1
|
Zaouak A, Jouini W, Abdessalem G, Abdelhak S, Hammami H, Charfeddine C, Fenniche S. Alopecia patterns and trichoscopic findings in patients with autosomal recessive congenital ichthyosis. Int J Womens Dermatol 2024; 10:e175. [PMID: 39170880 PMCID: PMC11338256 DOI: 10.1097/jw9.0000000000000175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/21/2024] [Indexed: 08/23/2024] Open
Abstract
Background Autosomal recessive congenital ichthyosis (ARCI) is a rare genodermatosis categorized among nonsyndromic ichthyoses. While ARCI patients often manifest hair abnormalities, their impact on the quality of life remains underreported in the literature. Objective This study aims to comprehensively characterize the clinical and trichoscopic findings of alopecia in ARCI patients. Methods A prospective study spanning from January 2019 to December 2021 (3 years) was conducted at the Dermatology Department of Habib Thameur Hospital, Tunis, Tunisia. Clinical and trichoscopic examinations were performed on the hair of the participants, with molecular studies conducted on 15 patients. Results The study included 30 patients, predominantly female (male/female = 0.58), with a mean age of 20 years. Twenty-eight patients were born from consanguineous marriages. Lamellar ichthyosis was observed in 22 cases, while congenital ichthyosiform erythroderma and bathing suit ichthyosis were each present in 4 cases. The ARCI severity score, assessed using the Visual Index For Ichthyosis Severity scale, had a mean value of 15 (4-28). Alopecia emerged as a prominent finding in 11 patients, presenting as hairline recession (13%), multiple patchy alopecia (27%), and alopecia of the eyebrows (13%). Trichoscopic findings included interfollicular and perifollicular scaling, perifollicular lamellar hyperkeratosis, peripilar casts, interfollicular erythema, loss of hair openings, predominance of single hair follicles, broken hair, vellus hair, anisotrichosis, pili torti, dystrophic hair, and comma hair. Several trichoscopic findings showed statistically significant associations with the severity of ARCI. Limitations In our study, we only included 30 patients due to the rarity of this genodermatosis. Conclusion Contrary to previous perceptions, alopecia is a notable finding in ARCI, particularly in patients with a severe form. This study provides a detailed characterization of alopecia in ARCI, shedding light on its prevalence and associated trichoscopic features, thereby enhancing our understanding of this dermatological condition.
Collapse
Affiliation(s)
- Anissa Zaouak
- Dermatology Department, Habib Thameur Hospital, Tunis, Tunisia
| | - Wafa Jouini
- Dermatology Department, Habib Thameur Hospital, Tunis, Tunisia
| | - Ghaith Abdessalem
- Biomedical Genomics and Oncogenetics Laboratory, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Sonia Abdelhak
- Biomedical Genomics and Oncogenetics Laboratory, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Houda Hammami
- Dermatology Department, Habib Thameur Hospital, Tunis, Tunisia
| | - Cherine Charfeddine
- Biomedical Genomics and Oncogenetics Laboratory, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Samy Fenniche
- Dermatology Department, Habib Thameur Hospital, Tunis, Tunisia
| |
Collapse
|
2
|
Sercia L, Romano O, Marini G, Enzo E, Forcato M, De Rosa L, De Luca M. A cellular disease model toward gene therapy of TGM1-dependent lamellar ichthyosis. Mol Ther Methods Clin Dev 2024; 32:101311. [PMID: 39234443 PMCID: PMC11372595 DOI: 10.1016/j.omtm.2024.101311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024]
Abstract
Lamellar ichthyosis (LI) is a chronic disease, mostly caused by mutations in the TGM1 gene, marked by impaired skin barrier formation. No definitive therapies are available, and current treatments aim at symptomatic relief. LI mouse models often fail to faithfully replicate the clinical and histopathological features of human skin conditions. To develop advanced therapeutic approaches, such as combined ex vivo cell and gene therapy, we established a human cellular model of LI by efficient CRISPR-Cas9-mediated gene ablation of the TGM1 gene in human primary clonogenic keratinocytes. Gene-edited cells showed complete absence of transglutaminase 1 (TG1) expression and recapitulated a hyperkeratotic phenotype with most of the molecular hallmarks of LI in vitro. Using a self-inactivating γ-retroviral (SINγ-RV) vector expressing transgenic TGM1 under the control of its own promoter, we tested an ex vivo gene therapy approach and validate the model of LI as a platform for pre-clinical evaluation studies. Gene-corrected TGM1-null keratinocytes displayed proper TG1 expression, enzymatic activity, and cornified envelope formation and, hence, restored proper epidermal architecture. Single-cell multiomics analysis demonstrated proviral integrations in holoclone-forming epidermal stem cells, which are crucial for epidermal regeneration. This study serves as a proof of concept for assessing the potential of this therapeutic approach in treating TGM1-dependent LI.
Collapse
Affiliation(s)
- Laura Sercia
- Center for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Oriana Romano
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Grazia Marini
- Center for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Elena Enzo
- Center for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Mattia Forcato
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Laura De Rosa
- Center for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Michele De Luca
- Center for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
3
|
Huang X, Dong G, Fan H, Zhou W, Huang G, Guan D, Zhang D, Wei F. The genome of African manatee Trichechus senegalensis reveals secondary adaptation to the aquatic environment. iScience 2024; 27:110394. [PMID: 39092175 PMCID: PMC11292518 DOI: 10.1016/j.isci.2024.110394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/26/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Sirenians exhibit unique aquatic adaptations, showcasing both convergent adaptive features shared with cetaceans and unique characteristics such as cold sensitivity and dense bones. Here, we report a chromosome-level genome of the African manatee (Trichechus senegalensis) with high continuity, completeness, and accuracy. We found that genes associated with osteopetrosis have undergone positive selection (CSF1R and LRRK1) or pseudogenized (FAM111A and IGSF23) in the African manatee, potentially contributing to the dense bone formation. The loss of KCNK18 may have increased their sensitivity to cold water temperatures. Moreover, we identified convergent evolutionary signatures in 392 genes among fully aquatic mammals, primarily enriched in skin or skeletal system development and circadian rhythm, which contributed to the transition from terrestrial to fully aquatic lifestyles. The African manatee currently possesses a small effective population size and low genome-wide heterozygosity. Overall, our study provides genetic resources for understanding the evolutionary characteristics and conservation efforts of this species.
Collapse
Affiliation(s)
- Xin Huang
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guixin Dong
- Guangdong Chimelong Group, Co., Ltd., Guangzhou 511400, China
| | - Huizhong Fan
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenliang Zhou
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Guangping Huang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Jiangxi Provincial Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dengfeng Guan
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Delu Zhang
- Chimelong Ocean Kingdom, Zhuhai 519000, China
| | - Fuwen Wei
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Jiangxi Provincial Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
4
|
Lin YC, Hong YK, Aala WJF, Hitomi K, Akiyama M, McGrath JA, Hsu CK. Tofacitinib ameliorates skin inflammation in a patient with severe autosomal recessive congenital ichthyosis. Clin Exp Dermatol 2024; 49:887-892. [PMID: 38469681 DOI: 10.1093/ced/llae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/18/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Autosomal recessive congenital ichthyosis (ARCI) is a genetically heterogeneous disorder with aberrant skin scaling and increased transepidermal water loss (TEWL). Current treatments for ARCI are limited and suboptimal. We present the case of a 27-year-old man with ARCI resulting from a homozygous missense variant in TGM1. RNA-sequencing of lesional skin revealed aberrant Janus kinase-signal transducer and activator of transcription signalling, providing a rationale for innovative treatment with a Janus kinase inhibitor. We prescribed oral tofacitinib (11 mg daily) for 26 weeks. Rapid improvements in erythema and fissuring occurred within the first month. Sustained reductions in 5-D itch scale and Dermatology Life Quality Index scores were also observed. TEWL decreased for the first 10 weeks but increased thereafter. Tofacitinib downregulated inflammatory genes and pathways, while enhancing skin barrier markers. Moreover, transglutaminase 1 distribution was normalized although enzymatic activity remained deficient. This study suggests that oral tofacitinib may be a useful therapy to consider for patients with ARCI.
Collapse
Affiliation(s)
- Yu-Chen Lin
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Kai Hong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wilson Jr F Aala
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kiyotaka Hitomi
- Cellular Biochemistry Laboratory, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Masashi Akiyama
- Department of Dermatology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - John A McGrath
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
5
|
Diociaiuti A, Corbeddu M, Rossi S, Pisaneschi E, Cesario C, Condorelli AG, Samela T, Giancristoforo S, Angioni A, Zambruno G, Novelli A, Alaggio R, Abeni D, El Hachem M. Cross-Sectional Study on Autosomal Recessive Congenital Ichthyoses: Association of Genotype with Disease Severity, Phenotypic, and Ultrastructural Features in 74 Italian Patients. Dermatology 2024; 240:397-413. [PMID: 38588653 PMCID: PMC11168449 DOI: 10.1159/000536366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 01/14/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Autosomal recessive congenital ichthyoses (ARCIs) are a clinically heterogeneous group of keratinization disorders characterized by generalized skin scaling due to mutations in at least 12 genes. The aim of our study was to assess disease severity, phenotypic, and ultrastructural features and to evaluate their association with genetic findings in ARCI patients. METHODS Clinical signs and symptoms, and disease severity were scored in a single-center series of patients with a genetic diagnosis of ARCI. Skin ultrastructural findings were reviewed. RESULTS Seventy-four consecutive patients (mean age 11.0 years, range 0.1-48.8) affected with lamellar ichthyosis (50/74, 67.5%), congenital ichthyosiform erythroderma (18/74, 24.3%), harlequin ichthyosis (two/74, 2.7%), and other minor ARCI subtypes (four/74, 5.4%) were enrolled. Mutated genes were as follows: TGM1 in 18/74 (24.3%) patients, ALOX12B in 18/74 (24.3%), CYP4F22 in 12/74 (16.2%), ABCA12 in nine/74 (12.2%), ALOXE3 in seven/74 (9.5%), NIPAL4 in seven/74 (9.5%), and CERS3, PNPLA1, and SDR9C7 in 1 patient each (1.4%). Twenty-five previously undescribed mutations in the different ARCI causative genes, as well as two microduplications in TGM1, and two microdeletions in CYP4F22 and NIPAL4 were identified. The mean ichthyosis severity score in TGM1- and ABCA12-mutated patients was significantly higher than in all other mutated genes, while the lowest score was observed in CYP4F22-mutated patients. Alopecia, ectropion, and eclabium were significantly associated with TGM1 and ABCA12 mutations, and large, thick, and brownish scales with TGM1 mutations. Among specific phenotypic features, psoriasis-like lesions as well as a trunk reticulate scale pattern and striated keratoderma were present in NIPAL4-mutated patients. Ultrastructural data available for 56 patients showed a 100% specificity of cholesterol clefts for TGM1-mutated cases and revealed abnormal lamellar bodies in SDR9C7 and CERS3 patients. CONCLUSION Our study expands the phenotypic and genetic characterization of ARCI by the description of statistically significant associations between disease severity, specific clinical signs, and different mutated genes. Finally, we highlighted the presence of psoriasis-like lesions in NIPAL4-ARCI patients as a novel phenotypic feature with diagnostic and possible therapeutic implications.
Collapse
Affiliation(s)
- Andrea Diociaiuti
- Dermatology Unit and Genodermatosis Unit, Translational Paediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marialuisa Corbeddu
- Dermatology Unit and Genodermatosis Unit, Translational Paediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Dermatology Clinic, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Sabrina Rossi
- Pathology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Elisa Pisaneschi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Claudia Cesario
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Angelo Giuseppe Condorelli
- Genodermatosis Unit, Translational Paediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Tonia Samela
- Clinical Epidemiology Unit, IDI-IRCCS, Rome, Italy
| | - Simona Giancristoforo
- Dermatology Unit and Genodermatosis Unit, Translational Paediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Adriano Angioni
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Giovanna Zambruno
- Genodermatosis Unit, Translational Paediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Rita Alaggio
- Pathology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - May El Hachem
- Dermatology Unit and Genodermatosis Unit, Translational Paediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
6
|
Wu R, Li D, Zhang S, Wang J, Chen K, Tuo Z, Miyamoto A, Yoo KH, Wei W, Zhang C, Feng D, Han P. A pan-cancer analysis of the oncogenic and immunological roles of transglutaminase 1 (TGM1) in human cancer. J Cancer Res Clin Oncol 2024; 150:123. [PMID: 38472489 PMCID: PMC10933153 DOI: 10.1007/s00432-024-05640-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND There is currently a limited number of studies on transglutaminase type 1 (TGM1) in tumors. The objective of this study is to perform a comprehensive analysis across various types of cancer to determine the prognostic significance of TGM1 in tumors and investigate its role in the immune environment. METHOD Pan-cancer and mutational data were retrieved from the TCGA database and analyzed using R (version 3.6.4) and its associated software package. The expression difference and prognosis of TGM1 were examined, along with its correlation with tumor heterogeneity, stemness, mutation landscape, and RNA modification. Additionally, the relationship between TGM1 expression and tumor immunity was investigated using the TIMER method. RESULTS TGM1 is expressed differently in various tumors and normal samples and is associated with the overall survival and progression-free time of KIRC, ACC, SKCM, LIHC, and STES. In LICH, we found a negative correlation between TGM1 expression and 6 indicators of tumor stemness. The mutation frequencies of BLCA, LIHC, and KIRC were 1.7%, 0.3%, and 0.3% respectively. In BLCA and BRCA, there was a significant correlation between TGM1 expression and the infiltration of CD4 + T cells, CD8 + T cells, neutrophils, and dendritic cells. CONCLUSION TGM1 has the potential to serve as both a prognostic marker and a drug target.
Collapse
Affiliation(s)
- Ruicheng Wu
- Department of Urology, Institute of Urology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuxia Zhang
- Research Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kai Chen
- Department of Urology, Institute of Urology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Akira Miyamoto
- Department of Rehabilitation, West Kyushu University, Fukuoka, Japan
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, Seoul, South Korea
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chi Zhang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China.
| | - Ping Han
- Department of Urology, Institute of Urology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Chacon-Camacho OF, Astiazarán MC, Vera-Duarte G, Gutiérrez-Múgica H, Macriz-Romero N, Graue-Hernandez EO, Zenteno JC. High TGM1 Allelic Heterogeneity causing Lamellar ichthyosis in a small geographic area in South Mexico: Another Example of the "Réunion Paradox". Eur J Med Genet 2023; 66:104842. [PMID: 37709012 DOI: 10.1016/j.ejmg.2023.104842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Lamellar ichthyosis (LI) is an autosomal recessive congenital ichthyosis characterized by generalized dry skin and severe scaling. It is caused by biallelic mutations in the TGM1 gene, however molecular data from non-Caucasian populations are limited. Results of genetic-molecular analysis of a group of LI pedigrees originating from two close small populations from south Mexico are presented. LI affected individuals belonging to 9 apparently unrelated families were studied. Exome sequencing or Sanger sequencing in probands from each family was carried out. Furthermore, DNA from 294 unaffected subjects from one of the communities were Sanger sequenced to determine the carrier frequency of the c.427C > T TGM1 variant. Five different TGM1 pathogenic variants, either in homozygous or in compound heterozygous state, were demonstrated in affected subjects. The two most common variants were c.427C > T (p.Arg143Cys) and c.1159+1G > T. A novel c.1645+1G > T TGM1 pathogenic allele was recognized. Carrier frequency analysis identified a total of 23 individuals heterozygous for the c.427C > T variant, predicting a prevalence of 78 carriers per 1000 inhabitants in the community. A high TGM1 allelic heterogeneity with 5 different LI-causing alleles in a limited geographic area was demonstrated. While the occurrence of homozygosity for a founder mutation is expected in small populations with high frequency of a particular autosomal recessive disorder, the occurrence of multiple pathogenic alleles has been previously described, a situation known as the Reúnion paradox. Our results expand the current knowledge of the mutational spectrum of TGM1-linked LI.
Collapse
Affiliation(s)
- O F Chacon-Camacho
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico; Laboratorio 5 Edificio A-4, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico
| | - M C Astiazarán
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico
| | - G Vera-Duarte
- Department of Cornea, Institute of Ophthalmology "Conde de Valenciana", Mexico
| | | | - N Macriz-Romero
- Department of Cornea, Institute of Ophthalmology "Conde de Valenciana", Mexico
| | - E O Graue-Hernandez
- Department of Cornea, Institute of Ophthalmology "Conde de Valenciana", Mexico
| | - J C Zenteno
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico; Biochemistry Department, Faculty Medicine, National Autonomous University of Mexico, Mexico City, Mexico; Rare Diseases Diagnostic Unit, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
8
|
Almazroea A, Ijaz A, Aziz A, Mushtaq Yasinzai M, Rafiullah R, Rehman FU, Daud S, Shaikh R, Ayub M, Wali A. Identification and In Silico Analysis of a Homozygous Nonsense Variant in TGM1 Gene Segregating with Congenital Ichthyosis in a Consanguineous Family. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:103. [PMID: 36676727 PMCID: PMC9866252 DOI: 10.3390/medicina59010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/25/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Background and Objectives: Lamellar ichthyosis is a rare skin disease characterized by large, dark brown plate-like scales on the entire body surface with minimum or no erythema. This phenotype is frequently associated with a mutation in the TGM1 gene, encoding the enzyme transglutaminase 1 which plays a catalytic role in the formation of the cornified cell envelop. The present study aimed to carry out clinical and genetic characterization of the autosomal recessive lamellar ichthyosis family from Balochistan. Materials and Methods: A consanguineous family with lamellar ichthyosis was enrolled from Balochistan, Pakistan. PCR amplification of all the exons and splice site junctions of the TGM1 gene followed by Sanger sequencing was performed on the genomic DNA. The identified variant was checked by In silico prediction tools to evaluate the effect of the variant on protein. Results: Sanger sequencing identified a homozygous nonsense variant c.131G >A (p.Trp44*) in the TGM1 gene that segregated in the autosomal recessive mode of inheritance in the family. The identified variant results in premature termination of transcribed mRNA and is predicted to cause a truncated or absent translation product transglutaminase-1 (TGase-1) accompanied by loss of catalytic activity, causing a severe clinical phenotype of lamellar ichthyosis in the patients. Conclusions: Here, we report a consanguineous lamellar ichthyosis family with a homozygous nonsense variant in the TGM1 gene. The variant is predicted as pathogenic by different In silico prediction tools.
Collapse
Affiliation(s)
- Abdulhadi Almazroea
- Pediatrician, Associate Professor at College of Medicine, Taibah University, Madinah 41477, Saudi Arabia
| | - Ambreen Ijaz
- Department of Biotechnology, Faculty of Life Sciences & Informatics, BUITEMS, Quetta 87300, Pakistan
- Department of Zoology, SBK Women’s University, Quetta 87500, Pakistan
| | - Abdul Aziz
- Department of Computer Sciences and Bioinformatics, Khushal Khan Khattak University, Karak 27200, Pakistan
| | - Muhammad Mushtaq Yasinzai
- Department of Biotechnology, Faculty of Life Sciences & Informatics, BUITEMS, Quetta 87300, Pakistan
| | - Rafiullah Rafiullah
- Department of Biotechnology, Faculty of Life Sciences & Informatics, BUITEMS, Quetta 87300, Pakistan
| | - Fazal Ur Rehman
- Department of Microbiology, University of Balochistan, Quetta 87550, Pakistan
| | - Shakeela Daud
- Department of Biotechnology, Faculty of Life Sciences & Informatics, BUITEMS, Quetta 87300, Pakistan
| | - Rozeena Shaikh
- Department of Biotechnology, Faculty of Life Sciences & Informatics, BUITEMS, Quetta 87300, Pakistan
| | - Muhammad Ayub
- Institute of Biochemistry, University of Balochistan, Quetta 87550, Pakistan
| | - Abdul Wali
- Department of Biotechnology, Faculty of Life Sciences & Informatics, BUITEMS, Quetta 87300, Pakistan
| |
Collapse
|
9
|
Zeng J, Shan B, Guo L, Lv S, Li F. Compound Heterozygous Mutations in TGM1 Causing a Severe Form of Lamellar Ichthyosis: A Case Report. Pharmgenomics Pers Med 2022; 15:583-588. [PMID: 35698621 PMCID: PMC9188366 DOI: 10.2147/pgpm.s361350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/31/2022] [Indexed: 12/03/2022] Open
Abstract
We aimed to detect the pathogenic gene mutations in a patient with lamellar ichthyosis (LI). The genomic DNA of the patient was examined using high-throughput whole-exome sequencing to identify the causative mutations. Compound heterozygous mutations of c.1187G>T (p.Arg396Leu) and c.607C>T (p.Gln203*) were found in the transglutaminase-1 gene (TGM1) on chromosome 14 of the proband. The mutations stated above have been reported to impair the function of TGM1 protein and to be pathogenic. Our data suggest that the proband carried compound heterozygous mutations of c.1187G>T(p.Arg396Leu) and c.607C>T(p.Gln203*) in TGM1, which were in the trans position and the cause of his disease. We also found some dermoscopic in this patient which may be specific in LI.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Dermatology, the Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Baihui Shan
- Department of Dermatology, the Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Lu Guo
- Department of Dermatology, the Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Sha Lv
- Department of Dermatology, the Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Fuqiu Li
- Department of Dermatology, the Second Hospital of Jilin University, Changchun, People’s Republic of China
- Correspondence: Fuqiu Li, Department of Dermatology, the Second Hospital of Jilin University, No. 218 Nanguan District, Changchun, CN 130041, People’s Republic of China, Tel +8613039123758, Fax +86-0431-81136888, Email
| |
Collapse
|
10
|
Chulpanova DS, Shaimardanova AA, Ponomarev AS, Elsheikh S, Rizvanov AA, Solovyeva VV. Current Strategies for the Gene Therapy of Autosomal Recessive Congenital Ichthyosis and Other Types of Inherited Ichthyosis. Int J Mol Sci 2022; 23:2506. [PMID: 35269649 PMCID: PMC8910354 DOI: 10.3390/ijms23052506] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 01/27/2023] Open
Abstract
Mutations in genes such as transglutaminase-1 (TGM1), which are responsible for the formation and normal functioning of a lipid barrier, lead to the development of autosomal recessive congenital ichthyosis (ARCI). ARCIs are characterized by varying degrees of hyperkeratosis and the presence of scales on the body surface since birth. The quality of life of patients is often significantly affected, and in order to alleviate the manifestations of the disease, symptomatic therapy with moisturizers, keratolytics, retinoids and other cosmetic substances is often used to improve the condition of the patients' skin. Graft transplantation is commonly used to correct defects of the eye. However, these approaches offer symptomatic treatment that does not restore the lost protein function or provide a long-term skin barrier. Gene and cell therapies are evolving as promising therapy for ARCIs that can correct the functional activity of altered proteins. However, these approaches are still at an early stage of development. This review discusses current studies of gene and cell therapy approaches for various types of ichthyosis and their further prospects for patient treatment.
Collapse
Affiliation(s)
- Daria S. Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (A.A.S.); (A.S.P.); (A.A.R.)
| | - Alisa A. Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (A.A.S.); (A.S.P.); (A.A.R.)
| | - Aleksei S. Ponomarev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (A.A.S.); (A.S.P.); (A.A.R.)
| | - Somaia Elsheikh
- Division of Cancer and Stem Cell, University of Nottingham, Nottingham LE12 5RD, UK;
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (A.A.S.); (A.S.P.); (A.A.R.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (A.A.S.); (A.S.P.); (A.A.R.)
| |
Collapse
|
11
|
Dang L, Zhou X, Zhong X, Yu W, Huang S, Liu H, Chen Y, Zhang W, Yuan L, Li L, Huang X, Li G, Liu J, Tong G. Correction of the pathogenic mutation in TGM1 gene by adenine base editing in mutant embryos. Mol Ther 2022; 30:175-183. [PMID: 33974999 PMCID: PMC8753292 DOI: 10.1016/j.ymthe.2021.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/09/2021] [Accepted: 05/05/2021] [Indexed: 01/07/2023] Open
Abstract
A couple diagnosed as carriers for lamellar ichthyosis, an autosomal recessive rare disease, encountered two pregnancy losses. Their blood samples showed the same heterozygous c.607C>T mutation in the TGM1 gene. However, we found that about 98.4% of the sperm had mutations, suggesting possible de novo germline mutation. To explore the probability of correcting this mutation, we used two different adenine base editors (ABEs) combined with related truncated single guide RNA (sgRNA) to repair the pathogenic mutation in mutant zygotes. Our results showed that the editing efficiency was 73.8% for ABEmax-NG combined with 20-bp-length sgRNA and 78.7% for Sc-ABEmax combined with 19-bp-length sgRNA. The whole-genome sequencing (WGS) and deep sequencing analysis demonstrated precise DNA editing. This study reveals the possibility of correcting the genetic mutation in embryos with the ABE system.
Collapse
Affiliation(s)
- Lu Dang
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xueliang Zhou
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiufang Zhong
- Department of Reproductive Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenxia Yu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shisheng Huang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hanyan Liu
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuanyuan Chen
- Department of Reproductive Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wuwen Zhang
- Department of Reproductive Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lihua Yuan
- Department of Reproductive Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lei Li
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xingxu Huang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Guanglei Li
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Jianqiao Liu
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Guoqing Tong
- Department of Reproductive Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
12
|
Ennouri M, Zimmer AD, Bahloul E, Chaabouni R, Marrakchi S, Turki H, Fakhfakh F, Bougacha-Elleuch N, Fischer J. Clinical and genetic investigation of ichthyosis in familial and sporadic cases in south of Tunisia: genotype-phenotype correlation. BMC Med Genomics 2022; 15:4. [PMID: 34983512 PMCID: PMC8729015 DOI: 10.1186/s12920-021-01154-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/31/2021] [Indexed: 12/30/2022] Open
Abstract
Background Ichthyosis is a heterogeneous group of Mendelian cornification disorders that includes syndromic and non-syndromic forms. Autosomal Recessive Congenital Ichthyosis (ARCI) and Ichthyosis Linearis Circumflexa (ILC) belong to non-syndromic forms. Syndromic ichthyosis is rather a large group of heterogeneous diseases. Overlapping phenotypes and genotypes between these disorders is a major characteristic. Therefore, determining the specific genetic background for each form would be necessary.
Methods A total of 11 Tunisian patients with non-syndromic (8 with ARCI and 2 with ILC) and autosomal syndromic ichthyosis (1 patient) were screened by a custom Agilent HaloPlex multi-gene panel and the segregation of causative mutations were analyzed in available family members. Results Clinical and molecular characterization, leading to genotype–phenotype correlation in 11 Tunisian patients was carried out. Overall, we identified 8 mutations in 5 genes. Thus, in patients with ARCI, we identified a novel (c.118T > C in NIPAL4) and 4 already reported mutations (c.534A > C in NIPAL4; c.788G > A and c.1042C > T in TGM1 and c.844C > T in CYP4F22). Yellowish severe keratoderma was found to be associated with NIPAL4 variations and brachydactyly to TGM1 mutations. Two novel variations (c.5898G > C and c.2855A > G in ABCA12) seemed to be features of ILC. Delexon13 in CERS3 was reported in a patient with syndromic ichthyosis. Conclusions Our study further extends the spectrum of mutations involved in ichthyosis as well as clinical features that could help directing genetic investigation.
Collapse
Affiliation(s)
- Mariem Ennouri
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences of Sfax, Sfax University, Sfax University, Street of Soukra km 4, BP 1171-3000, Sfax, Tunisia.
| | - Andreas D Zimmer
- Faculty of Medicine, Institute of Human Genetics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Emna Bahloul
- Department of Dermatology, CHU Hedi Chaker, Sfax University, Sfax, Tunisia
| | - Rim Chaabouni
- Department of Dermatology, CHU Hedi Chaker, Sfax University, Sfax, Tunisia
| | | | - Hamida Turki
- Department of Dermatology, CHU Hedi Chaker, Sfax University, Sfax, Tunisia
| | - Faiza Fakhfakh
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences of Sfax, Sfax University, Sfax University, Street of Soukra km 4, BP 1171-3000, Sfax, Tunisia
| | - Noura Bougacha-Elleuch
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences of Sfax, Sfax University, Sfax University, Street of Soukra km 4, BP 1171-3000, Sfax, Tunisia
| | - Judith Fischer
- Faculty of Medicine, Institute of Human Genetics, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Lee SJ, Lee KB, Hong AY, Son YH, Lee DH, Jeong EM, Kim IG. Transglutaminase 2 mediates UVB-induced matrix metalloproteinase-1 expression by inhibiting nuclear p65 degradation in dermal fibroblasts. Exp Dermatol 2021; 31:743-752. [PMID: 34882846 DOI: 10.1111/exd.14512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022]
Abstract
Matrix metalloproteinases (MMPs) play a key role in tissue remodelling by cleaving extracellular matrix (ECM) components. In the skin, UV irradiation increases expression of MMPs that causes dysregulation of ECM homeostasis in dermis, leading to acceleration of skin aging. However, the mediator(s) that links UV irradiation to the upregulation of MMPs have not been fully defined. Previously, we showed that UVB irradiation activated transglutaminase 2 (TG2) in keratinocytes, eliciting an inflammatory response by activating NF-κB signalling. In this study, we reported the role of TG2 in mediating the UVB-induced expression of MMP-1. In human dermal fibroblasts, UVB irradiation enhanced the expression and activity of TG2, which in turn promotes the expression of MMP-1. Analyses of MMP-1 promoter showed that activation of the NF-κB signalling pathway, rather than AP-1, was responsible for the TG2-mediated upregulation of MMP-1. Moreover, Western blot analysis revealed that TG2 increased the activity of NF-κB by inhibiting degradation of p65 in the nucleus. Furthermore, ex vivo skin from TG2-knockout mice exhibited significantly reduced levels of MMP-1 compared to that from wild-type mice. These results indicate that TG2 functions as a mediator for the UVB-induced expression of MMP-1 in dermal fibroblasts, providing a new target for preventing skin photodamage.
Collapse
Affiliation(s)
- Seok-Jin Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Ki Baek Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Ah-Young Hong
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Young Hoon Son
- Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Department of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Eui Man Jeong
- Department of Pharmacy, College of Pharmacy, Jeju National University, Jeju, Korea
| | - In-Gyu Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.,Department of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Sun Q, Burgren NM, Cheraghlou S, Paller AS, Larralde M, Bercovitch L, Levinsohn J, Ren I, Hu RH, Zhou J, Zaki T, Fan R, Tian C, Saraceni C, Nelson-Williams CJ, Loring E, Craiglow BG, Milstone LM, Lifton RP, Boyden LM, Choate KA. The Genomic and Phenotypic Landscape of Ichthyosis: An Analysis of 1000 Kindreds. JAMA Dermatol 2021; 158:16-25. [PMID: 34851365 DOI: 10.1001/jamadermatol.2021.4242] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Ichthyoses are clinically and genetically heterogeneous disorders characterized by scaly skin. Despite decades of investigation identifying pathogenic variants in more than 50 genes, clear genotype-phenotype associations have been difficult to establish. Objective To expand the genotypic and phenotypic spectra of ichthyosis and delineate genotype-phenotype associations. Design, Setting, and Participants This cohort study recruited an international group of individuals with ichthyosis and describes characteristic and distinguishing features of common genotypes, including genotype-phenotype associations, during a 10-year period from June 2011 to July 2021. Participants of all ages, races, and ethnicities were included and were enrolled worldwide from referral centers and patient advocacy groups. A questionnaire to assess clinical manifestations was completed by those with a genetic diagnosis. Main Outcomes and Measures Genetic analysis of saliva or blood DNA, a phenotyping questionnaire, and standardized clinical photographs. Descriptive statistics, such as frequency counts, were used to describe the cases in the cohort. Fisher exact tests identified significant genotype-phenotype associations. Results Results were reported for 1000 unrelated individuals enrolled from around the world (mean [SD] age, 50.0 [34.0] years; 524 [52.4%] were female, 427 [42.7%] were male, and 49 [4.9%] were not classified); 75% were from the US, 12% from Latin America, 4% from Canada, 3% from Europe, 3% from Asia, 2% from Africa, 1% from the Middle East, and 1% from Australia and New Zealand. A total of 266 novel disease-associated variants in 32 genes were identified among 869 kindreds. Of these, 241 (91%) pathogenic variants were found through multiplex amplicon sequencing and 25 (9%) through exome sequencing. Among the 869 participants with a genetic diagnosis, 304 participants (35%) completed the phenotyping questionnaire. Analysis of clinical manifestations in these 304 individuals revealed that pruritus, hypohydrosis, skin pain, eye problems, skin odor, and skin infections were the most prevalent self-reported features. Genotype-phenotype association analysis revealed that the presence of a collodion membrane at birth (odds ratio [OR], 6.7; 95% CI, 3.0-16.7; P < .001), skin odor (OR, 2.8; 95% CI, 1.1-6.8; P = .02), hearing problems (OR, 2.9; 95% CI, 1.6-5.5; P < .001), eye problems (OR, 3.0; 95% CI, 1.5-6.0; P < .001), and alopecia (OR, 4.6; 95% CI, 2.4-9.0; P < .001) were significantly associated with TGM1 variants compared with other ichthyosis genotypes studied. Skin pain (OR, 6.8; 95% CI, 1.6-61.2; P = .002), odor (OR, 5.7; 95% CI, 2.0-19.7; P < .001), and infections (OR, 3.1; 95% CI, 1.4-7.7; P = .03) were significantly associated with KRT10 pathogenic variants compared with disease-associated variants in other genes that cause ichthyosis. Pathogenic variants were identified in 869 (86.9%) participants. Most of the remaining individuals had unique phenotypes, enabling further genetic discovery. Conclusions and Relevance This cohort study expands the genotypic and phenotypic spectrum of ichthyosis, establishing associations between clinical manifestations and genotypes. Collectively, the findings may help improve clinical assessment, assist with developing customized management plans, and improve clinical course prognostication.
Collapse
Affiliation(s)
- Qisi Sun
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Nareh M Burgren
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Shayan Cheraghlou
- The Ronald O. Perelman Department of Dermatology, Grossman School of Medicine, New York University, New York, New York
| | - Amy S Paller
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Lionel Bercovitch
- Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Jonathan Levinsohn
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Ivy Ren
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Rong Hua Hu
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Jing Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Theodore Zaki
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Ryan Fan
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Charlie Tian
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Corey Saraceni
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | | | - Erin Loring
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Brittany G Craiglow
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Leonard M Milstone
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, New York
| | - Lynn M Boyden
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Keith A Choate
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
15
|
Jurga AM, Paleczna M, Kadluczka J, Kuter KZ. Beyond the GFAP-Astrocyte Protein Markers in the Brain. Biomolecules 2021; 11:biom11091361. [PMID: 34572572 PMCID: PMC8468264 DOI: 10.3390/biom11091361] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
The idea of central nervous system as one-man band favoring neurons is long gone. Now we all are aware that neurons and neuroglia are team players and constant communication between those various cell types is essential to maintain functional efficiency and a quick response to danger. Here, we summarize and discuss known and new markers of astroglial multiple functions, their natural heterogeneity, cellular interactions, aging and disease-induced dysfunctions. This review is focused on newly reported facts regarding astrocytes, which are beyond the old stereotypes. We present an up-to-date list of marker proteins used to identify a broad spectrum of astroglial phenotypes related to the various physiological and pathological nervous system conditions. The aim of this review is to help choose markers that are well-tailored for specific needs of further experimental studies, precisely recognizing differential glial phenotypes, or for diagnostic purposes. We hope it will help to categorize the functional and structural diversity of the astroglial population and ease a clear readout of future experimental results.
Collapse
|
16
|
You L, Kim MY, Cho JY. Protective Effect of Potentilla glabra in UVB-Induced Photoaging Process. Molecules 2021; 26:5408. [PMID: 34500840 PMCID: PMC8434042 DOI: 10.3390/molecules26175408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022] Open
Abstract
Maintaining skin homeostasis is one of the most important factors for skin health. UVB-induced skin photoaging is a difficult problem that has negative impacts on skin homeostasis. So far, a number of compounds have been discovered that improve human skin barrier function and hydration, and are thought to be effective ways to protect skin homeostasis. Potentilla glabra var. mandshurica (Maxim.) Hand.-Mazz. Ethanol Extract (Pg-EE) is a compound that has noteworthy anti-inflammatory properties. However, its skin-protective effects are poorly understood. Therefore, we evaluated the capacity of Pg-EE to strengthen the skin barrier and improve skin hydration. Pg-EE can enhance the expression of filaggrin (FLG), transglutaminase (TGM)-1, hyaluronic acid synthase (HAS)-1, and HAS-2 in human keratinocytes. Moreover, Pg-EE down-regulated the expression of pro-inflammatory cytokines and up-regulated the production of FLG, HAS-1, and HAS-2 suppressed by UVB through inhibition of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) pathways. Given the above, since Pg-EE can improve skin barrier, hydration and reduce the UVB-induced inflammation on skin, it could therefore be a valuable natural ingredient for cosmetics or pharmaceuticals to treat skin disorders.
Collapse
Affiliation(s)
- Long You
- Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
17
|
Anker P, Kiss N, Kocsis I, Czemmel É, Becker K, Zakariás S, Plázár D, Farkas K, Mayer B, Nagy N, Széll M, Ács N, Szalai Z, Medvecz M. Report of a Novel ALOX12B Mutation in Self-Improving Collodion Ichthyosis with an Overview of the Genetic Background of the Collodion Baby Phenotype. Life (Basel) 2021; 11:life11070624. [PMID: 34199106 PMCID: PMC8304297 DOI: 10.3390/life11070624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/18/2022] Open
Abstract
Collodion baby is a congenital, transient phenotype encountered in approximately 70–90% of autosomal recessive congenital ichthyosis and is an important entity of neonatal erythroderma. The clinical outcome after this severe condition is variable. Genetic mutations of components of the epidermal lipoxygenase pathway have been implicated in the majority of self-improving collodion ichthyosis (SICI). In SICI, the shedding of the collodion membrane reveals clear skin or only mild residual manifestation of ichthyosis. Here we report the case of a girl born with a severe form of collodion baby phenotype, whose skin almost completely cleared within the first month of life. At the age of 3 years, only mild symptoms of a keratinization disorder remained. However, the severity of erythema and scaling showed mild fluctuations over time. To objectively evaluate the skin changes of the patient, we assessed the ichthyosis severity index. Upon sequencing of the ALOX12B gene, we identified a previously unreported heterozygous nonsense mutation, c.1607G>A (p.Trp536Ter) with the recurrent, heterozygous mutation c.1562A>G (p.Tyr521Cys). Thereby, our findings expand the genotypic spectrum of SICI. In addition, we summarize the spectrum of further genetic diseases that can present at birth as collodion baby, in particular the SICI.
Collapse
Affiliation(s)
- Pálma Anker
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (P.A.); (N.K.); (K.B.); (S.Z.); (D.P.); (K.F.); (B.M.)
| | - Norbert Kiss
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (P.A.); (N.K.); (K.B.); (S.Z.); (D.P.); (K.F.); (B.M.)
| | - István Kocsis
- Department of Obstetrics and Gynaecology, Semmelweis University, 1082 Budapest, Hungary; (I.K.); (É.C.); (N.Á.)
| | - Éva Czemmel
- Department of Obstetrics and Gynaecology, Semmelweis University, 1082 Budapest, Hungary; (I.K.); (É.C.); (N.Á.)
| | - Krisztina Becker
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (P.A.); (N.K.); (K.B.); (S.Z.); (D.P.); (K.F.); (B.M.)
| | - Sára Zakariás
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (P.A.); (N.K.); (K.B.); (S.Z.); (D.P.); (K.F.); (B.M.)
| | - Dóra Plázár
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (P.A.); (N.K.); (K.B.); (S.Z.); (D.P.); (K.F.); (B.M.)
| | - Klára Farkas
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (P.A.); (N.K.); (K.B.); (S.Z.); (D.P.); (K.F.); (B.M.)
| | - Balázs Mayer
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (P.A.); (N.K.); (K.B.); (S.Z.); (D.P.); (K.F.); (B.M.)
| | - Nikoletta Nagy
- MTA-SZTE Dermatological Research Group, 6720 Szeged, Hungary; (N.N.); (M.S.)
- Department of Medical Genetics, University of Szeged, 6720 Szeged, Hungary
| | - Márta Széll
- MTA-SZTE Dermatological Research Group, 6720 Szeged, Hungary; (N.N.); (M.S.)
- Department of Medical Genetics, University of Szeged, 6720 Szeged, Hungary
| | - Nándor Ács
- Department of Obstetrics and Gynaecology, Semmelweis University, 1082 Budapest, Hungary; (I.K.); (É.C.); (N.Á.)
| | - Zsuzsanna Szalai
- Department of Dermatology, Heim Pál National Children’s Institute, 1089 Budapest, Hungary;
| | - Márta Medvecz
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (P.A.); (N.K.); (K.B.); (S.Z.); (D.P.); (K.F.); (B.M.)
- Correspondence:
| |
Collapse
|
18
|
Mohamad J, Samuelov L, Malchin N, Rabinowitz T, Assaf S, Malki L, Malovitski K, Israeli S, Grafi-Cohen M, Bitterman-Deutsch O, Molho-Pessach V, Cohen-Barak E, Bach G, Garty BZ, Bergman R, Harel A, Nanda A, Lestringant GG, McGrath J, Shalev S, Shomron N, Mashiah J, Eskin-Schwartz M, Sprecher E, Sarig O. Molecular epidemiology of non-syndromic autosomal recessive congenital ichthyosis in a Middle-Eastern population. Exp Dermatol 2021; 30:1290-1297. [PMID: 33786896 DOI: 10.1111/exd.14345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/04/2021] [Accepted: 03/26/2021] [Indexed: 02/02/2023]
Abstract
Autosomal recessive congenital ichthyosis (ARCI) is a rare and heterogeneous skin cornification disorder presenting with generalized scaling and varying degrees of erythema. Clinical manifestations range from lamellar ichthyosis (LI), congenital ichthyosiform erythroderma (CIE) through the most severe form of ARCI, Harlequin ichthyosis (HI). We used homozygosity mapping, whole-exome and direct sequencing to delineate the relative distribution of pathogenic variants as well as identify genotype-phenotype correlations in a cohort of 62 Middle Eastern families with ARCI of various ethnic backgrounds. Pathogenic variants were identified in most ARCI-associated genes including TGM1 (21%), CYP4F22 (18%), ALOX12B (14%), ABCA12 (10%), ALOXE3 (6%), NIPAL4 (5%), PNPLA1 (3%), LIPN (2%) and SDR9C7 (2%). In 19% of cases, no mutation was identified. Our cohort revealed a higher prevalence of CYP4F22 and ABCA12 pathogenic variants and a lower prevalence of TGM1 and NIPAL4 variants, as compared to data obtained in other regions of the world. Most variants (89%) in ALOX12B were associated with CIE and were the most common cause of ARCI among patients of Muslim origin (26%). Palmoplantar keratoderma associated with fissures was exclusively a result of pathogenic variants in TGM1. To our knowledge, this is the largest cohort study of ARCI in the Middle-Eastern population reported to date. Our data demonstrate the importance of population-tailored mutation screening strategies and shed light upon specific genotype-phenotype correlations.
Collapse
Affiliation(s)
- Janan Mohamad
- Division of Dermatology and Pediatric Dermatology Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liat Samuelov
- Division of Dermatology and Pediatric Dermatology Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Natalia Malchin
- Division of Dermatology and Pediatric Dermatology Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Tom Rabinowitz
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sari Assaf
- Division of Dermatology and Pediatric Dermatology Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liron Malki
- Division of Dermatology and Pediatric Dermatology Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kiril Malovitski
- Division of Dermatology and Pediatric Dermatology Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shirli Israeli
- Division of Dermatology and Pediatric Dermatology Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Meital Grafi-Cohen
- Division of Dermatology and Pediatric Dermatology Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | - Vered Molho-Pessach
- Pediatric Dermatology Service, Department of Dermatology, The Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eran Cohen-Barak
- Department of Dermatology, Haemek Medical Center, Afula, Israel.,Bruce and Ruth Rappaprt Faculty of Medicine, Technion, Haifa, Israel
| | - Gideon Bach
- Department of Human Genetics, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Ben Zion Garty
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Schneider Childrens Medical Center, Petah Tikva, Israel
| | - Reuven Bergman
- Department of Dermatology, Rambam Medical Center, Haifa, Israel
| | - Avikam Harel
- Division of Dermatology and Pediatric Dermatology Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Arti Nanda
- As'ad Al-Hamad Dermatology Center, Al-Sabah Hospital, Surra, Kuwait
| | | | - John McGrath
- St. John's Institute of Dermatology, King's College London, London, UK
| | - Stavit Shalev
- Bruce and Ruth Rappaprt Faculty of Medicine, Technion, Haifa, Israel.,Institute of Human Genetics, Haemek Medical Center, Afula, Israel
| | - Noam Shomron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Mashiah
- Division of Dermatology and Pediatric Dermatology Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marina Eskin-Schwartz
- Genetics Institute at Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eli Sprecher
- Division of Dermatology and Pediatric Dermatology Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Sarig
- Division of Dermatology and Pediatric Dermatology Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
19
|
Freedman JC, Parry TJ, Zhang P, Majumdar A, Krishnan S, Regula LK, O’Malley M, Coghlan S, Yogesha S, Ramasamy S, Agarwal P. Preclinical Evaluation of a Modified Herpes Simplex Virus Type 1 Vector Encoding Human TGM1 for the Treatment of Autosomal Recessive Congenital Ichthyosis. J Invest Dermatol 2021; 141:874-882.e6. [DOI: 10.1016/j.jid.2020.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 11/27/2022]
|
20
|
Novel Homozygous Mutations in the Genes TGM1, SULT2B1, SPINK5 and FLG in Four Families Underlying Congenital Ichthyosis. Genes (Basel) 2021; 12:genes12030373. [PMID: 33807935 PMCID: PMC7999895 DOI: 10.3390/genes12030373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Ichthyoses are a large group of hereditary cornification disorders, which are both clinically and etiologically heterogeneous and affect mostly all the skin surface of the patients. Ichthyosis has its origin in an ancient Greek word “ichthys” meaning fish, this is because the ichthyosis patients have dry, thickened, and scaly skin. There is an excess accumulation of epidermal cells resulting in the appearance of continuous and widespread scales on the body. There are many varieties of ichthyosis with a broad spectrum of intensity, severity, and associated symptoms, most of them are extremely rare. Ichthyosis vulgaris is the most frequently occurring type of ichthyoses. Method: The present study consists of four Pakistani ichthyosis families (A, B, C, and D). Whole exome sequencing (WES) approach was used to identify the pathogenic sequence variants in probands. The segregation of these variants in other participants was confirmed by Sanger sequencing. Results: Total four variants including, two splice site (TGM1: c.2088 + 1G > A) and (SPINK5: c.882 + 1G > T), a missense (SULT2B1: c.419C > T; p. Ala140Val), and a nonsense (FLG: c.6109C > T; p. Arg2037Ter) variant were identified in families A, C, B, and D, respectively, as causative mutations responsible for ichthyosis in these families. Conclusion: Our study unravels the molecular etiology of the four Pakistani ichthyosis families and validates the involvement of TGM1, SULT2B1, SPINK5, and FLG, in the etiology of different forms of ichthyosis. In addition, this study also aims to give a detailed clinical report of the studied ichthyosis families.
Collapse
|
21
|
Pinkova B, Buckova H, Borska R, Fajkusova L. Types of congenital nonsyndromic ichthyoses. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2020; 164:357-365. [PMID: 33087941 DOI: 10.5507/bp.2020.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/12/2020] [Indexed: 11/23/2022] Open
Abstract
Congenital ichthyoses are a very heterogeneous group of diseases manifested by dry, rough and scaling skin. In all forms of ichthyoses, the skin barrier is damaged to a certain degree. Congenital ichthyoses are caused by various gene mutations. Clinical manifestations of the individual types vary as the patient ages. Currently, the diagnosis of congenital ichthyoses is based on molecular analysis, which also allows a complete genetic counseling and genetic prevention. It is appropriate to refer the patients to specialized medical centers, where the cooperation of a neonatologist, a pediatric dermatologist, a geneticist and other specialists is ensured.
Collapse
Affiliation(s)
- Blanka Pinkova
- Children's Dermatological Department of the Paediatric Clinic, Faculty of Medicine, Masaryk University and University Hospital Brno, Czech Republic
| | - Hana Buckova
- Children's Dermatological Department of the Paediatric Clinic, Faculty of Medicine, Masaryk University and University Hospital Brno, Czech Republic
| | - Romana Borska
- Center of Molecular Biology and Gene Therapy IHOK University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic Corresponding author: Blanka Pinkova, e-mail
| | - Lenka Fajkusova
- Center of Molecular Biology and Gene Therapy IHOK University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic Corresponding author: Blanka Pinkova, e-mail
| |
Collapse
|
22
|
Esperón-Moldes U, Ginarte-Val M, Rodríguez-Pazos L, Fachal L, Martín-Santiago A, Vicente A, Jiménez-Gallo D, Guillén-Navarro E, Sampol LM, González-Enseñat MA, Vega A. Novel CYP4F22 mutations associated with autosomal recessive congenital ichthyosis (ARCI). Study of the CYP4F22 c.1303C>T founder mutation. PLoS One 2020; 15:e0229025. [PMID: 32069299 PMCID: PMC7028276 DOI: 10.1371/journal.pone.0229025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 01/28/2020] [Indexed: 11/18/2022] Open
Abstract
Mutations in CYP4F22 cause autosomal recessive congenital ichthyosis (ARCI). However, less than 10% of all ARCI patients carry a mutation in CYP4F22. In order to identify the molecular basis of ARCI among our patients (a cohort of ninety-two Spanish individuals) we performed a mutational analysis using direct Sanger sequencing in combination with a multigene targeted NGS panel. From these, eight ARCI families (three of them with Moroccan origin) were found to carry five different CYP4F22 mutations, of which two were novel. Computational analysis showed that the mutations found were present in highly conserved residues of the protein and may affect its structure and function. Seven of the eight families were carriers of a highly recurrent CYP4F22 variant, c.1303C>T; p.(His435Tyr). A 12Mb haplotype was reconstructed in all c.1303C>T carriers by genotyping ten microsatellite markers flanking the CYP4F22 gene. A prevalent 2.52Mb haplotype was observed among Spanish carrier patients suggesting a recent common ancestor. A smaller core haplotype of 1.2Mb was shared by Spanish and Moroccan families. Different approaches were applied to estimate the time to the most recent common ancestor (TMRCA) of carrier patients with Spanish origin. The age of the mutation was calculated by using DMLE and BDMC2. The algorithms estimated that the c.1303C>T variant arose approximately 2925 to 4925 years ago, while Spanish carrier families derived from a common ancestor who lived in the XIII century. The present study reports five CYP4F22 mutations, two of them novel, increasing the number of CYP4F22 mutations currently listed. Additionally, our results suggest that the recurrent c.1303C>T change has a founder effect in Spanish population and c.1303C>T carrier families originated from a single ancestor with probable African ancestry.
Collapse
Affiliation(s)
- Uxia Esperón-Moldes
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
- Departamento de Ciencias Forenses, Anatomía Patolóxica, Xinecoloxía, Obstetricia e Pediatría, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Ginarte-Val
- Dermatology Service of Complexo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain
| | | | - Laura Fachal
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
| | - Ana Martín-Santiago
- Dermatology Service of Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Asunción Vicente
- Dermatology Service of Hospital Sant Joan de Déu, Barcelona, Spain
| | | | | | | | | | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
- * E-mail:
| |
Collapse
|
23
|
Putterman E, Zaki T, Milstone L, Choate K, Castelo-Soccio L. Association of the Severity of Alopecia With the Severity of Ichthyosis. JAMA Dermatol 2019; 155:1077-1078. [DOI: 10.1001/jamadermatol.2019.1520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Elana Putterman
- Section of Dermatology, Division of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Theodore Zaki
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Leonard Milstone
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Keith Choate
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Leslie Castelo-Soccio
- Section of Dermatology, Division of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Simpson J, Martinez‐Queipo M, Onoufriadis A, Tso S, Glass E, Liu L, Higashino T, Scott W, Tierney C, Simpson M, Desomchoke R, Youssefian L, SaeIdian A, Vahidnezhad H, Bisquera A, Ravenscroft J, Moss C, O'Toole E, Burrows N, Leech S, Jones E, Lim D, Ilchyshyn A, Goldstraw N, Cork M, Darne S, Uitto J, Martinez A, Mellerio J, McGrath J. Genotype–phenotype correlation in a large English cohort of patients with autosomal recessive ichthyosis. Br J Dermatol 2019; 182:729-737. [DOI: 10.1111/bjd.18211] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2019] [Indexed: 12/17/2022]
|
25
|
Biogeographical origin and timing of the founder ichthyosis TGM1 c.1187G > A mutation in an isolated Ecuadorian population. Sci Rep 2019; 9:7175. [PMID: 31073126 PMCID: PMC6509209 DOI: 10.1038/s41598-019-43133-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 04/11/2019] [Indexed: 11/22/2022] Open
Abstract
An unusually high frequency of the lamellar ichthyosis TGM1 mutation, c.1187G > A, has been observed in the Ecuadorian province of Manabí. Recently, the same mutation has been detected in a Galician patient (Northwest of Spain). By analyzing patterns of genetic variation around this mutation in Ecuadorian patients and population matched controls, we were able to estimate the age of c.1187G > A and the time to their most recent common ancestor (TMRCA) of c.1187G > A Ecuadorian carriers. While the estimated mutation age is 41 generations ago (~1,025 years ago [ya]), the TMRCA of Ecuadorian c.1187G > A carrier haplotypes dates to just 17 generations (~425 ya). Probabilistic-based inferences of local ancestry allowed us to infer a most likely European origin of a few (16% to 30%) Ecuadorian haplotypes carrying this mutation. In addition, inferences on demographic historical changes based on c.1187G > A Ecuadorian carrier haplotypes estimated an exponential population growth starting ~20 generations, compatible with a recent founder effect occurring in Manabí. Two main hypotheses can be considered for the origin of c.1187G > A: (i) the mutation could have arisen in Spain >1,000 ya (being Galicia the possible homeland) and then carried to Ecuador by Spaniards in colonial times ~400 ya, and (ii) two independent mutational events originated this mutation in Ecuador and Galicia. The geographic and cultural characteristics of Manabí could have favored a founder effect that explains the high prevalence of TGM1 c.1187G > A in this region.
Collapse
|
26
|
Takeda M, Nomura T, Sugiyama T, Miyauchi T, Suzuki S, Fujita Y, Shimizu H. Compound heterozygous missense mutations p.Leu207Pro and p.Tyr544Cys in TGM1 cause a severe form of lamellar ichthyosis. J Dermatol 2018; 45:1463-1467. [PMID: 30302839 DOI: 10.1111/1346-8138.14675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/06/2018] [Indexed: 11/30/2022]
Abstract
TGM1 is the most common gene responsible for lamellar ichthyosis. Previous studies have suggested that patients with lamellar ichthyosis carrying two missense mutations in TGM1 show significantly less severe phenotypes than those with at least one truncating mutation in TGM1. Here, we report a patient with severe lamellar ichthyosis who was compound heterozygous for TGM1 missense mutations, including a novel one. A 22-year-old Japanese man presented with large, dark brown, plate-like scales on the extremities and small adherent scales on the face and trunk. His other clinical findings included ectropion, hair loss, hypohidrosis, hyperthermia in summer, palmoplantar keratoderma and constriction of the fingers. Dermoscopy revealed accentuated sulci cutis with numerous large keratotic plugs in the cristae cutis. Histologically, orthohyperkeratosis and mild acanthosis were noted. Electron microscopy showed reduced cornified envelope thickness and numerous lipid droplets in the stratum corneum. Mutation analysis revealed the patient to be compound heterozygous for missense mutations, c.620T>C (p.Leu207Pro) and c.1631A>G (p.Tyr544Cys), in TGM1. Furthermore, we showed that TGM1 enzymatic activity was largely absent in his epidermis. These findings led us to diagnose him as having lamellar ichthyosis. This study has two important notions. First, even two missense mutations in TGM1 can cause severe lamellar ichthyosis. Second, this is the first report of dermoscopic findings of lamellar ichthyosis, implicating the obstruction of sweat glands by keratotic plugs in the pathogenesis of hypohidrosis in the disease. In conclusion, this study provides further insights into genotype-phenotype correlations and pathogenesis in lamellar ichthyosis.
Collapse
Affiliation(s)
- Masae Takeda
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Toshifumi Nomura
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takato Sugiyama
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Japan
| | - Toshinari Miyauchi
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shotaro Suzuki
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yasuyuki Fujita
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
27
|
Phenotypic diversity of the recurrent p.Val379Leu missense mutation of the TGM1 gene. DERMATOL SIN 2018. [DOI: 10.1016/j.dsi.2017.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
Nagtzaam I, Peeters V, Vreeburg M, Wagner A, Steijlen P, van Geel M, van Steensel M. Novel CLDN1
mutation in ichthyosis-hypotrichosis-sclerosing cholangitis syndrome without signs of liver disease. Br J Dermatol 2018; 178:e202-e203. [DOI: 10.1111/bjd.15996] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- I.F. Nagtzaam
- Department of Dermatology; Maastricht University Medical Centre; Maastricht the Netherlands
- GROW School for Oncology and Developmental Biology; Maastricht University Medical Centre; Maastricht the Netherlands
| | - V.P.M. Peeters
- Department of Dermatology; Maastricht University Medical Centre; Maastricht the Netherlands
| | - M. Vreeburg
- Department of Clinical Genetics; Maastricht University Medical Centre; Maastricht the Netherlands
| | - A. Wagner
- Department of Clinical Genetics; Erasmus Medical Centre; Rotterdam the Netherlands
| | - P.M. Steijlen
- Department of Dermatology; Maastricht University Medical Centre; Maastricht the Netherlands
- GROW School for Oncology and Developmental Biology; Maastricht University Medical Centre; Maastricht the Netherlands
| | - M. van Geel
- Department of Dermatology; Maastricht University Medical Centre; Maastricht the Netherlands
- GROW School for Oncology and Developmental Biology; Maastricht University Medical Centre; Maastricht the Netherlands
- Department of Clinical Genetics; Maastricht University Medical Centre; Maastricht the Netherlands
| | - M.A.M. van Steensel
- Department of Dermatology; Maastricht University Medical Centre; Maastricht the Netherlands
- GROW School for Oncology and Developmental Biology; Maastricht University Medical Centre; Maastricht the Netherlands
- Department of Clinical Genetics; Maastricht University Medical Centre; Maastricht the Netherlands
| |
Collapse
|
29
|
Lee SJ, Lee KB, Son YH, Shin J, Lee JH, Kim HJ, Hong AY, Bae HW, Kwon MA, Lee WJ, Kim JH, Lee DH, Jeong EM, Kim IG. Transglutaminase 2 mediates UV-induced skin inflammation by enhancing inflammatory cytokine production. Cell Death Dis 2017; 8:e3148. [PMID: 29072680 PMCID: PMC5680918 DOI: 10.1038/cddis.2017.550] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 12/26/2022]
Abstract
UV irradiation elicits acute inflammation in the skin by increasing proinflammatory cytokine production in keratinocytes. However, the downstream protein target(s) that link UV radiation to the activation of signaling pathways responsible for cytokine expression have not been fully elucidated. In this study, we report a novel role of transglutaminase 2 (TG2), a member of the TG enzyme family whose activities are critical for cornified envelope formation, in mediating UV-induced inflammation. Our results showed that TG2-deficient mice exhibited reduced inflammatory responses to UV irradiation, including reduced erythema, edema, dilation of blood vessels, inflammatory cell infiltration, and levels of inflammatory cytokines. Using primary mouse keratinocytes and HaCaT cells, we found that UV irradiation-induced cytokine production by activating TG2, but not by upregulating TG2 expression, and that ER calcium release triggered by the UV-induced activation of phospholipase C was required for TG2 activation. Moreover, TG2 activity enhanced p65 phosphorylation, leading to an increase in NF-κB transcriptional activity. These results indicate that TG2 is a critical mediator of cytokine expression in the UV-induced inflammatory response of keratinocytes, and suggest that TG2 inhibition might be useful for preventing UV-related skin disorders, such as photoaging and skin cancer caused by chronic UV exposure.
Collapse
Affiliation(s)
- Seok-Jin Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ki Baek Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Hoon Son
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jiwoong Shin
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin-Haeng Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyo-Jun Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ah-Young Hong
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Won Bae
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Mee-Ae Kwon
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Won Jong Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin-Hee Kim
- Department of Biomedical Laboratory Science, Cheongju University College of Health Science, Cheongju, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eui Man Jeong
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - In-Gyu Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
30
|
van Son M, Kent MP, Grove H, Agarwal R, Hamland H, Lien S, Grindflek E. Fine mapping of a QTL affecting levels of skatole on pig chromosome 7. BMC Genet 2017; 18:85. [PMID: 29020941 PMCID: PMC5637327 DOI: 10.1186/s12863-017-0549-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 09/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies in the Norwegian pig breeds Landrace and Duroc have revealed a QTL for levels of skatole located in the region 74.7-80.5 Mb on SSC7. Skatole is one of the main components causing boar taint, which gives an undesirable smell and taste to the pig meat when heated. Surgical castration of boars is a common practice to reduce the risk of boar taint, however, a selection for boars genetically predisposed for low levels of taint would help eliminating the need for castration and be advantageous for both economic and welfare reasons. In order to identify the causal mutation(s) for the QTL and/or identify genetic markers for selection purposes we performed a fine mapping of the SSC7 skatole QTL region. RESULTS A dense set of markers on SSC7 was obtained by whole genome re-sequencing of 24 Norwegian Landrace and 23 Duroc boars. Subsets of 126 and 157 SNPs were used for association analyses in Landrace and Duroc, respectively. Significant single markers associated with skatole spanned a large 4.4 Mb region from 75.9-80.3 Mb in Landrace, with the highest test scores found in a region between the genes NOVA1 and TGM1 (p < 0.001). The same QTL was obtained in Duroc and, although less significant, with associated SNPs spanning a 1.2 Mb region from 78.9-80.1 Mb (p < 0.01). The highest test scores in Duroc were found in genes of the granzyme family (GZMB and GZMH-like) and STXBP6. Haplotypes associated with levels of skatole were identified in Landrace but not in Duroc, and a haplotype block was found to explain 2.3% of the phenotypic variation for skatole. The SNPs in this region were not associated with levels of sex steroids. CONCLUSIONS Fine mapping of a QTL for skatole on SSC7 confirmed associations of this region with skatole levels in pigs. The QTL region was narrowed down to 4.4 Mb in Landrace and haplotypes explaining 2.3% of the phenotypic variance for skatole levels were identified. Results confirmed that sex steroids are not affected by this QTL region, making these markers attractive for selection against boar taint.
Collapse
Affiliation(s)
- Maren van Son
- Topigs Norsvin, Storhamargata 44, 2317, Hamar, Norway.
| | - Matthew P Kent
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P. O. Box 5003, 1432, Ås, Norway
| | - Harald Grove
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P. O. Box 5003, 1432, Ås, Norway
| | - Rahul Agarwal
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P. O. Box 5003, 1432, Ås, Norway
| | - Hanne Hamland
- Topigs Norsvin, Storhamargata 44, 2317, Hamar, Norway
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P. O. Box 5003, 1432, Ås, Norway
| | - Eli Grindflek
- Topigs Norsvin, Storhamargata 44, 2317, Hamar, Norway
| |
Collapse
|
31
|
Hanson B, Becker L, Hook K, Polcari I, Areaux RG, Maguiness S. Ectropion Improvement with Topical Tazarotene in Children with Lamellar Ichthyosis. Pediatr Dermatol 2017; 34:584-589. [PMID: 28815772 DOI: 10.1111/pde.13240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND/OBJECTIVES Lamellar ichthyosis (LI) is a well-described phenotypic subtype of autosomal recessive congenital ichthyosis (ARCI). The condition typically presents at birth with collodion membrane and leads to thick, plate-like scaling of the skin throughout the body, alopecia, and prominent ocular manifestations. Ocular complications include bilateral cicatricial ectropion and lagophthalmos. These ocular complications can lead to chronic exposure keratitis and in some cases corneal ulceration and blindness. No cure for ichthyosis exists. Treatment of ocular complications in LI includes surgical correction, systemic retinoids, and a variety of topical therapies such as emollients, keratolytics, and retinoids. METHODS Five children with LI cared for at our institution were identified and included. Patient age at the start of therapy ranged from 2 weeks to 9 years. Electronic medical records were reviewed and data from pediatric dermatologist and pediatric ophthalmologist visits were obtained. Data were collected before and after treatment of daily or twice-daily 0.05% to 0.1% tazarotene cream applied to the face and eyelids. RESULTS All patients had improvement in the degree of ectropion, with complete resolution in two of the five patients. The two patients with lagophthalmos at the time of tazarotene initiation experienced complete resolution. No adverse effects were reported. CONCLUSIONS Tazarotene cream appears to be effective in the management of ectropion and lagophthalmos in the setting of LI in children, even in the neonatal period.
Collapse
Affiliation(s)
- Brooke Hanson
- University of Minnesota Medical School, Minneapolis, Minnesota
| | - Lauren Becker
- Department of Dermatology, University of Minnesota, Minneapolis, Minnesota
| | - Kristen Hook
- Department of Dermatology, University of Minnesota, Minneapolis, Minnesota
| | - Ingrid Polcari
- Department of Dermatology, University of Minnesota, Minneapolis, Minnesota
| | - Raymond G Areaux
- Department of Ophthalmology, University of Minnesota, Minneapolis, Minnesota
| | - Sheilagh Maguiness
- Department of Dermatology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
32
|
Marukian NV, Hu RH, Craiglow BG, Milstone LM, Zhou J, Theos A, Kaymakcalan H, Akkaya DA, Uitto JJ, Vahidnezhad H, Youssefian L, Bayliss SJ, Paller AS, Boyden LM, Choate KA. Expanding the Genotypic Spectrum of Bathing Suit Ichthyosis. JAMA Dermatol 2017; 153:537-543. [PMID: 28403434 DOI: 10.1001/jamadermatol.2017.0202] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Bathing suit ichthyosis (BSI) is a rare congenital disorder of keratinization characterized by restriction of scale to sites of relatively higher temperature such as the trunk, with cooler areas remaining unaffected. Fewer than 40 cases have been reported in the literature. Bathing suit ichthyosis is caused by recessive, temperature-sensitive mutations in the transglutaminase-1 gene (TGM1). Clear genotype-phenotype correlations have been difficult to establish because several of the same TGM1 mutations have been reported in BSI and other forms of congenital ichthyosis. We identify novel and recurrent mutations in 16 participants with BSI. Objective To expand the genotypic spectrum of BSI, identifying novel TGM1 mutations in patients with BSI, and to use BSI genotypes to draw inferences about the temperature sensitivity of TGM1 mutations. Design, Setting, and Participants A total of 16 participants with BSI from 13 kindreds were identified from 6 academic medical centers. A detailed clinical history was obtained from each participant, including phenotypic presentation at birth and disease course. Each participant underwent targeted sequencing of TGM1. Main Outcomes and Measures Phenotypic and genotypic characteristics in these patients from birth onward. Results Of the 16 participants, 7 were male, and 9 were female (mean age, 12.6 years; range, 1-39 years). We found 1 novel TGM1 indel mutation (Ile469_Cys471delinsMetLeu) and 8 TGM1 missense mutations that to our knowledge have not been previously reported in BSI: 5 have been previously described in non-temperature-sensitive forms of congenital ichthyosis (Arg143Cys, Gly218Ser, Gly278Arg, Arg286Gln, and Ser358Arg), and 3 (Tyr374Cys, Phe495Leu, and Ser772Arg) are novel mutations. Three probands were homozygous for Arg264Trp, Arg286Gln, or Arg315Leu, indicating that these mutations are temperature sensitive. Seven of 10 probands with a compound heterozygous TGM1 genotype had a mutation at either arginine 307 or 315, providing evidence that mutations at these sites are temperature sensitive and highlighting the importance of these residues in the pathogenesis of BSI. Conclusions and Relevance Our findings expand the genotypic spectrum of BSI and the understanding of temperature sensitivity of TGM1 mutations. Increased awareness of temperature-sensitive TGM1 genotypes should aid in genetic counseling and provide insights into the pathophysiology of TGM1 ichthyoses, transglutaminase-1 enzymatic activity, and potential therapeutic approaches.
Collapse
Affiliation(s)
- Nareh V Marukian
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Rong-Hua Hu
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Brittany G Craiglow
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut2Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
| | - Leonard M Milstone
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Jing Zhou
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Amy Theos
- Department of Dermatology, University of Alabama School of Medicine, Birmingham
| | - Hande Kaymakcalan
- Department of Pediatrics, Istanbul Bilim University, Istanbul, Turkey
| | - Deniz A Akkaya
- Department of Dermatology, Koç University Hospital, Istanbul, Turkey6Department of Dermatology, V.K.F American Hospital of Istanbul, Istanbul, Turkey
| | - Jouni J Uitto
- Department of Dermatology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Hassan Vahidnezhad
- Department of Dermatology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Leila Youssefian
- Department of Dermatology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Susan J Bayliss
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Amy S Paller
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lynn M Boyden
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Keith A Choate
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut10Department of Genetics, Yale University School of Medicine, New Haven, Connecticut11Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
33
|
Young CA, Eckert RL, Adhikary G, Crumrine D, Elias PM, Blumenberg M, Rorke EA. Embryonic AP1 Transcription Factor Deficiency Causes a Collodion Baby-Like Phenotype. J Invest Dermatol 2017; 137:1868-1877. [PMID: 28526300 DOI: 10.1016/j.jid.2017.04.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 01/02/2023]
Abstract
AP1 transcription factors are important controllers of gene expression in the epidermis, and altered AP1 factor function can perturb keratinocyte proliferation and differentiation. However, our understanding of how AP1 signaling changes may underlie or exacerbate skin disease is limited. We have shown that inhibiting AP1 factor function in suprabasal adult epidermis leads to reduced filaggrin levels and to a phenotype that resembles the genetic disorder ichthyosis vulgaris. We now show that inhibiting AP1 factor function during development in embryonic epidermis produces marked phenotypic changes including reduced filaggrin mRNA and protein levels, compromised barrier function, marked ultrastructural change, and enhanced dehydration susceptibility that resembles the phenotype observed in the flaky tail mouse, a model for ichthyosis vulgaris. In addition, the AP1 factor-deficient newborn mice display a collodion membrane phenotype that is not observed in flaky tail mice or in newborn individuals with ichthyosis vulgaris but is present in other forms of ichthyosis. This mixed phenotype suggests the need for a better understanding of the possible role of filaggrin loss and AP1 transcription factor deficiency in ichthyoses and collodion membrane formation.
Collapse
Affiliation(s)
- Christina A Young
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Richard L Eckert
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Reproductive Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| | - Gautam Adhikary
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Debra Crumrine
- Dermatology Service, Veterans Affairs Medical Center, San Francisco and Department of Dermatology, University of California, San Francisco, California, USA
| | - Peter M Elias
- Dermatology Service, Veterans Affairs Medical Center, San Francisco and Department of Dermatology, University of California, San Francisco, California, USA
| | - Miroslav Blumenberg
- The R.O. Perelman Department of Dermatology, Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, New York, USA
| | - Ellen A Rorke
- Departments of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
34
|
Bastaki F, Mohamed M, Nair P, Saif F, Mustafa EM, Bizzari S, Al-Ali MT, Hamzeh AR. Summary of mutations underlying autosomal recessive congenital ichthyoses (ARCI) in Arabs with four novel mutations in ARCI-related genes from the United Arab Emirates. Int J Dermatol 2017; 56:514-523. [PMID: 28236338 DOI: 10.1111/ijd.13568] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/24/2016] [Accepted: 01/10/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Clinical and molecular heterogeneity is a prominent characteristic of congenital ichthyoses, with the involvement of numerous causative loci. Mutations in these loci feature in autosomal recessive congenital ichthyoses (ARCIs) quite variably, with certain genes/mutations being more frequently uncovered in particular populations. METHODS In this study, we used whole exome sequencing as well as direct Sanger sequencing to uncover four novel mutations in ARCI-related genes, which were found in families from the United Arab Emirates. In silico tools such as CADD and SIFT Indel were used to predict the functional consequences of these mutations. RESULTS The here-presented mutations occurred in three genes (ALOX12B, TGM1, ABCA12), and these are a mixture of missense and indel variants with damaging functional consequences on their encoded proteins. CONCLUSIONS This study presents an overview of the mutations that were found in ARCI-related genes in Arabs and discusses molecular and clinical details pertaining to the above-mentioned Emirati cases and their novel mutations with special emphasis on the resulting protein changes.
Collapse
Affiliation(s)
- Fatma Bastaki
- Pediatric Department, Latifa Hospital, Dubai Health Authority, Dubai, UAE
| | - Madiha Mohamed
- Pediatric Department, Latifa Hospital, Dubai Health Authority, Dubai, UAE
| | | | - Fatima Saif
- Pediatric Department, Latifa Hospital, Dubai Health Authority, Dubai, UAE
| | - Ethar M Mustafa
- Pediatric Department, Latifa Hospital, Dubai Health Authority, Dubai, UAE
| | | | | | | |
Collapse
|
35
|
NIPAL4 mutation c.527C˃A identified in Romanian patients with autosomal recessive congenital ichthyosis. REV ROMANA MED LAB 2016. [DOI: 10.1515/rrlm-2016-0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Introduction: Autosomal recessive congenital ichthyosis is a non-syndromic ichthyosis, with a genetic background of mutations in 9 genes. This case series presents clinical and paraclinical particularities of 3 Romanian ARCI patients with NIPAL4 mutation c.527C>A.
Material and methods: Three Caucasian patients were investigated, two sisters and an unrelated female patient, aged 47, 49, and 42 respectively. Skin anomalies were recorded and documented photographically; peripheral blood samples were harvested for DNA extraction and gene analysis. Skin biopsies were used for histological assessment, electron microscopy, and evaluation of in situ transglutaminase 1 activity.
Results: All patients presented with generalized ichthyosis, palmoplantar keratoderma, normal hair shafts, and significant oral manifestations. Natural evolution was relatively stable in all cases, without phenotype changing. Medical treatment with retinoids in patients 1 and 2 resulted in normalisation of the skin condition.
Histological samples showed hyperkeratosis, acanthosisand perivascular inflammatory infiltrates in the dermis. Positive findings of transglutaminase 1 in situ activity excluded TGM1 deficiency. Direct sequencing of amplicons revealed one homozygous mutation in exon 4, a c.527C>A missense mutation.
Conclusions: This is the first report of the hotspot mutation NIPAL4 c.527C>A in Romanian autosomal recessive congenital ichthyosis patients. The phenotype was similar to that reported in the literature, while transglutaminase 1 activity in situ assay detected differences in enzyme distribution between patients bearing the same mutation but different phenotypes. Based on the current data, NIPAL4 mutations are more frequent than TGM1 mutations in Romanian patients with autosomal recessive congenital ichthyosis.
Collapse
|
36
|
Role of molecular testing in the multidisciplinary diagnostic approach of ichthyosis. Orphanet J Rare Dis 2016; 11:4. [PMID: 26762237 PMCID: PMC4712481 DOI: 10.1186/s13023-016-0384-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 01/04/2016] [Indexed: 11/20/2022] Open
Abstract
Background The term ichthyosis describes a generalized disorder of cornification characterized by scaling and/or hyperkeratosis of different skin regions. Mutations in a broad group of genes related to keratinocyte differentiation and epidermal barrier function have been demonstrated to play a causative role in disease development. Ichthyosis may be classified in syndromic or non-syndromic forms based on the occurrence or absence of extracutaneous signs. In this setting, the diagnosis of ichthyosis is an integrated multistep process requiring a multidisciplinary approach in order to formulate the appropriate diagnostic hypothesis and to address the genetic testing. Methods Due to the complex features of the different ichthyoses and the high number of genes involved we have investigated a group of 64 patients, affected by syndromic and non-syndromic diseases, using Next Generation Sequencing as a new tool for the molecular diagnosis. Results Using this innovative molecular approach we were able to find pathogenic mutations in 53 out of 64 patients resulting in 82.8 % total detection rate. An interesting result from the analysis of the data is the high rate of novel sequence variations found compared to known mutations and the relevant rate of homozygous mutations. Conclusions The possibility to analyze a large number of genes associated with various diseases allows to study cases with phenotypes not well-determined, giving the opportunity to make new genotype-phenotype correlation. In some cases there were discrepancies between clinical features and histology or electron microscopy and only molecular analysis allowed to definitively resolve the diagnostic dilemma. The genetic diagnosis of ichthyosis leads to a more accurate and effective genetic counseling, allowing correct evaluation of the risk of recurrence, particularly in families with consanguineous background. Electronic supplementary material The online version of this article (doi:10.1186/s13023-016-0384-4) contains supplementary material, which is available to authorized users.
Collapse
|
37
|
Zhang SQ, Li CX, Gao XQ, Qiu WY, Chen Q, Li XM, Zhou X, Tian X, Tang ZP, Zhao T, Zhang F, Zhang XB. Identification and functional characterization of a novel transglutaminase 1 gene mutation associated with autosomal recessive congenital ichthyosis. Int J Dermatol 2015. [PMID: 26220141 DOI: 10.1111/ijd.12806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Autosomal recessive congenital ichthyosis (ARCI) is a group of genetically heterogeneous diseases. Mutations in transglutaminase (TGase) 1 gene (TGM1, OMIM 190195) have been implicated in ARCI. However, little is known about TGM1 mutations in the Chinese population, and no functional studies have investigated the biological effect of mutant TGM1 on human epidermal keratinocytes (HaCaT) cells. OBJECTIVES To identify the pathogenic mutations of TGM1 gene in two Chinese siblings with ARCI and gain insight into functional consequences of these mutations. METHODS Fifteen exons and flanking splice sites of TGM1 gene were amplified by polymerase chain reaction and then underwent bidirectional Sanger sequencing. The HaCaT cells were transfected with lentiviral vectors, which overexpressed either wild-type or mutant TGM1 cDNAs with deleted homeodomain. Cell proliferation and cell cycle progression were detected. The expression of cyclin D1, cyclin B1, CDK4, TGM1, K10, involucrin, and filaggrin proteins were investigated by Western blot analysis. RESULTS We found two compound heterozygous missense mutations (c.515C>T, R143C in exon 3 and c.759C>T, S212F in exon 4) in both siblings. HaCaT cells transfected with mutant TGM1 cDNAs displayed a lower growth rate and delayed S phase while overexpression of wild-type TGM1 cDNAs led to accelerated growth. HaCaT cells transfected with mutant TGM1 cDNAs displayed lower expression of differentiation markers such as involucrin and filaggrin. Our findings suggest that the compound heterozygous missense (c.515C>T, R143C) mutations in exon 3 and missense (c.759C>T, S212F) mutations in exon 4 result in the phenotype of ARCI. TGM1 mutations can suppress keratinocyte growth and cornified cell envelope formation.
Collapse
Affiliation(s)
- San-Quan Zhang
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
| | - Chang-Xing Li
- Department of Dermatology, Nanfang Hospital, South Medical University, Guangzhou, China.,Department of Dermatology, Dongguan Institute of Dermatology, Dongguan, China
| | - Xin-Qian Gao
- Department of Dermatology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Wen-Yuan Qiu
- Department of Dermatology, Guangdong Sian Hospital, Dongguan, Guangdong Province, China
| | - Quan Chen
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
| | - Xue-Mei Li
- Department of Dermatology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xin Zhou
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
| | - Xin Tian
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
| | - Zhi-Ping Tang
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
| | - Tian Zhao
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
| | - Fang Zhang
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
| | - Xi-Bao Zhang
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
| |
Collapse
|
38
|
AKBARI MT, ATAEI-KACHOUI M. Triallelic Inheritance of TGM1 and ALOXE3 Mutations Associated with Severe Phenotype of Ichtyosis in an Iranian Family - A Case Report. IRANIAN JOURNAL OF PUBLIC HEALTH 2015; 44:1004-7. [PMID: 26576379 PMCID: PMC4645748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Lamellar ichthyosis is one form of congenital autosomal recessive ichthyosis. To date, seven causative genes for ARCI have been identified. To understand further the genetic spectrum of the disease, we analyzed a four-generation Iranian family with ARCI that had observable inheritance. Exome sequencing data for one of the affected individuals with ichthyosis from a consanguineous Iranian family was analyzed. Potential candidate mutations were analyzed in additional family members to determine if the putative mutation segregated with disease status. A novel homozygous mutation (p.D414V) in TGM1 and rs3027232 in ALOXE3 gene in heterozygous form were identified which segregated with disease status in the family. Bioinformatic studies with Polyphen-2 and SIFT showed that these variants are damaging. We identified a possible triallelic inheritance in this study. Moreover, this paper illustrates how advances in genome sequencing technologies could be utilized to rapidly elucidate the molecular basis of inherited skin diseases which can be caused by mutations in multiple disease genes.
Collapse
Affiliation(s)
- Mohammad Taghi AKBARI
- Dept. of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran, Tehran Medical Genetics Laboratory, Taleghani Ave, Tehran, Iran,Corresponding Author:
| | | |
Collapse
|
39
|
Ortega-Recalde O, Moreno MB, Vergara JI, Fonseca DJ, Rojas RF, Mosquera H, Medina CL, Restrepo CM, Laissue P. A novel TGM1 mutation, leading to multiple splicing rearrangements, is associated with autosomal recessive congenital ichthyosis. Clin Exp Dermatol 2015; 40:757-60. [PMID: 25754682 DOI: 10.1111/ced.12627] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2014] [Indexed: 12/01/2022]
Abstract
Autosomal recessive congenital ichthyosis (ARCI) is a group of rare, clinically heterogeneous skin disorders that affect cornification. ARCI includes lamellar ichthyosis, congenital ichthyosiform erythroderma and harlequin ichthyosis. TGM1 mutations cause > 50% of ARCI cases in the USA. We report two siblings with ARCI. They were found to carry a novel aetiological TGM1 mutation, which leads to the synthesis of multiple abnormal transcripts. These molecules resulted from three independent mechanisms: intron retention, exon skipping and activation of expand cryptic splice sites. Taken together, our findings expand the known TGM1 mutation repertoire, and provide an insight into the molecular mechanisms leading to ARCI phenotypes. These results could be useful for genetic counselling and future potential genotype-phenotype correlations.
Collapse
Affiliation(s)
- O Ortega-Recalde
- Genetics Unit, GENIUROS Group, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - M B Moreno
- Genetics Unit, GENIUROS Group, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - J I Vergara
- Department of Dermatology, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia.,Dermatology Unit, Clínica Carlos Ardila Lulle, Bucaramanga, Colombia
| | - D J Fonseca
- Genetics Unit, GENIUROS Group, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia.,Department of Molecular Genetics, Genética Molecular de Colombia, Bogotá, Colombia
| | - R F Rojas
- Department of Dermatology, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia.,Dermatology Unit, Clínica Carlos Ardila Lulle, Bucaramanga, Colombia
| | - H Mosquera
- Department of Dermatology, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia.,Dermatology Unit, Clínica Carlos Ardila Lulle, Bucaramanga, Colombia
| | - C L Medina
- Department of Dermatology, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia.,Dermatology Unit, Clínica Carlos Ardila Lulle, Bucaramanga, Colombia
| | - C M Restrepo
- Genetics Unit, GENIUROS Group, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia.,Department of Molecular Genetics, Genética Molecular de Colombia, Bogotá, Colombia
| | - P Laissue
- Genetics Unit, GENIUROS Group, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia.,Department of Molecular Genetics, Genética Molecular de Colombia, Bogotá, Colombia
| |
Collapse
|
40
|
Abstract
Facial involvement represents a characteristic feature of a wide range of genodermatoses. Specific facial findings often help point to the correct diagnosis, which improves counseling and management. In particular, this can facilitate the identification and treatment of associated extracutaneous disease. The highly visible nature of facial lesions in genodermatoses and facial birthmarks can result in stigmatization and frequently leads to particular concern in patients and their family members. It is therefore critical for dermatologists to be aware of the broad spectrum of facial manifestations in genetic skin disease, especially when these findings have important implications with regard to monitoring and treatment. In this contribution, facial involvement in genodermatoses is divided into five morphologic categories based on the most prominent feature: Papules, scaling, photosensitivity/findings associated with aging (eg, telangiectasias, atrophy, lentigines), blisters/erosions, and birthmarks. Hopefully, this will provide a practical and clinically useful approach to a large and diverse assortment of genetic skin conditions.
Collapse
|
41
|
Liu JJ, Yuan YY, Zhang XQ, Li ZM, Xu YS, Gao SM, Cai JF, Shao XH, Lin XH, Li BX. Mutations of transglutaminase-1 in Chinese patients with autosomal recessive congenital ichthyosis: a case report with clinical and genetic analysis of Chinese cases reported in literature. Clin Exp Dermatol 2014; 40:56-62. [PMID: 25154629 DOI: 10.1111/ced.12410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2013] [Indexed: 11/30/2022]
Affiliation(s)
- J.-J. Liu
- First Affiliated Hospital of Wenzhou Medical University; Wenzhou Zhejiang China
| | - Y.-Y. Yuan
- First Affiliated Hospital of Wenzhou Medical University; Wenzhou Zhejiang China
| | - X.-Q. Zhang
- First Affiliated Hospital of Wenzhou Medical University; Wenzhou Zhejiang China
| | - Z.-M. Li
- First Affiliated Hospital of Wenzhou Medical University; Wenzhou Zhejiang China
| | - Y.-S. Xu
- First Affiliated Hospital of Wenzhou Medical University; Wenzhou Zhejiang China
| | - S.-M. Gao
- First Affiliated Hospital of Wenzhou Medical University; Wenzhou Zhejiang China
| | - J.-F. Cai
- First Affiliated Hospital of Wenzhou Medical University; Wenzhou Zhejiang China
| | - X.-H. Shao
- First Affiliated Hospital of Wenzhou Medical University; Wenzhou Zhejiang China
| | - X.-H. Lin
- First Affiliated Hospital of Wenzhou Medical University; Wenzhou Zhejiang China
| | - B.-X. Li
- First Affiliated Hospital of Wenzhou Medical University; Wenzhou Zhejiang China
| |
Collapse
|
42
|
Very mild lamellar ichthyosis with compound heterozygous TGM1 mutations including the novel missense mutation p.Leu693Phe. J Dermatol Sci 2013; 72:197-9. [DOI: 10.1016/j.jdermsci.2013.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/16/2013] [Accepted: 06/17/2013] [Indexed: 11/23/2022]
|
43
|
Aufenvenne K, Larcher F, Hausser I, Duarte B, Oji V, Nikolenko H, Del Rio M, Dathe M, Traupe H. Topical enzyme-replacement therapy restores transglutaminase 1 activity and corrects architecture of transglutaminase-1-deficient skin grafts. Am J Hum Genet 2013; 93:620-30. [PMID: 24055110 DOI: 10.1016/j.ajhg.2013.08.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 07/17/2013] [Accepted: 08/01/2013] [Indexed: 11/19/2022] Open
Abstract
Transglutaminase-1 (TG1)-deficient autosomal-recessive congenital ichthyosis (ARCI) is a rare and severe genetic skin disease caused by mutations in TGM1. It is characterized by collodion babies at birth, dramatically increased transepidermal water loss (TEWL), and lifelong pronounced scaling. The disease has a tremendous burden, including the problem of stigmatization. Currently, no therapy targeting the molecular cause is available, and the therapeutic situation is deplorable. In this study, we developed the basis for a causative therapy aiming at the delivery of the enzyme to the inner site of the keratinocytes' plasma membrane. We prepared sterically stabilized liposomes with encapsulated recombinant human TG1 (rhTG1) and equipped with a highly cationic lipopeptide vector to mediate cellular uptake. The liposomes overcame the problems of insufficient cutaneous delivery and membrane penetration and provided excellent availability and activity of rhTG1 in primary keratinocytes. To demonstrate the general feasibility of this therapeutic approach in a humanized context, we used a skin-humanized mouse model. Treatment with rhTG1 liposomes resulted in considerable improvement of the ichthyosis phenotype and in normalization of the regenerated ARCI skin: in situ monitoring showed a restoration of TG1 activity, and cholesterol clefts vanished ultrastructurally. Measurement of TEWL revealed a restoration of epidermal barrier function. We regard this aspect as a major advance over available nonspecific approaches making use of, for example, retinoid creams. We conclude that this topical approach is a promising strategy for restoring epidermal integrity and barrier function and provides a causal cure for individuals with TG1 deficiency.
Collapse
Affiliation(s)
- Karin Aufenvenne
- Department of Dermatology, University Hospital Münster, 48149 Münster, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Autosomal recessive congenital ichthyosis. ACTAS DERMO-SIFILIOGRAFICAS 2013; 104:270-84. [PMID: 23562412 DOI: 10.1016/j.adengl.2011.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/13/2011] [Indexed: 12/15/2022] Open
Abstract
The term autosomal recessive congenital ichthyosis (ARCI) refers to a group of rare disorders of keratinization classified as nonsyndromic forms of ichthyosis. This group was traditionally divided into lamellar ichthyosis (LI) and congenital ichthyosiform erythroderma (CIE) but today it also includes harlequin ichthyosis, self-healing collodion baby, acral self-healing collodion baby, and bathing suit ichthyosis. The combined prevalence of LI and CIE has been estimated at 1 case per 138 000 to 300 000 population. In some countries or regions, such as Norway and the coast of Galicia, the prevalence may be higher due to founder effects. ARCI is genetically highly heterogeneous and has been associated with 6 genes to date: TGM1, ALOXE3, ALOX12B, NIPAL4, CYP4F22, and ABCA12. In this article, we review the current knowledge on ARCI, with a focus on clinical, histological, ultrastructural, genetic, molecular, and treatment-related aspects.
Collapse
|
46
|
Richard G, Choate K, Milstone L, Bale S. Management of ichthyosis and related conditions gene-based diagnosis and emerging gene-based therapy. Dermatol Ther 2013; 26:55-68. [PMID: 23384021 DOI: 10.1111/j.1529-8019.2012.01553.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Knowledge of the molecular basis of many inherited diseases has grown exponentially during the past decade. Inherited skin diseases, including the ichthyoses and related conditions, benefited from that explosion of information, much of which has relevance for the clinical setting. In this section, the authors review the genes now known to be involved in ichthyosis, the methods for detecting mutations in those genes in the clinical diagnostic laboratory, options for using that information for diagnosis and pregnancy/family planning decisions, and current and future therapies based on the knowledge of the molecular basis of the ichthyosis.
Collapse
|
47
|
Targeted Sequence Capture and High-Throughput Sequencing in the Molecular Diagnosis of Ichthyosis and Other Skin Diseases. J Invest Dermatol 2013; 133:573-6. [DOI: 10.1038/jid.2012.332] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Abstract
Lamellar ichthyosis (LI, MIM# 242300) is a severe autosomal recessive genodermatosis present at birth in the form of collodion membrane covering the neonate. Mutations in the TGM1 gene encoding transglutaminase-1 are a major cause of LI. In this study molecular analysis of two LI Tunisian patients revealed a common nonsense c.788G>A mutation in TGM1 gene. The identification of a cluster of LI pedigrees carrying the c.788G>A mutation in a specific area raises the question of the origin of this mutation from a common ancestor. We carried out a haplotype-based analysis by way of genotyping 4 microsatellite markers and 8 SNPs flanking and within the TGM1 gene spanning a region of 6 Mb. Haplotype reconstruction from genotypes of all members of the affected pedigrees indicated that all carriers for the mutation c.788G>A harbored the same haplotype, indicating common ancestor. The finding of a founder effect in a rare disease is essential for the genetic diagnosis and the genetic counselling of affected LI pedigrees in Tunisia.
Collapse
|
49
|
Klöck C, Khosla C. Regulation of the activities of the mammalian transglutaminase family of enzymes. Protein Sci 2012; 21:1781-91. [PMID: 23011841 DOI: 10.1002/pro.2162] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 01/31/2023]
Abstract
Mammalian transglutaminases catalyze post-translational modifications of glutamine residues on proteins and peptides through transamidation or deamidation reactions. Their catalytic mechanism resembles that of cysteine proteases. In virtually every case, their enzymatic activity is modulated by elaborate strategies including controlled gene expression, allostery, covalent modification, and proteolysis. In this review, we focus on our current knowledge of post-translational regulation of transglutaminase activity by physiological as well as synthetic allosteric agents. Our discussion will primarily focus on transglutaminase 2, but will also compare and contrast its regulation with Factor XIIIa as well as transglutaminases 1 and 3. Potential structure-function relationships of known mutations in human transglutaminases are analyzed.
Collapse
Affiliation(s)
- Cornelius Klöck
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
50
|
Long-term faithful recapitulation of transglutaminase 1-deficient lamellar ichthyosis in a skin-humanized mouse model, and insights from proteomic studies. J Invest Dermatol 2012; 132:1918-21. [PMID: 22437313 PMCID: PMC3375344 DOI: 10.1038/jid.2012.65] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|