühne
- Department of haematology/oncology; University Children's Hospital Basel; Basel Switzerland
| |
Collapse
|
26
|
Bui LC, Tabouy L, Busi F, Dupret JM, Janel N, Planque C, Delabar JM, Rodrigues-Lima F, Dairou J. A high-performance liquid chromatography assay for Dyrk1a, a Down syndrome-associated kinase. Anal Biochem 2014; 449:172-8. [PMID: 24374000 DOI: 10.1016/j.ab.2013.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/11/2013] [Accepted: 12/17/2013] [Indexed: 11/19/2022]
Abstract
Down syndrome is the most common aneuploidy. It is caused by the presence of an extra copy of chromosome 21. Several studies indicate that aberrant expression of the kinase Dyrk1a (dual-specificity tyrosine phosphorylation-regulated kinase 1a) is implicated in Down syndrome, in particular in the onset of mental retardation. Moreover, elevated Dyrk1a activity may also be a risk factor for other neurodegenerative disorders such as Alzheimer's disease. Over the past years, Dyrk1a has appeared as a potential drug target. Availability of sensitive and quantitative enzyme assays is of prime importance to understand the role of Dyrk1a and to develop specific inhibitors. Here, we describe a new method to measure Dyrk1a activity based on the separation and quantification of specific fluorescent peptides (substrate and phosphorylated product) by high-performance liquid chromatography (HPLC). Kinetic and mechanistic analyses using well-known inhibitors of Dyrk1a confirmed the reliability of this approach. In addition, this assay was further validated using brain extracts of mice models expressing different copies of the Dyrk1a gene. Our results indicate that this novel Dyrk1a assay is simple, sensitive, and specific. It avoids the use of radioactivity-based approaches that, until now, have been widely employed to measure Dyrk1a activity.
Collapse
Affiliation(s)
- Linh C Bui
- Unit of Functional and Adaptative Biology (BFA), Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR 8251, 75013 Paris, France
| | - Laure Tabouy
- Unit of Functional and Adaptative Biology (BFA), Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR 8251, 75013 Paris, France
| | - Florent Busi
- Unit of Functional and Adaptative Biology (BFA), Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR 8251, 75013 Paris, France
| | - Jean-Marie Dupret
- Unit of Functional and Adaptative Biology (BFA), Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR 8251, 75013 Paris, France
| | - Nathalie Janel
- Unit of Functional and Adaptative Biology (BFA), Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR 8251, 75013 Paris, France
| | - Chris Planque
- Unit of Functional and Adaptative Biology (BFA), Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR 8251, 75013 Paris, France
| | - Jean-Maurice Delabar
- Unit of Functional and Adaptative Biology (BFA), Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR 8251, 75013 Paris, France
| | - Fernando Rodrigues-Lima
- Unit of Functional and Adaptative Biology (BFA), Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR 8251, 75013 Paris, France.
| | - Julien Dairou
- Unit of Functional and Adaptative Biology (BFA), Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR 8251, 75013 Paris, France.
| |
Collapse
|
27
|
Xia YY, Ding YB, Liu XQ, Chen XM, Cheng SQ, Li LB, Ma MF, He JL, Wang YX. Allelic methylation status of CpG islands on chromosome 21q in patients with Trisomy 21. Mol Med Rep 2014; 9:1681-8. [PMID: 24573226 DOI: 10.3892/mmr.2014.1985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 01/30/2014] [Indexed: 11/05/2022] Open
Abstract
Trisomy 21 is a chromosomal condition caused by the presence of all or part of an extra 21st chromosome. There has been limited research into the DNA methylation status of CpG islands (CGIs) in trisomy 21, therefore, exploring the DNA methylation status of CGIs in 21q is essential for the development of a series of potential epigenetic biomarkers for prenatal screening of trisomy 21. First, DNA sequences of CGIs in 21q from the USCS database were obtained and 149 sequences and 148 pairs of primers in the BGI YH database were aligned. All 300 cases were analyzed by a heavy methyl-polymerase chain reaction (HM-PCR) assay and a comparison of the DNA methylation status of CGIs was made between trisomy 21 and the control. The HM-PCR assay results did not show a difference in the DNA methylation status between individuals with trisomy 21 and the control. In total, there were 11 CGIs that showed various DNA methylation statuses between Japanese and Chinese patients. Subsequently, bisulfite genomic sequencing found variations in the methylation status of CpG dinucleotides in CGIs (nos. 14, 75, 109, 134 and 146) between trisomy 21 and the control. The different DNA methylation status of CpG dinucleotides in CGIs may be a potential epigenetic marker for diagnosing trisomy 21. No difference was identified in the DNA methylation status of 21q CGIs among Chinese individuals with trisomy 21 and the control. The homogeneity of the DNA methylation status of 21q CGIs in Chinese patients indicates that DNA methylation is likely to be an epigenetic marker distinguishing ethnicities.
Collapse
Affiliation(s)
- Yin-Yin Xia
- Department of Occupational and Environmental Hygiene, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yu-Bing Ding
- Department of Reproductive Biology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xue-Qing Liu
- Department of Reproductive Biology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xue-Mei Chen
- Department of Reproductive Biology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shu-Qun Cheng
- Department of Occupational and Environmental Hygiene, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lian-Bing Li
- Chongqing Key Laboratory of Birth Defects and Reproductive Health, Institute for Science and Technology Research of Chongqing Population and Family Planning, Chongqing 400016, P.R. China
| | - Ming-Fu Ma
- Chongqing Key Laboratory of Birth Defects and Reproductive Health, Institute for Science and Technology Research of Chongqing Population and Family Planning, Chongqing 400016, P.R. China
| | - Jun-Lin He
- Department of Reproductive Biology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ying-Xiong Wang
- Department of Reproductive Biology, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
28
|
Papoulidis I, Papageorgiou E, Siomou E, Oikonomidou E, Thomaidis L, Vetro A, Zuffardi O, Liehr T, Manolakos E, Vassilis P. A patient with partial trisomy 21 and 7q deletion expresses mild Down syndrome phenotype. Gene 2014; 536:441-3. [DOI: 10.1016/j.gene.2013.11.078] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/15/2013] [Accepted: 11/25/2013] [Indexed: 10/25/2022]
|
29
|
Namba A, Nishiyama M, Weiser JJ, Wyatt P, Kimura M, Niizawa R, Miki A, Ishihara O, Itakura A, Kamei Y. Prenatal diagnosis of complex rearrangement of chromosome 21: The significance of interphase and metaphase fluorescence in situ hybridization and comparative genomic hybridization. Clin Case Rep 2013; 1:50-3. [PMID: 25356211 PMCID: PMC4184748 DOI: 10.1002/ccr3.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/09/2013] [Accepted: 08/26/2013] [Indexed: 11/30/2022] Open
Abstract
Key Clinical Message Maternal serum screening–positive patient had prenatal diagnosis with amniotic fluid, which showed inconsistent results between interphase fluorescence in situ hybridization (three signals of 21q22.13-21q22.2) and G-banding analysis (46,XY). Further analyses proved that the fetus had extremely complex rearrangements of chromosome 21, including the interstitial duplication of Down syndrome critical region.
Collapse
Affiliation(s)
- Akira Namba
- Department of Obstetrics and Gynecology Saitama Medical University Iruma‐gun Saitama Japan
| | | | | | | | - Machiko Kimura
- Department of Obstetrics and Gynecology Saitama Medical University Iruma‐gun Saitama Japan
| | - Rei Niizawa
- Department of Obstetrics and Gynecology Saitama Medical University Iruma‐gun Saitama Japan
| | - Akinori Miki
- Department of Obstetrics and Gynecology Saitama Medical University Iruma‐gun Saitama Japan
| | - Osamu Ishihara
- Department of Obstetrics and Gynecology Saitama Medical University Iruma‐gun Saitama Japan
| | - Atsuo Itakura
- Department of Obstetrics and Gynecology Saitama Medical University Iruma‐gun Saitama Japan
| | - Yoshimasa Kamei
- Department of Obstetrics and Gynecology Saitama Medical University Iruma‐gun Saitama Japan
| |
Collapse
|
30
|
Laguna A, Barallobre MJ, Marchena MÁ, Mateus C, Ramírez E, Martínez-Cue C, Delabar JM, Castelo-Branco M, de la Villa P, Arbonés ML. Triplication of DYRK1A causes retinal structural and functional alterations in Down syndrome. Hum Mol Genet 2013; 22:2775-84. [PMID: 23512985 DOI: 10.1093/hmg/ddt125] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Down syndrome (DS) results from the triplication of approximately 300 human chromosome 21 (Hsa21) genes and affects almost all body organs. Children with DS have defects in visual processing that may have a negative impact on their daily life and cognitive development. However, there is little known about the genes and pathogenesis underlying these defects. Here, we show morphometric in vivo data indicating that the neural retina is thicker in DS individuals than in the normal population. A similar thickening specifically affecting the inner part of the retina was also observed in a trisomic model of DS, the Ts65Dn mouse. Increased retinal size and cellularity in this model correlated with abnormal retinal function and resulted from an impaired caspase-9-mediated apoptosis during development. Moreover, we show that mice bearing only one additional copy of Dyrk1a have the same retinal phenotype as Ts65Dn mice and normalization of Dyrk1a gene copy number in Ts65Dn mice completely rescues both, morphological and functional phenotypes. Thus, triplication of Dyrk1a is necessary and sufficient to cause the retinal phenotype described in the trisomic model. Our data demonstrate for the first time the implication of DYRK1A overexpression in a developmental alteration of the central nervous system associated with DS, thereby providing insights into the aetiology of neurosensorial dysfunction in a complex disease.
Collapse
Affiliation(s)
- Ariadna Laguna
- Department of Developmental Biology, Institut de Biologia Molecular de Barcelona IBMB-CSIC, Barcelona 08028, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Planque C, Dairou J, Noll C, Bui LC, Ripoll C, Guedj F, Delabar JM, Janel N. Mice deficient in cystathionine beta synthase display increased Dyrk1A and SAHH activities in brain. J Mol Neurosci 2013; 50:1-6. [PMID: 22700376 DOI: 10.1007/s12031-012-9835-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 06/05/2012] [Indexed: 02/07/2023]
Abstract
Hyperhomocysteinemia is associated with brain disease. However, biological actions linking hyperhomocysteinemia to neuronal abnormalities are not well understood. We recently found a relationship between Dyrk1A protein expression, a serine/threonine kinase that might be responsible for cognitive functions in Down's syndrome, and hepatic S-adenosylhomocysteine hydrolase (SAHH) activity, which plays a key role in S-adenosylmethionine-dependent methylation reactions. Considering the role of methylation and Dyrk1A in cognitive functions, the aim of this study was to investigate the relationship between Dyrk1A and SAHH activity in brain of hyperhomocysteinemic mice. We found an increase in Dyrk1A protein expression and activity in brain of hyperhomocysteinemic mice, concomitant with an increased SAHH activity. The effect of overexpression of protein Dyrk1A on SAHH activity was confirmed in brain of Dyrk1A transgenic mice, and additionally we found a positive correlation between Dyrk1A and SAHH activity. These observations suggest a potential effect of Dyrk1A on brain phenotypes linked to hyperhomocysteinemia.
Collapse
Affiliation(s)
- Chris Planque
- Unit of Functional and Adaptative Biology, University of Paris Diderot, Sorbonne Paris Cité, EAC-CNRS 4413, 75013 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Roy A, Roberts I, Vyas P. Biology and management of transient abnormal myelopoiesis (TAM) in children with Down syndrome. Semin Fetal Neonatal Med 2012; 17:196-201. [PMID: 22421527 DOI: 10.1016/j.siny.2012.02.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Children with Down syndrome (DS) have an increased risk of Acute Myeloid Leukaemia (ML-DS), particularly megakaryoblastic leukaemia, which is clonally -related to the neonatal myeloproliferative syndrome, Transient Abnormal Myelopoiesis (TAM) unique to infants with DS. Molecular, biological, and clinical data indicate that TAM is initiated before birth when fetal liver haematopoietic cells trisomic for chromosome 21 acquire mutations in GATA1. TAM usually resolves spontaneously by 6 months; however 20-30% subsequently develop ML-DS harbouring the same GATA1 mutation(s). This review focuses on recent studies describing haematological, clinical and biological features of TAM and discusses approaches to diagnose, treat and monitor minimal residual disease in TAM. An important unanswered question is whether ML-DS is always preceded by TAM as it may be clinically and possibly haematologically 'silent'. We have briefly discussed the role of population-based screening for TAM and development of treatment strategies to eliminate the preleukaemic TAM clone, thereby preventing ML-DS.
Collapse
Affiliation(s)
- Anindita Roy
- Centre for Haematology, Imperial College London, United Kingdom
| | - Irene Roberts
- Centre for Haematology, Imperial College London, United Kingdom.
| | - Paresh Vyas
- MRC Molecular Haematology Unit and Department of Haematology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom.
| |
Collapse
|
33
|
Mazur-Kolecka B, Golabek A, Kida E, Rabe A, Hwang YW, Adayev T, Wegiel J, Flory M, Kaczmarski W, Marchi E, Frackowiak J. Effect of DYRK1A activity inhibition on development of neuronal progenitors isolated from Ts65Dn mice. J Neurosci Res 2012; 90:999-1010. [PMID: 22252917 DOI: 10.1002/jnr.23007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/14/2011] [Accepted: 11/17/2011] [Indexed: 01/09/2023]
Abstract
Overexpression of dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A (DYRK1A), encoded by a gene located in the Down syndrome (DS) critical region, is considered a major contributor to developmental abnormalities in DS. DYRK1A regulates numerous genes involved in neuronal commitment, differentiation, maturation, and apoptosis. Because alterations of neurogenesis could lead to impaired brain development and mental retardation in individuals with DS, pharmacological normalization of DYRK1A activity has been postulated as DS therapy. We tested the effect of harmine, a specific DYRK1A inhibitor, on the development of neuronal progenitor cells (NPCs) isolated from the periventricular zone of newborn mice with segmental trisomy 16 (Ts65Dn mice), a mouse model for DS that overexpresses Dyrk1A by 1.5-fold. Trisomy did not affect the ability of NPCs to expand in culture. Twenty-four hours after stimulation of migration and neuronal differentiation, NPCs showed increased expression of Dyrk1A, particularly in the trisomic cultures. After 7 days, NPCs developed into a heterogeneous population of differentiating neurons and astrocytes that expressed Dyrk1A in the nuclei. In comparison with disomic cells, NPCs with trisomy showed premature neuronal differentiation and enhanced γ-aminobutyric acid (GABA)-ergic differentiation, but astrocyte development was unchanged. Harmine prevented premature neuronal maturation of trisomic NPCs but not acceleration of GABA-ergic development. In control NPCs, harmine treatment caused altered neuronal development of NPCs, similar to that in trisomic NPCs with Dyrk1A overexpression. This study suggests that pharmacological normalization of DYRK1A activity may have a potential role in DS therapy.
Collapse
Affiliation(s)
- Bozena Mazur-Kolecka
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Guedj F, Pereira PL, Najas S, Barallobre MJ, Chabert C, Souchet B, Sebrie C, Verney C, Herault Y, Arbones M, Delabar JM. DYRK1A: a master regulatory protein controlling brain growth. Neurobiol Dis 2012; 46:190-203. [PMID: 22293606 DOI: 10.1016/j.nbd.2012.01.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 12/18/2011] [Accepted: 01/14/2012] [Indexed: 12/31/2022] Open
Abstract
Copy number variation in a small region of chromosome 21 containing DYRK1A produces morphological and cognitive alterations in human. In mouse models, haploinsufficiency results in microcephaly, and a human DYRK1A gain-of-function model (three alleles) exhibits increased brain volume. To investigate these developmental aspects, we used a murine BAC clone containing the entire gene to construct an overexpression model driven by endogenous regulatory sequences. We compared this new model to two other mouse models with three copies of Dyrk1a, YACtgDyrk1a and Ts65Dn, as well as the loss-of-function model with one copy (Dyrk1a(+/-)). Growth, viability, brain weight, and brain volume depended strongly upon gene copy number. Brain region-specific variations observed in gain-of-function models mirror their counterparts in the loss-of-function model. Some variations, such as increased volume of the superior colliculus and ventricles, were observed in both the BAC transgenic and Ts65Dn mice. Using unbiased stereology we found that, in the cortex, neuron density is inversely related to Dyrk1a copy number but, in thalamic nuclei, neuron density is directly related to copy number. In addition, six genes involved either in cell division (Ccnd1 and pAkt) or in neuronal machinery (Gap43, Map2, Syp, Snap25) were regulated by Dyrk1a throughout development, from birth to adult. These results imply that Dyrk1a expression alters different cellular processes during brain development. Dyrk1a, then, has two roles in the development process: shaping the brain and controlling the structure of neuronal components.
Collapse
Affiliation(s)
- Fayçal Guedj
- Univ Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, EAC CNRS 4413, 75205 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
de la Torre R, Dierssen M. Therapeutic approaches in the improvement of cognitive performance in Down syndrome. PROGRESS IN BRAIN RESEARCH 2012; 197:1-14. [DOI: 10.1016/b978-0-444-54299-1.00001-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
A de novo duplication of chromosome 21q22.11→qter associated with Down syndrome: Prenatal diagnosis, molecular cytogenetic characterization and fetal ultrasound findings. Taiwan J Obstet Gynecol 2011; 50:492-8. [DOI: 10.1016/j.tjog.2011.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2010] [Indexed: 11/22/2022] Open
|
37
|
Genomic characterization implicates iAMP21 as a likely primary genetic event in childhood B-cell precursor acute lymphoblastic leukemia. Blood 2011; 117:6848-55. [DOI: 10.1182/blood-2011-01-329961] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Intrachromosomal amplification of chromosome 21 (iAMP21) defines a distinct subgroup of childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) that has a dismal outcome when treated with standard therapy. For improved diagnosis and risk stratification, the initiating genetic events need to be elucidated. To investigate the genetic basis of BCP-ALL, genomes of 94 iAMP21 patients were interrogated by arrays, FISH, and multiplex ligation-dependent probe amplification. Most copy number alterations targeted chromosome 21, reinforcing the complexity of this chromosome. The common region of amplification on chromosome 21 was refined to a 5.1-mb region that included RUNX1, miR-802, and genes mapping to the Down syndrome critical region. Recurrent abnormalities affecting genes in key pathways were identified: IKZF1 (22%), CDKN2A/B (17%), PAX5 (8%), ETV6 (19%), and RB1 (37%). Investigation of clonal architecture provided evidence that these abnormalities, and P2RY8-CRLF2, were secondary to chromosome 21 rearrangements. Patient outcome was uniformly poor with standard therapy irrespective of the presence or absence of these changes. This study has provided evidence that chromosome 21 instability is the only anomaly among those so far investigated that is common to all iAMP21 patients, and therefore the initiating event is likely to be found among the complex structural rearrangements of this abnormal chromosome.
Collapse
|
38
|
Meta-analysis of heterogeneous Down Syndrome data reveals consistent genome-wide dosage effects related to neurological processes. BMC Genomics 2011; 12:229. [PMID: 21569303 PMCID: PMC3110572 DOI: 10.1186/1471-2164-12-229] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 05/11/2011] [Indexed: 01/21/2023] Open
Abstract
Background Down syndrome (DS; trisomy 21) is the most common genetic cause of mental retardation in the human population and key molecular networks dysregulated in DS are still unknown. Many different experimental techniques have been applied to analyse the effects of dosage imbalance at the molecular and phenotypical level, however, currently no integrative approach exists that attempts to extract the common information. Results We have performed a statistical meta-analysis from 45 heterogeneous publicly available DS data sets in order to identify consistent dosage effects from these studies. We identified 324 genes with significant genome-wide dosage effects, including well investigated genes like SOD1, APP, RUNX1 and DYRK1A as well as a large proportion of novel genes (N = 62). Furthermore, we characterized these genes using gene ontology, molecular interactions and promoter sequence analysis. In order to judge relevance of the 324 genes for more general cerebral pathologies we used independent publicly available microarry data from brain studies not related with DS and identified a subset of 79 genes with potential impact for neurocognitive processes. All results have been made available through a web server under http://ds-geneminer.molgen.mpg.de/. Conclusions Our study represents a comprehensive integrative analysis of heterogeneous data including genome-wide transcript levels in the domain of trisomy 21. The detected dosage effects build a resource for further studies of DS pathology and the development of new therapies.
Collapse
|
39
|
van Bon BWM, Hoischen A, Hehir-Kwa J, de Brouwer APM, Ruivenkamp C, Gijsbers ACJ, Marcelis CL, de Leeuw N, Veltman JA, Brunner HG, de Vries BBA. Intragenic deletion in DYRK1A leads to mental retardation and primary microcephaly. Clin Genet 2011; 79:296-9. [PMID: 21294719 DOI: 10.1111/j.1399-0004.2010.01544.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
de Smith AJ, Trewick AL, Blakemore AIF. Implications of copy number variation in people with chromosomal abnormalities: potential for greater variation in copy number state may contribute to variability of phenotype. THE HUGO JOURNAL 2010; 4:1-9. [PMID: 22132061 PMCID: PMC3051043 DOI: 10.1007/s11568-010-9144-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 07/21/2010] [Accepted: 07/26/2010] [Indexed: 10/27/2022]
Abstract
Abstract
Copy number variation is common in the human genome with many regions, overlapping thousands of genes, now known to be deleted or amplified. Aneuploidies and other forms of chromosomal imbalance have a wide range of adverse phenotypes and are a common cause of birth defects resulting in significant morbidity and mortality. “Normal” copy number variants (CNVs) embedded within the regions of chromosome imbalance may affect the clinical outcomes by altering the local copy number of important genes or regulatory regions: this could alleviate or exacerbate certain phenotypes. In this way CNVs may contribute to the clinical variability seen in many disorders caused by chromosomal abnormalities, such as the congenital heart defects (CHD) seen in ~40% of Down’s syndrome (DS) patients. Investigation of CNVs may therefore help to pinpoint critical genes or regulatory elements, elucidating the molecular mechanisms underlying these conditions, also shedding light on the aetiology of such phenotypes in people without major chromosome imbalances, and ultimately leading to their improved detection and treatment.
Collapse
|
41
|
Abstract
Fifty years after the discovery of the etiology of Down syndrome, trisomy 21 remains the model of choice for studying human diseases resulting from the presence of a chromosome or a chromosome segment in excess. In this review, mechanisms of aneuploidy occurrence and consequences of genomic imbalances will be mainly discussed. The study of genetic markers showed that trisomy 21 results in 90% of cases from an error during maternal meiosis. Approximately 8% of cases result from an error during paternal meiosis and in 2% of cases there is a postzygotic mitotic nondisjunction. The biological basis of the effect of maternal age remains largely unknown. The absence of genetic recombination between homologous chromosomes or the presence of an exchange in telomeric position are two risk factors of non-disjunction observed in young women. Non-disjunctions associated with pericentromeric exchanges are observed with an increase in maternal age. The study of mouse models and patients with partial trisomy 21, combined with advances in knowledge of the physical map and the transcriptome, identified genes directly or indirectly involved in the pathogenesis of Down syndrome. The recent description of metabolic pathways controlled by RCAN1 and DYRK1A genes which may be involved in many biological processes and phenotypes associated with trisomy 21 allows to consider new therapeutic strategies.
Collapse
Affiliation(s)
- Catherine Turleau
- Service de cytogénétique, Hôpital Necker-Enfants malades, 149, rue de Sèvres, 75743 Paris, France
| | | |
Collapse
|
42
|
Vaglio A, Milunsky A, Quadrelli A, Huang XL, Maher T, Mechoso B, Martínez S, Pagano S, Bellini S, Costabel M, Quadrelli R. Clinical, cytogenetic, and molecular characterization of a girl with some clinical features of Down syndrome resulting from a pure partial trisomy 21q22.11-qter due to a de novo intrachromosomal duplication. Genet Test Mol Biomarkers 2010; 14:57-65. [PMID: 20143912 DOI: 10.1089/gtmb.2009.0067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We report a girl with a de novo pure partial trisomy 21 with some clinical features of Down syndrome. The girl patient presented a flat broad face, brachycephaly, and a flat nasal bridge. She also had upwardly slanted palpebral fissures, epicanthal folds, blepharitis, brushfield spots, and strabismus. Her mouth was wide with downturned corners, prominent lower lip, narrow and furrowed tongue, and short palate. G-banded chromosomal analysis of metaphases in cells from both skin and blood showed a 46,XX karyotype with additional chromosomal material on the distal short arm of one chromosome 21. Parental chromosomes were normal. Molecular analyses with the short-tandem-repeat (STR) marker D21S2039 (interferon-alpha/beta receptor [IFNAR]) (21q22.1) showed a triallelic pattern. Subtelomeric fluorescent in situ hybridization (FISH) analyses, LSI 13 (retinoblastoma 1 [RB1])/LSI 21(21q22.13-q22.2), and whole chromosome painting probes specific for chromosome 21 showed trisomy for the segment 21q22.13-21q22.2 due to a de novo intrachromosomal duplication. A 500K SNP microarray analysis was then performed and revealed a 13-Mb duplication of 21q22.11-qter. This duplicated material had been translocated onto the end of the "p" arm of one of the chromosome 21s. The karyotype was provisionally defined as 46,XX,add(21)(p12).ish der (21)t(21;21)(p12;q22.11)(WCP21q+,PCP21q++,D215259/D21S341/D21S342++)dn. At the age of 4 years and 10 months, a comprehensive psychological examination was performed and the diagnostic criteria for mental retardation were not fulfilled. In comparison with previously published cases of pure partial trisomy 21, this is a rare finding. Additional studies of such rare patients should aid in the study of the pathogenesis of Down syndrome.
Collapse
Affiliation(s)
- Alicia Vaglio
- Institute of Medical Genetics, Hospital Italiano, Montevideo, Uruguay.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Delabar JM. [New perspectives on molecular and genic therapies in Down syndrome]. Med Sci (Paris) 2010; 26:371-6. [PMID: 20412741 DOI: 10.1051/medsci/2010264371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trisomy 21 was first described as a syndrome in the middle of the nineteenth century and associated to a chromosomic anomaly one hundred years later: the most salient feature of this syndrome is a mental retardation of variable intensity. Molecular mapping and DNA sequencing have allowed identifying the gene content of chromosome 21. Molecular quantitative analyses indicated that trisomy is inducing an overexpression for a large part of the triplicated genes and deregulates also pathways involving non HSA21 genes. Together with the physiological description of murine models overexpressing orthologous genes, these data have allowed to elaborate hypotheses on the cause of cognitive impairment. From these hypotheses and using murine models it is now possible to assess the efficiency of various therapeutic strategies. This paper reviews these new perspectives starting from the strategies targeting the level of HSA21 RNAs or HSA21 proteins; then it describes methods targeting activities either of proteins involved in cell cycle pathways or of proteins controlling the synaptic plasticity. It is promising that strategies targeting specific genes or specific pathways are already giving positive results.
Collapse
Affiliation(s)
- Jean Maurice Delabar
- Unité de biologie fonctionnelle et adaptative (BFA), EAC CNRS 4413, Université Paris Diderot, Marie-Andrée Lagroua-Weill-Hallé, bâtiment Lamarck, 75205 Paris, France.
| |
Collapse
|
44
|
Eggermann T, Schönherr N, Spengler S, Jäger S, Denecke B, Binder G, Baudis M. Identification of a 21q22 duplication in a Silver-Russell syndrome patient further narrows down the Down syndrome critical region. Am J Med Genet A 2010; 152A:356-9. [PMID: 20101688 DOI: 10.1002/ajmg.a.33217] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Several duplications of chromosome 21q helped to narrow down the Down syndrome (DS) critical region (DSCR) to chromosomal band 21q22 with an approximate length of 5.4 Mb. Recently, it has been suggested that the facial gestalt of DS has been linked to the distal part of the DSCR whereas the proximal region harboring DSCR1/RCAN and DSCAM should be associated with the cardiac abnormalities. Here, we report on a patient with Silver-Russell syndrome (SRS) and a paternally inherited 0.46 Mb duplication in 21q22 affecting the KCNE1 and DSCR1/RCAN genes. The identification of an involvement of KCNE1 was interesting because it encodes the beta-subunit of the KvLQT1 channel as the slow component of the cardiac delayed rectifier K(+) current. Since duplication of the KCNQ1 gene encoding the alpha-subunit of the same channel was reported recently in another SRS patient, we screened both genes for mutations in a cohort of SRS patients without detecting pathologic variants. We presume that the duplication of the two functionally linked genes in different patients with the same disorder is a coincidental finding. However, the lack of DS typical clinical features in our case allows us to further narrow down the DSCR in 21q22. We conclude that DSCR1/RCAN is not sufficient for generating phenotypic features associated with DS but our observation does not contradict a possible role for DSCR1/RCAN in mediating DYRK1A-based effects.
Collapse
|
45
|
The 50th anniversary of the discovery of trisomy 21: the past, present, and future of research and treatment of Down syndrome. Genet Med 2009; 11:611-6. [PMID: 19636252 DOI: 10.1097/gim.0b013e3181b2e34c] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Trisomy 21 or Down syndrome is a chromosomal disorder resulting from the presence of all or part of an extra Chromosome 21. It is a common birth defect, the most frequent and most recognizable form of mental retardation, appearing in about 1 of every 700 newborns. Although the syndrome had been described thousands of years before, it was named after John Langdon Down who reported its clinical description in 1866. The suspected association of Down syndrome with a chromosomal abnormality was confirmed by Lejeune et al. in 1959. Fifty years after the discovery of the origin of Down syndrome, the term "mongolism" is still inappropriately used; persons with Down syndrome are still institutionalized. Health problems associated with that syndrome often receive no or little medical care, and many patients still die prematurely in infancy or early adulthood. Nevertheless, working against this negative reality, community-based associations have lobbied for medical care and research to support persons with Down syndrome. Different Trisomy 21 research groups have already identified candidate genes that are potentially involved in the formation of specific Down syndrome features. These advances in turn may help to develop targeted medical treatments for persons with Trisomy 21. A review on those achievements is discussed.
Collapse
|
46
|
Roy A, Roberts I, Norton A, Vyas P. Acute megakaryoblastic leukaemia (AMKL) and transient myeloproliferative disorder (TMD) in Down syndrome: a multi-step model of myeloid leukaemogenesis. Br J Haematol 2009; 147:3-12. [DOI: 10.1111/j.1365-2141.2009.07789.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies. Proc Natl Acad Sci U S A 2009; 106:12031-6. [PMID: 19597142 DOI: 10.1073/pnas.0813248106] [Citation(s) in RCA: 285] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Down syndrome (DS), or trisomy 21, is a common disorder associated with several complex clinical phenotypes. Although several hypotheses have been put forward, it is unclear as to whether particular gene loci on chromosome 21 (HSA21) are sufficient to cause DS and its associated features. Here we present a high-resolution genetic map of DS phenotypes based on an analysis of 30 subjects carrying rare segmental trisomies of various regions of HSA21. By using state-of-the-art genomics technologies we mapped segmental trisomies at exon-level resolution and identified discrete regions of 1.8-16.3 Mb likely to be involved in the development of 8 DS phenotypes, 4 of which are congenital malformations, including acute megakaryocytic leukemia, transient myeloproliferative disorder, Hirschsprung disease, duodenal stenosis, imperforate anus, severe mental retardation, DS-Alzheimer Disease, and DS-specific congenital heart disease (DSCHD). Our DS-phenotypic maps located DSCHD to a <2-Mb interval. Furthermore, the map enabled us to present evidence against the necessary involvement of other loci as well as specific hypotheses that have been put forward in relation to the etiology of DS-i.e., the presence of a single DS consensus region and the sufficiency of DSCR1 and DYRK1A, or APP, in causing several severe DS phenotypes. Our study demonstrates the value of combining advanced genomics with cohorts of rare patients for studying DS, a prototype for the role of copy-number variation in complex disease.
Collapse
|
48
|
Demirtas H. AgNOR status in Down's syndrome infants and a plausible phenotype formation hypothesis. Micron 2009; 40:511-8. [PMID: 19339189 DOI: 10.1016/j.micron.2009.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/25/2009] [Accepted: 02/25/2009] [Indexed: 10/21/2022]
Abstract
Down's syndrome (DS) or trisomy 21 is the most frequent genetic birth defect associated with mental retardation. Although DS has been known for more than a 100 years and its chromosomal basis recognized for half a century (1959), the underlying patho-mechanisms for the phenotype formation remain elusive and cannot be fully explained by simple gene dosage effect. The general consensus is that the extra chromosome 21 genes perturb the global metabolism of the body cells. Our experiments show that the most prominent metabolic perturbation occurs during ribosome biogenesis in the cells of DS babies/infants. In humans, ribosomal RNA (rRNA) gene families or nucleolar organizer regions (NORs) are localized at the secondary constriction (on the satellite stalks) of five pairs of acrocentric chromosomes (13, 14, 15, 21 and 22) and their activities are evaluated specifically either in metaphase or interphase through a procedure known as AgNOR or silver staining. Our successive AgNOR studies, supported by RNA and nuclear protein measurement, show that cells from DS infants produce more ribosomes than expected, accounting for the extra set of active rRNA gene family (1/6-1/11) situated on the extra chromosome 21. Thus, the presence of an extra chromosome 21 stimulates a global increase in ribosome biogenesis in cooperation with other NOR-bearing chromosomes, causing unnecessary rRNA and ribosomal proteins synthesis compared to controls. Following the description of NORs, AgNOR, AgNOR-proteins, AgNOR measurement and our experimental results, we propose that the extra RNA and protein synthesis can cause a fundamental handicap to DS infants, contributing to the formation of DS phenotypes, due to the wasted energy in producing unnecessary macromolecules, including energy (GTP)-dependent transport of the excessive ribosomes from the nucleus to the cytoplasm.
Collapse
Affiliation(s)
- Halil Demirtas
- Erciyes University, Medical Faculty, Medical Biology Department 38039 Kayseri, Turkey.
| |
Collapse
|
49
|
Guedj F, Sébrié C, Rivals I, Ledru A, Paly E, Bizot JC, Smith D, Rubin E, Gillet B, Arbones M, Delabar JM. Green tea polyphenols rescue of brain defects induced by overexpression of DYRK1A. PLoS One 2009; 4:e4606. [PMID: 19242551 PMCID: PMC2645681 DOI: 10.1371/journal.pone.0004606] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Accepted: 01/17/2009] [Indexed: 11/18/2022] Open
Abstract
Individuals with partial HSA21 trisomies and mice with partial MMU16 trisomies containing an extra copy of the DYRK1A gene present various alterations in brain morphogenesis. They present also learning impairments modeling those encountered in Down syndrome. Previous MRI and histological analyses of a transgenic mice generated using a human YAC construct that contains five genes including DYRK1A reveal that DYRK1A is involved, during development, in the control of brain volume and cell density of specific brain regions. Gene dosage correction induces a rescue of the brain volume alterations. DYRK1A is also involved in the control of synaptic plasticity and memory consolidation. Increased gene dosage results in brain morphogenesis defects, low BDNF levels and mnemonic deficits in these mice. Epigallocatechin gallate (EGCG) - a member of a natural polyphenols family, found in great amount in green tea leaves - is a specific and safe DYRK1A inhibitor. We maintained control and transgenic mice overexpressing DYRK1A on two different polyphenol-based diets, from gestation to adulthood. The major features of the transgenic phenotype were rescued in these mice.
Collapse
Affiliation(s)
- Fayçal Guedj
- Functional and Adaptive Biology, Université Paris Diderot-Paris7 and CNRS, Paris, France
| | - Catherine Sébrié
- Laboratoire de RMN Biologique, ICSN-CNRS, Gif sur Yvette, France
| | | | - Aurelie Ledru
- Functional and Adaptive Biology, Université Paris Diderot-Paris7 and CNRS, Paris, France
| | - Evelyne Paly
- Functional and Adaptive Biology, Université Paris Diderot-Paris7 and CNRS, Paris, France
| | - Jean C. Bizot
- Key-Obs SA, Parc Technologique de La Source, Orleans, France
| | - Desmond Smith
- Department of Molecular and Medical Pharmacology, University of California Los Angeles School of Medicine, Los Angeles, California, United States of America
| | - Edward Rubin
- Genome Sciences Department, Lawrence Berkeley National Lab (LBNL), Berkeley, California, United States of America
| | - Brigitte Gillet
- Laboratoire de RMN Biologique, ICSN-CNRS, Gif sur Yvette, France
| | - Mariona Arbones
- Center for Genomic Regulation, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jean M. Delabar
- Functional and Adaptive Biology, Université Paris Diderot-Paris7 and CNRS, Paris, France
| |
Collapse
|
50
|
Ala-Mello S, Siggberg L, Knuutila S, von Koskull H, Taskinen M, Peippo M. Further evidence for a relationship between the 5p15 chromosome region and the oculoauriculovertebral anomaly. Am J Med Genet A 2008; 146A:2490-4. [DOI: 10.1002/ajmg.a.32479] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|