1
|
Cole JJ, Ferner RE, Gutmann DH. Neurofibromatosis type 1. ROSENBERG'S MOLECULAR AND GENETIC BASIS OF NEUROLOGICAL AND PSYCHIATRIC DISEASE 2025:231-249. [DOI: 10.1016/b978-0-443-19176-3.00017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Chelleri C, Brolatti N, De Marco P, Ognibene M, Diana MC, Madia F, Duca MD, Santangelo A, Capra V, Striano P, Zara F, Scala M. Novel causative variants in Legius syndrome: SPRED1 Genotype spectrum expansion. Am J Med Genet A 2024; 194:e63824. [PMID: 39031930 DOI: 10.1002/ajmg.a.63824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/16/2024] [Accepted: 07/07/2024] [Indexed: 07/22/2024]
Abstract
Legius syndrome, commonly referred to as SPRED1-related neurofibromatosis type 1-like syndrome, is a rare autosomal dominant disorder characterized by café-au-lait macules, freckling, lipomas, macrocephaly, and heterogeneous neurodevelopmental manifestations, including a different degree of learning difficulties. Although a partial clinical overlap exists with neurofibromatosis type 1 (NF1), Legius syndrome is distinguished by its genetic etiology and the absence of neurofibromas, indicating an inherent lack of tumor risk. The SPRED1 gene encodes the Sprouty-related protein with an EVH1 domain 1 (SPRED1), a negative regulator of the RAS-MAPK signaling pathway with a crucial role in cellular growth and development. Despite various genetic variants and genomic deletions associated with Legius syndrome, the full genetic spectrum of this condition remains elusive. In this study, we investigated the underlying genetic etiology in a cohort of patients presenting with typical manifestations of Legius syndrome using a custom Next Generation Sequencing (NGS) panel and Multiplex Ligation-Dependent Probe Amplification (MLPA) for NF1 and SPRED1. We identified 12 novel SPRED1 damaging variants segregating with the phenotype in all families. These rare variants affect conserved residues of the protein and are predicted damaging according to in silico tools. No clear genotype-phenotype correlations could be observed in the current cohort and previously reported patients, underscoring the heterogeneous genotype spectrum of this condition. Our findings expand the understanding of SPRED1 variants causing Legius syndrome and underscore the importance of comprehensively characterizing the genetic landscape of this disorder. Despite the absence of clear genotype-phenotype correlations, elucidating the genetic etiology of Legius syndrome is pertinent for facilitating accurate diagnosis, genetic counseling, and therapeutic interventions.
Collapse
Affiliation(s)
- Cristina Chelleri
- Pediatric Neurology and Neuromuscular Disorders Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Noemi Brolatti
- Pediatric Neurology and Neuromuscular Disorders Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Patrizia De Marco
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marzia Ognibene
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maria Cristina Diana
- Pediatric Neurology and Neuromuscular Disorders Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Madia
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Di Duca
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Santangelo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Valeria Capra
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Neuromuscular Disorders Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Zara
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marcello Scala
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
3
|
Kim J, Ney G, Frone MN, Haley JS, Mirshahi UL, Astiazaran-Symonds E, Shandrina M, Urban G, Rao HS, Stahl R, Golden A, Yohe ME, Gross AM, Ding Y, Carey DJ, Gelb BD, Stewart DR. Genomic ascertainment to quantify prevalence and cancer risk in adults with pathogenic and likely pathogenic germline variants in RASopathy genes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.09.24314324. [PMID: 39802765 PMCID: PMC11722494 DOI: 10.1101/2024.10.09.24314324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Purpose Genomic ascertainment of electronic health record-linked exome data in two large biobanks was used to quantify germline pathogenic/likely pathogenic (P/LP) variant prevalence, cancer prevalence, and survival in adults with non-NF1 RAS/mitogen-activated protein kinase genes (RASopathies). Patients and Methods Germline RASopathy variants were examined from adult participants in UK Biobank (UKBB; n=469,802), Geisinger MyCode (n=167,050) and Mount Sinai BioMe (n=30,470). Variants were classified as per American College of Medical Genetics/Association for Molecular Pathology criteria and reviewed by a RASopathy variant expert. Heterozygotes harbored a RASopathy pathogenic/likely pathogenic variant; controls harbored wild type or benign/likely benign RASopathy variation. To distinguish germline variants from clonal hematopoiesis, benign tissues were Sanger sequenced. Tumor phenotype and demographic data were retrieved from MyCode and UKBB. Results Pathogenic variants in Noonan syndrome-associated genes (excluding known Noonan syndrome with multiple lentigines variants) were the most common with an estimated prevalence that ranged between 1:1,772-1:3,330 in the three cohorts. Pathogenic variants in cardiofaciocutaneous syndrome-associated genes had an estimated prevalence of 1:41,762-1:55,683 in two cohorts. Pathogenic variants in SPRED1 (Legius syndrome) were more frequent in UKBB (1:19,567 [95%CI: 1:13,150-1:29,116]) compared to MyCode (1:41,762 [95%CI: 1:15,185-1:130,367]). In SPRED1-heterozygotes, cancer prevalence was significantly increased in UKBB (OR:3.8 [95% CI: 2.48-8.64]; p=1.2×10-3) but not in the MyCode cohort. Pathogenic variants in HRAS (Costello syndrome) were not identified. In MyCode and UKBB cohorts, there was no significant increase in cancer prevalence in individuals with Noonan-, CBL- and CFC syndrome-associated pathogenic variants. Conclusion Genomic ascertainment from two large biobanks did not show evidence of elevated cancer risk in adult Noonan syndrome heterozygotes. There may be an increased cancer risk for adult SPRED1 heterozygotes.
Collapse
Affiliation(s)
- Jung Kim
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Gina Ney
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Megan N Frone
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Jeremy S Haley
- Department of Genomic Health, Geisinger, Danville, PA, USA
| | | | | | - Mariya Shandrina
- Mindich Child Health and Development Institute and the Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gretchen Urban
- Department of Genomic Health, Geisinger, Danville, PA, USA
| | - H Shanker Rao
- Department of Genomic Health, Geisinger, Danville, PA, USA
| | - Rick Stahl
- Department of Genomic Health, Geisinger, Danville, PA, USA
| | - Alicia Golden
- Department of Genomic Health, Geisinger, Danville, PA, USA
| | - Marielle E Yohe
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Andrea M Gross
- Pediatric Oncology Branch, National Cancer Institute, Center for Cancer Research, Bethesda, MD, USA
| | - Yi Ding
- Department of Genomic Health, Geisinger, Danville, PA, USA
| | - David J Carey
- Department of Genomic Health, Geisinger, Danville, PA, USA
| | - Bruce D Gelb
- Mindich Child Health and Development Institute and the Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| |
Collapse
|
4
|
Nagano H, Ohyama S, Sato A, Igarashi J, Yamamoto T, Kadoya M, Kobayashi M. Jejunal gastrointestinal stromal tumor that developed in a patient with neurofibromatosis type 1: a case report. Diagn Pathol 2023; 18:110. [PMID: 37789344 PMCID: PMC10546696 DOI: 10.1186/s13000-023-01398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is known to be associated with the frequent occurrence of unique gastrointestinal stromal tumors (GISTs), preferably occurring in the small intestine, with no mutations in the c-kit proto-oncogene or platelet-derived growth factor receptor-alpha (PDGFRA), with a high tendency for multifocal development, indolent nature, with low proliferation activity and favorable prognosis. CASE PRESENTATION A woman in her forties visited her local doctor complaining of menstrual pain; a large mass was detected in her lower abdomen, and she was referred to our hospital. The patient had hundreds of skin warts and café au lait spots. The patient's mother had been diagnosed with type 1 neurofibromatosis. The patient met the diagnostic criteria for NF1 and was diagnosed with NF1. Ultrasonography showed a large heterogeneous cystic mass with various echo patterns, solid compartments and multiple septations. Magnetic resonance imaging showed a multilocular cystic mass with liquid content exhibiting various intensities, including that of blood. A small round solid mass was also observed close to the cystic tumor. Contrast-enhanced computed tomography showed that the round solid mass showed strong enhancement in the early phase, unlike the cystic tumor component. Open laparotomy revealed a multicystic exophytic tumor measuring 11.5 cm originating from the jejunal wall, 20 cm distal to the duodenojejunal flexure. A solid tumor measuring 2.1 cm was also found on the anal side of the large tumor. We resected the short segment of the jejunum, including the two lesions. Microscopic findings revealed that the cystic and solid tumors consisted of spindle-shaped tumor cells showing little atypia with a fascicular or bundle arrangement. Nuclear mitosis was scarce. Immunostaining of the tumor cells showed positive staining for KIT and DOG1 and negative staining for S100 and desmin. The NF1 patient was diagnosed with multiple GISTs accompanied by intratumoral hemorrhagic denaturation arising from the jejunum. The TNM staging was pT4N0M0, stage IIIA. CONCLUSION We report a case of GISTs associated with NF1 that showed a jejunal origin, multifocal development and few mitotic figures. The recurrence risk, survival prognosis and need for adjuvant chemotherapy, particularly in cases where the initial GIST exhibits a very indolent pathology in NF1-related GISTs, remain to be elucidated.
Collapse
Affiliation(s)
- Hideki Nagano
- Department of Surgery, Marunouchi Hospital, 1-7-45, Nagisa Matsumoto, Nagano, 390-0841, Japan.
| | - Shigekazu Ohyama
- Department of Surgery, Marunouchi Hospital, 1-7-45, Nagisa Matsumoto, Nagano, 390-0841, Japan
| | - Atsushi Sato
- Department of Surgery, Marunouchi Hospital, 1-7-45, Nagisa Matsumoto, Nagano, 390-0841, Japan
| | - Jun Igarashi
- Department of Surgery, Marunouchi Hospital, 1-7-45, Nagisa Matsumoto, Nagano, 390-0841, Japan
| | - Tomoko Yamamoto
- Department of Surgery, Marunouchi Hospital, 1-7-45, Nagisa Matsumoto, Nagano, 390-0841, Japan
| | - Masumi Kadoya
- Department of Radiology, Marunouchi Hospital, Matsumoto Nagano, Japan
| | - Mikiko Kobayashi
- Department of Pathology, Marunouchi Hospital, Matsumoto Nagano, Japan
| |
Collapse
|
5
|
Das S, Idate R, Lana SE, Regan DP, Duval DL. Integrated analysis of canine soft tissue sarcomas identifies recurrent mutations in TP53, KMT genes and PDGFB fusions. Sci Rep 2023; 13:10422. [PMID: 37369741 PMCID: PMC10300023 DOI: 10.1038/s41598-023-37266-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Soft tissue sarcomas (STS) are a heterogenous group of mesenchymal tumors representing over 50 distinct types with overlapping histological features and non-specific anatomical locations. Currently, localized sarcomas are treated with surgery + / - radiation in both humans and dogs with few molecularly targeted therapeutic options. However, to improve precision-based cancer therapy through trials in pet dogs with naturally occurring STS tumors, knowledge of genomic profiling and molecular drivers in both species is essential. To this purpose, we sought to characterize the transcriptomic and genomic mutation profiles of canine STS subtypes (fibrosarcoma, undifferentiated pleomorphic sarcoma, and peripheral nerve sheath tumors), by leveraging RNAseq, whole exome sequencing, immunohistochemistry, and drug assays. The most common driver mutations were in cell cycle/DNA repair (31%, TP53-21%) and chromatin organization/binding (41%, KMT2D-21%) genes. Similar to a subset of human sarcomas, we identified fusion transcripts of platelet derived growth factor B and collagen genes that predict sensitivity to PDGFR inhibitors. Transcriptomic profiling grouped these canine STS tumors into 4 clusters, one PNST group (H1), and 3 FSA groups selectively enriched for extracellular matrix interactions and PDFGB fusions (H2), homeobox transcription factors (H3), and elevated T-cell infiltration (H4). This multi-omics approach provides insights into canine STS sub-types at a molecular level for comparison to their human counterparts, to improve diagnosis, and may provide additional targets for chemo- and immuno-therapy.
Collapse
Affiliation(s)
- Sunetra Das
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523, USA
| | - Rupa Idate
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523, USA
| | - Susan E Lana
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523, USA
| | - Daniel P Regan
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Dawn L Duval
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523, USA.
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
6
|
D’Antona L, Amato R, Brescia C, Rocca V, Colao E, Iuliano R, Blazer-Yost BL, Perrotti N. Kinase Inhibitors in Genetic Diseases. Int J Mol Sci 2023; 24:ijms24065276. [PMID: 36982349 PMCID: PMC10048847 DOI: 10.3390/ijms24065276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Over the years, several studies have shown that kinase-regulated signaling pathways are involved in the development of rare genetic diseases. The study of the mechanisms underlying the onset of these diseases has opened a possible way for the development of targeted therapies using particular kinase inhibitors. Some of these are currently used to treat other diseases, such as cancer. This review aims to describe the possibilities of using kinase inhibitors in genetic pathologies such as tuberous sclerosis, RASopathies, and ciliopathies, describing the various pathways involved and the possible targets already identified or currently under study.
Collapse
Affiliation(s)
- Lucia D’Antona
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
| | - Rosario Amato
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
| | - Carolina Brescia
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
| | - Valentina Rocca
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
- Department of Experimental and Clinical Medicine, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
| | - Emma Colao
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
| | - Rodolfo Iuliano
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
| | - Bonnie L. Blazer-Yost
- Department of Biology, Indiana University Purdue University, Indianapolis, IN 46202, USA
| | - Nicola Perrotti
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
- Correspondence:
| |
Collapse
|
7
|
Integrated analysis of canine soft tissue sarcomas identifies recurrent mutations in TP53, KMT genes and PDGFB fusions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.522911. [PMID: 36711648 PMCID: PMC9882013 DOI: 10.1101/2023.01.06.522911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Canine soft tissue sarcomas (STS) are a heterogenous group of malignant tumors arising from mesenchymal cells of soft tissues. This simplified collective of tumors most commonly arise from subcutaneous tissues, are treated similar clinically, and conventionally exclude other sarcomas with more definitive anatomical, histological, or biological features. Histologically, canine STS sub-types are difficult to discern at the light microscopic level due to their overlapping features. Thus, genomic, and transcriptomic profiling of canine STS may prove valuable in differentiating the diverse sub-types of mesenchymal neoplasms within this group. To this purpose we sought to characterize the transcript expression and genomic mutation profiles of canine STS. To delineate transcriptomic sub-types, hierarchical clustering was used to identify 4 groups with district expression profiles. Using the RNAseq data, we identified three samples carrying driver fusions of platelet derived growth factor B ( PDGFB ) and collagen genes. Sensitivity to imatinib was evaluated in a canine STS cell line also bearing a PDGFB fusion. Using whole exome sequencing, recurrent driver variants were identified in the cancer genes KMT2D (21% of the samples) and TP53 (21%) along with copy number losses of RB1 and CDKN2A. Gene amplifications and resulting transcript increases were identified in genes on chromosomes 13, 14, and 36. A subset of STS was identified with high T-cell infiltration. This multi-omics approach has defined canine STS sub-types at a molecular level for comparison to their human counterparts, to improve diagnosis, and may provide additional targets for therapy.
Collapse
|
8
|
Contribution of whole genome sequencing in the molecular diagnosis of mosaic partial deletion of the NF1 gene in neurofibromatosis type 1. Hum Genet 2023; 142:1-9. [PMID: 35941319 DOI: 10.1007/s00439-022-02476-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/19/2022] [Indexed: 01/18/2023]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant disease with complete penetrance but highly variable expressivity. In most patients, Next Generation Sequencing (NGS) technologies allow the identification of a loss-of-function pathogenic variant in the NF1 gene, a negative regulator of the RAS-MAPK pathway. We describe the 5-year diagnosis wandering of a patient with a clear NF1 clinical diagnosis, but no molecular diagnosis using standard molecular technologies. The patient presented with a typical NF1 phenotype but NF1 targeted NGS, NF1 transcript analysis, MLPA, and array comparative genomic hybridization failed to reveal a genetic aberration. After 5 years of unsuccessful investigations, trio WGS finally identified a de novo mosaic (VAF ~ 14%) 24.6 kb germline deletion encompassing the promoter and first exon of NF1. This case report illustrates the relevance of WGS to detect structural variants including copy number variants that would be missed by alternative approaches. The identification of the causal pathogenic variant allowed a tailored genetic counseling with a targeted non-invasive prenatal diagnosis by detecting the deletion in plasmatic cell-free DNA from the proband's pregnant partner. This report clearly highlights the need to make WGS a clinically accessible test, offering a tremendous opportunity to identify a molecular diagnosis for otherwise unsolved cases.
Collapse
|
9
|
Mo J, Moye SL, McKay RM, Le LQ. Neurofibromin and suppression of tumorigenesis: beyond the GAP. Oncogene 2022; 41:1235-1251. [PMID: 35066574 PMCID: PMC9063229 DOI: 10.1038/s41388-021-02156-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disease and one of the most common inherited tumor predisposition syndromes, affecting 1 in 3000 individuals worldwide. The NF1 gene encodes neurofibromin, a large protein with RAS GTP-ase activating (RAS-GAP) activity, and loss of NF1 results in increased RAS signaling. Neurofibromin contains many other domains, and there is considerable evidence that these domains play a role in some manifestations of NF1. Investigating the role of these domains as well as the various signaling pathways that neurofibromin regulates and interacts with will provide a better understanding of how neurofibromin acts to suppress tumor development and potentially open new therapeutic avenues. In this review, we discuss what is known about the structure of neurofibromin, its interactions with other proteins and signaling pathways, its role in development and differentiation, and its function as a tumor suppressor. Finally, we discuss the latest research on potential therapeutics for neurofibromin-deficient neoplasms.
Collapse
Affiliation(s)
- Juan Mo
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Stefanie L Moye
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Renee M McKay
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- UTSW Comprehensive Neurofibromatosis Clinic, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- O'Donnell Brain Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
| |
Collapse
|
10
|
Kehrer-Sawatzki H, Cooper DN. Challenges in the diagnosis of neurofibromatosis type 1 (NF1) in young children facilitated by means of revised diagnostic criteria including genetic testing for pathogenic NF1 gene variants. Hum Genet 2021; 141:177-191. [PMID: 34928431 PMCID: PMC8807470 DOI: 10.1007/s00439-021-02410-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/03/2021] [Indexed: 12/21/2022]
Abstract
Neurofibromatosis type 1 (NF1) is the most frequent disorder associated with multiple café-au-lait macules (CALM) which may either be present at birth or appear during the first year of life. Other NF1-associated features such as skin-fold freckling and Lisch nodules occur later during childhood whereas dermal neurofibromas are rare in young children and usually only arise during early adulthood. The NIH clinical diagnostic criteria for NF1, established in 1988, include the most common NF1-associated features. Since many of these features are age-dependent, arriving at a definitive diagnosis of NF1 by employing these criteria may not be possible in infancy if CALM are the only clinical feature evident. Indeed, approximately 46% of patients who are diagnosed with NF1 later in life do not meet the NIH diagnostic criteria by the age of 1 year. Further, the 1988 diagnostic criteria for NF1 are not specific enough to distinguish NF1 from other related disorders such as Legius syndrome. In this review, we outline the challenges faced in diagnosing NF1 in young children, and evaluate the utility of the recently revised (2021) diagnostic criteria for NF1, which include the presence of pathogenic variants in the NF1 gene and choroidal anomalies, for achieving an early and accurate diagnosis.
Collapse
Affiliation(s)
- Hildegard Kehrer-Sawatzki
- Institute of Human Genetics, University Hospital Ulm, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - David N Cooper
- Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| |
Collapse
|
11
|
Fowlkes JL, Thrailkill KM, Bunn RC. RASopathies: The musculoskeletal consequences and their etiology and pathogenesis. Bone 2021; 152:116060. [PMID: 34144233 PMCID: PMC8316423 DOI: 10.1016/j.bone.2021.116060] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 01/07/2023]
Abstract
The RASopathies comprise an ever-growing number of clinical syndromes resulting from germline mutations in components of the RAS/MAPK signaling pathway. While multiple organs and tissues may be affected by these mutations, this review will focus on how these mutations specifically impact the musculoskeletal system. Herein, we review the genetics and musculoskeletal phenotypes of these syndromes in humans. We discuss how mutations in the RASopathy syndromes have been studied in translational mouse models. Finally, we discuss how signaling molecules within the RAS/MAPK pathway are involved in normal and abnormal bone biology in the context of osteoblasts, osteoclasts and chondrocytes.
Collapse
Affiliation(s)
- John L Fowlkes
- University of Kentucky Barnstable Brown Diabetes Center, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America.
| | - Kathryn M Thrailkill
- University of Kentucky Barnstable Brown Diabetes Center, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - R Clay Bunn
- University of Kentucky Barnstable Brown Diabetes Center, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| |
Collapse
|
12
|
Revidierte Diagnosekriterien für die Neurofibromatose Typ 1 (NF1) ermöglichen eine frühe präzise differenzialdiagnostische Abgrenzung zu anderen RASopathien und erleichtern die Diagnose. Monatsschr Kinderheilkd 2021. [DOI: 10.1007/s00112-021-01323-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Zusammenfassung
Hintergrund
Die Neurofibromatose Typ 1 (NF1) ist eines der häufigsten erblichen Tumorprädispositionssyndrome und zählt zu den RASopathien, einer Gruppe von Erkrankungen mit überlappender Symptomatik, die durch Störungen des RAS-vermittelten Signaltransduktionsweges entstehen. Die diagnostischen Kriterien für NF1 sind 1988 definiert worden. Neue klinische und genetische Erkenntnisse erforderten eine Revision dieser Kriterien. Besonders im frühen Kindesalter ermöglichen die NF1-Diagnosekriterien von 1988 häufig noch keine Diagnose der NF1 und keine differenzialdiagnostische Abgrenzung zu anderen RASopathien wie dem Legius-Syndrom.
Methoden
Es erfolgte eine selektive Literaturrecherche zu Genetik und Symptomatik der NF1. Die Autoren nahmen an einer Delphi-Methode zur Revision der NF1-Diagnosekriterien durch ein internationales Expertengremium teil. Es wurden hierbei auch erstmalig die Diagnosekriterien für das Legius-Syndrom sowie für Mosaikformen beider Erkrankungen erstellt.
Ergebnisse
Die NF1-Diagnosekriterien wurden überarbeitet; dabei wurden neue klinische Merkmale wie choroidale Anomalien aufgenommen, aber auch genetische Befunde wie der Nachweis pathogener NF1-Genvarianten.
Diskussion
Mit den revidierten NF1-Diagnosekriterien und den neu erstellten Diagnosekriterien für das Legius-Syndrom ist es nun möglich, auch bei Kindern die Diagnose einer NF1 mit hoher Sensitivität und Spezifität frühzeitig zu stellen. Diese Diagnosekriterien ermöglichen eine genaue differenzialdiagnostische Abgrenzung von anderen Erkrankungen mit phänotypischen Überlappungen zur NF1, was eine frühe Risikostratifizierung und somit eine zielgerichtete Behandlung und Betreuung der Patienten ermöglicht.
Collapse
|
13
|
Longo JF, Carroll SL. The RASopathies: Biology, genetics and therapeutic options. Adv Cancer Res 2021; 153:305-341. [PMID: 35101235 DOI: 10.1016/bs.acr.2021.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The RASopathies are a group of genetic diseases in which the Ras/MAPK signaling pathway is inappropriately activated as a result of mutations in genes encoding proteins within this pathway. As their causative mutations have been identified, this group of diseases has expanded to include neurofibromatosis type 1 (NF1), Legius syndrome, Noonan syndrome, CBL syndrome, Noonan syndrome-like disorder with loose anagen hair, Noonan syndrome with multiple lentigines, Costello syndrome, cardiofaciocutaneous syndrome, gingival fibromatosis and capillary malformation-arteriovenous malformation syndrome. Many of these genetic disorders share clinical features in common such as abnormal facies, short stature, varying degrees of cognitive impairment, cardiovascular abnormalities, skeletal abnormalities and a predisposition to develop benign and malignant neoplasms. Others are more dissimilar, even though their mutations are in the same gene that is mutated in a different RASopathy. Here, we describe the clinical features of each RASopathy and contrast them with the other RASopathies. We discuss the genetics of these disorders, including the causative mutations for each RASopathy, the impact that these mutations have on the function of an individual protein and how this dysregulates the Ras/MAPK signaling pathway. As several of these individual disorders are genetically heterogeneous, we also consider the different genes that can be mutated to produce disease with the same phenotype. We also discuss how our growing understanding of dysregulated Ras/MAPK signaling had led to the development of new therapeutic agents and what work will be critically important in the future to improve the lives of patients with RASopathies.
Collapse
Affiliation(s)
- Jody Fromm Longo
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
14
|
Borrie SC, Plasschaert E, Callaerts-Vegh Z, Yoshimura A, D'Hooge R, Elgersma Y, Kushner SA, Legius E, Brems H. MEK inhibition ameliorates social behavior phenotypes in a Spred1 knockout mouse model for RASopathy disorders. Mol Autism 2021; 12:53. [PMID: 34311771 PMCID: PMC8314535 DOI: 10.1186/s13229-021-00458-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/12/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND RASopathies are a group of disorders that result from mutations in genes coding for proteins involved in regulating the Ras-MAPK signaling pathway, and have an increased incidence of autism spectrum disorder (ASD). Legius syndrome is a rare RASopathy caused by loss-of-function mutations in the SPRED1 gene. The patient phenotype is similar to, but milder than, Neurofibromatosis type 1-another RASopathy caused by loss-of-function mutations in the NF1 gene. RASopathies exhibit increased activation of Ras-MAPK signaling and commonly manifest with cognitive impairments and ASD. Here, we investigated if a Spred1-/- mouse model for Legius syndrome recapitulates ASD-like symptoms, and whether targeting the Ras-MAPK pathway has therapeutic potential in this RASopathy mouse model. METHODS We investigated social and communicative behaviors in Spred1-/- mice and probed therapeutic mechanisms underlying the observed behavioral phenotypes by pharmacological targeting of the Ras-MAPK pathway with the MEK inhibitor PD325901. RESULTS Spred1-/- mice have robust increases in social dominance in the automated tube test and reduced adult ultrasonic vocalizations during social communication. Neonatal ultrasonic vocalization was also altered, with significant differences in spectral properties. Spred1-/- mice also exhibit impaired nesting behavior. Acute MEK inhibitor treatment in adulthood with PD325901 reversed the enhanced social dominance in Spred1-/- mice to normal levels, and improved nesting behavior in adult Spred1-/- mice. LIMITATIONS This study used an acute treatment protocol to administer the drug. It is not known what the effects of longer-term treatment would be on behavior. Further studies titrating the lowest dose of this drug that is required to alter Spred1-/- social behavior are still required. Finally, our findings are in a homozygous mouse model, whereas patients carry heterozygous mutations. These factors should be considered before any translational conclusions are drawn. CONCLUSIONS These results demonstrate for the first time that social behavior phenotypes in a mouse model for RASopathies (Spred1-/-) can be acutely reversed. This highlights a key role for Ras-MAPK dysregulation in mediating social behavior phenotypes in mouse models for ASD, suggesting that proper regulation of Ras-MAPK signaling is important for social behavior.
Collapse
Affiliation(s)
- Sarah C Borrie
- Department of Human Genetics, KU Leuven, O&N1 Herestraat 49, Box 607, 3000, Leuven, Belgium
| | - Ellen Plasschaert
- Department of Human Genetics, KU Leuven, O&N1 Herestraat 49, Box 607, 3000, Leuven, Belgium
| | | | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Rudi D'Hooge
- Laboratory for Biological Psychology, KU Leuven, Leuven, Belgium
| | - Ype Elgersma
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Steven A Kushner
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Eric Legius
- Department of Human Genetics, KU Leuven, O&N1 Herestraat 49, Box 607, 3000, Leuven, Belgium
| | - Hilde Brems
- Department of Human Genetics, KU Leuven, O&N1 Herestraat 49, Box 607, 3000, Leuven, Belgium.
| |
Collapse
|
15
|
RASopathies: from germline mutations to somatic and multigenic diseases. Biomed J 2021; 44:422-432. [PMID: 34175492 PMCID: PMC8514848 DOI: 10.1016/j.bj.2021.06.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
The RAS-RAF-MEK-ERK signaling pathway is vital for different cellular mechanisms including cell proliferation, differentiation and apoptosis. This importance is highlighted by the high prevalence of mutations in RAS or related proteins of the pathway in cancers. More recently, development abnormalities have been linked to various germline mutations in this pathway and called RASopathies. Interestingly, rare disorders such as RAS-associated leukoproliferative diseases and histiocytosis have also been recently linked to multiple mutations in the same pathway, sometimes with the same mutation. This review will focus on germline RASopathies and rare somatic RASopathies and focus on how gain-of-function mutations in the same pathway can lead to various diseases.
Collapse
|
16
|
Current Understanding of Neurofibromatosis Type 1, 2, and Schwannomatosis. Int J Mol Sci 2021; 22:ijms22115850. [PMID: 34072574 PMCID: PMC8198724 DOI: 10.3390/ijms22115850] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
Neurofibromatosis (NF) is a neurocutaneous syndrome characterized by the development of tumors of the central or peripheral nervous system including the brain, spinal cord, organs, skin, and bones. There are three types of NF: NF1 accounting for 96% of all cases, NF2 in 3%, and schwannomatosis (SWN) in <1%. The NF1 gene is located on chromosome 17q11.2, which encodes for a tumor suppressor protein, neurofibromin, that functions as a negative regulator of Ras/MAPK and PI3K/mTOR signaling pathways. The NF2 gene is identified on chromosome 22q12, which encodes for merlin, a tumor suppressor protein related to ezrin-radixin-moesin that modulates the activity of PI3K/AKT, Raf/MEK/ERK, and mTOR signaling pathways. In contrast, molecular insights on the different forms of SWN remain unclear. Inactivating mutations in the tumor suppressor genes SMARCB1 and LZTR1 are considered responsible for a majority of cases. Recently, treatment strategies to target specific genetic or molecular events involved in their tumorigenesis are developed. This study discusses molecular pathways and related targeted therapies for NF1, NF2, and SWN and reviews recent clinical trials which involve NF patients.
Collapse
|
17
|
Neurofibromatosis type 1: New developments in genetics and treatment. J Am Acad Dermatol 2020; 84:1667-1676. [PMID: 32771543 DOI: 10.1016/j.jaad.2020.07.105] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022]
Abstract
Neurofibromatosis type 1 is the most common neurocutaneous syndrome, with a frequency of 1 in 2500 persons. Diagnosis is paramount in the pretumor stage to provide proper anticipatory guidance for a number of neoplasms, both benign and malignant. Loss-of-function mutations in the NF1 gene result in truncated and nonfunctional production of neurofibromin, a tumor suppressor protein involved in downregulating the RAS signaling pathway. New therapeutic and preventive options include tyrosine kinase inhibitors, mTOR inhibitors, interferons, and radiofrequency therapy. This review summarizes recent updates in genetics, mutation analysis assays, and treatment options targeting aberrant genetic pathways. We also propose modified diagnostic criteria and provide an algorithm for surveillance of patients with neurofibromatosis type 1.
Collapse
|
18
|
Lalor L, Davies OMT, Basel D, Siegel DH. Café au lait spots: When and how to pursue their genetic origins. Clin Dermatol 2020; 38:421-431. [PMID: 32972601 DOI: 10.1016/j.clindermatol.2020.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Café au lait spots are common birthmarks seen sporadically and in association with several genetic syndromes. Dermatologists are often asked to evaluate these birthmarks both by other physicians and by parents. In some cases, it is challenging to know when and how to pursue further evaluation. Diagnostic challenges may come in the form of the appearance of the individual lesions, areas and patterns of cutaneous involvement, and associated features (or lack thereof). In this review, we aim to clarify when and how to evaluate the child with multiple or patterned café au lait spots and to explain some emerging concepts in our understanding of the genetics of these lesions.
Collapse
Affiliation(s)
- Leah Lalor
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | - Olivia M T Davies
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Donald Basel
- Division of Genetics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Dawn H Siegel
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
19
|
Bhouri R, Hebrard B, Wolkenstein P, Funalot B. Stratégies du diagnostic moléculaire dans la neurofibromatose type 1. Ann Dermatol Venereol 2020; 147:247-251. [DOI: 10.1016/j.annder.2019.09.608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/22/2019] [Accepted: 09/06/2019] [Indexed: 10/25/2022]
|
20
|
Abstract
Neurofibromatosis type 1 (NF1), NF2, and schwannomatosis are related, but distinct, tumor suppressor syndromes characterized by a predilection for tumors in the central and peripheral nervous systems. NF1 is one of the most common autosomal dominant conditions of the nervous system. NF1 has a high degree of variability in clinical presentation, which may include multiple neoplasms as well as cutaneous, vascular, bony, and cognitive features. Some of these manifestations overlap with other genetic conditions. Accurate diagnosis of NF1 is important for individualizing clinical care and genetic counseling. This article summarizes the clinical features, diagnostic work-up, and management of NF1.
Collapse
Affiliation(s)
- K Ina Ly
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Yawkey 9 East, 55 Fruit Street, Boston, MA 02114, USA.
| | - Jaishri O Blakeley
- Department of Neurology and Neurosurgery, Johns Hopkins University, 600 North Wolfe Street, Meyer 100, Baltimore, MD 21287, USA; Department of Oncology, Johns Hopkins University, 600 North Wolfe Street, Meyer 100, Baltimore, MD 21287, USA
| |
Collapse
|
21
|
Pacot L, Burin des Roziers C, Laurendeau I, Briand-Suleau A, Coustier A, Mayard T, Tlemsani C, Faivre L, Thomas Q, Rodriguez D, Blesson S, Dollfus H, Muller YG, Parfait B, Vidaud M, Gilbert-Dussardier B, Yardin C, Dauriat B, Derancourt C, Vidaud D, Pasmant E. One NF1 Mutation may Conceal Another. Genes (Basel) 2019; 10:genes10090633. [PMID: 31443423 PMCID: PMC6769760 DOI: 10.3390/genes10090633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/10/2019] [Accepted: 08/20/2019] [Indexed: 01/01/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant disease with complete penetrance but high variable expressivity. NF1 is caused by loss-of-function mutations in the NF1 gene, a negative regulator of the RAS-MAPK pathway. The NF1 gene has one of the highest mutation rates in human disorders, which may explain the outbreak of independent de novo variants in the same family. Here, we report the co-occurrence of pathogenic variants in the NF1 and SPRED1 genes in six families with NF1 and Legius syndrome, using next-generation sequencing. In five of these families, we observed the co-occurrence of two independent NF1 variants. All NF1 variants were classified as pathogenic, according to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG-AMP) guidelines. In the sixth family, one sibling inherited a complete deletion of the NF1 gene from her mother and carried a variant of unknown significance in the SPRED1 gene. This variant was also present in her brother, who was diagnosed with Legius syndrome, a differential diagnosis of NF1. This work illustrates the complexity of molecular diagnosis in a not-so-rare genetic disease.
Collapse
Affiliation(s)
- Laurence Pacot
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
- Institut Cochin, INSERM U1016, Université Paris Descartes, 75014 Paris, France
| | - Cyril Burin des Roziers
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
- Institut Cochin, INSERM U1016, Université Paris Descartes, 75014 Paris, France
| | - Ingrid Laurendeau
- Institut Cochin, INSERM U1016, Université Paris Descartes, 75014 Paris, France
| | - Audrey Briand-Suleau
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
- Institut Cochin, INSERM U1016, Université Paris Descartes, 75014 Paris, France
| | - Audrey Coustier
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
| | - Théodora Mayard
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
| | - Camille Tlemsani
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
- Institut Cochin, INSERM U1016, Université Paris Descartes, 75014 Paris, France
| | - Laurence Faivre
- Inserm, UMR 1231, Génétique des Anomalies du Développement, Université de Bourgogne, 21079 Dijon, France
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, 21079 Dijon, France
| | - Quentin Thomas
- Inserm, UMR 1231, Génétique des Anomalies du Développement, Université de Bourgogne, 21079 Dijon, France
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, 21079 Dijon, France
| | - Diana Rodriguez
- Department of Child Neurology and National Reference Center for Neurogenetic Disorders, Armand Trousseau Hospital, GHUEP, AP-HP, INSERM U1141, 75012 Paris, France
- GRC n°19 ConCer-LD, Sorbonne Université, 75012 Paris, France
| | - Sophie Blesson
- Service de Génétique, CHRU de Tours, 37044 Tours, France
| | - Hélène Dollfus
- Centre de référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), Hôpital Civil, 67091 Strasbourg, France
- Service de Génétique Médicale, Hôpital de Hautepierre, 67200 Strasbourg, France
- Laboratoire de Génétique Médicale, INSERM U1112, 67000 Strasbourg, France
| | | | - Béatrice Parfait
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
- Institut Cochin, INSERM U1016, Université Paris Descartes, 75014 Paris, France
| | - Michel Vidaud
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
- Institut Cochin, INSERM U1016, Université Paris Descartes, 75014 Paris, France
| | | | - Catherine Yardin
- Department of Cytogenetics and clinical genetics, Limoges University Hospital, 87042 Limoges, France
- UMR 7252, Limoges University, CNRS, XLIM, 87000 Limoges, France
| | - Benjamin Dauriat
- Department of Cytogenetics and clinical genetics, Limoges University Hospital, 87042 Limoges, France
| | - Christian Derancourt
- EA 4537, Antilles University, 97261 Fort-de-France, Martinique, France
- DRCI, Martinique University Hospital, 97261 Fort-de-France, Martinique, France
| | - Dominique Vidaud
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
- Institut Cochin, INSERM U1016, Université Paris Descartes, 75014 Paris, France
| | - Eric Pasmant
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France.
- Institut Cochin, INSERM U1016, Université Paris Descartes, 75014 Paris, France.
| |
Collapse
|
22
|
Tsipi M, Poulou M, Fylaktou I, Kosma K, Tsoutsou E, Pons MR, Kokkinou E, Kitsiou-Tzeli S, Fryssira H, Tzetis M. Phenotypic expression of a spectrum of Neurofibromatosis Type 1 (NF1) mutations identified through NGS and MLPA. J Neurol Sci 2018; 395:95-105. [PMID: 30308447 DOI: 10.1016/j.jns.2018.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 09/06/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022]
Abstract
Neurofibromatosis Type 1 (NF1) is caused by mutations of the NF1 gene. The aim of this study was to identify the genetic causes underlying the disease, attempt possible phenotype/genotype correlations and add to the NF1 mutation spectrum. A screening protocol based on genomic DNA was established in 168 patients, encompassing sequencing of all coding exons and adjoining introns using a custom targeted next generation sequencing protocol and subsequent confirmation of findings with Sanger sequencing. MLPA was used to detect deletions/duplications and positive findings were confirmed by RNA analysis. All novel findings were evaluated according to ACMG Standards and guidelines for the interpretation of sequence variants with the aid of in-silico bioinformatic tools and family segregation analysis. A germline variant was identified in 145 patients (86%). In total 49 known and 70 novel variants in coding and non-coding regions were identified. Seven patients carried whole or partial gene deletions. NF1 patients, present with high phenotypic variability even in cases where the same germline disease causing variant has been identified. Our findings will contribute to a better knowledge of the genetic causes and the phenotypic expression related to the disease.
Collapse
Affiliation(s)
- Maria Tsipi
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Greece.
| | - Myrto Poulou
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Greece
| | - Irene Fylaktou
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Greece
| | - Konstantina Kosma
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Greece
| | - Eirini Tsoutsou
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Greece
| | - Maria-Roser Pons
- 1(st) Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Childrens Hospital, Athens, Greece
| | - Eleftheria Kokkinou
- 1(st) Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Childrens Hospital, Athens, Greece
| | - Sofia Kitsiou-Tzeli
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Greece; Research Institute for the Study of Genetic and Malignant Diseases in Childhood, "Aghia Sophia" Childrens Hospital, Athens, Greece
| | - Helen Fryssira
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Greece
| | - Maria Tzetis
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW This article presents an up-to-date summary of the genetic etiology, diagnostic criteria, clinical features, and current management recommendations for the most common neurocutaneous disorders encountered in clinical adult and pediatric neurology practices. RECENT FINDINGS The phakomatoses are a phenotypically and genetically diverse group of multisystem disorders that primarily affect the skin and central nervous system. A greater understanding of the genetic and biological underpinnings of numerous neurocutaneous disorders has led to better clinical characterization, more refined diagnostic criteria, and improved treatments in neurofibromatosis type 1, Legius syndrome, neurofibromatosis type 2, Noonan syndrome with multiple lentigines, tuberous sclerosis complex, Sturge-Weber syndrome, and incontinentia pigmenti. SUMMARY Neurologists require a basic knowledge of and familiarity with a wide variety of neurocutaneous disorders because of the frequent involvement of the central and peripheral nervous systems. A simple routine skin examination can often open a broad differential diagnosis and lead to improved patient care.
Collapse
|
24
|
Viñas-Jornet M, Esteba-Castillo S, Baena N, Ribas-Vidal N, Ruiz A, Torrents-Rodas D, Gabau E, Vilella E, Martorell L, Armengol L, Novell R, Guitart M. High Incidence of Copy Number Variants in Adults with Intellectual Disability and Co-morbid Psychiatric Disorders. Behav Genet 2018; 48:323-336. [PMID: 29882083 PMCID: PMC6028865 DOI: 10.1007/s10519-018-9902-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 05/10/2018] [Indexed: 01/04/2023]
Abstract
A genetic analysis of unexplained mild-moderate intellectual disability and co-morbid psychiatric or behavioural disorders is not systematically conducted in adults. A cohort of 100 adult patients affected by both phenotypes were analysed in order to identify the presence of copy number variants (CNVs) responsible for their condition identifying a yield of 12.8% of pathogenic CNVs (19% when including clinically recognizable microdeletion syndromes). Moreover, there is a detailed clinical description of an additional 11% of the patients harbouring possible pathogenic CNVs—including a 7q31 deletion (IMMP2L) in two unrelated patients and duplications in 3q29, 9p24.2p24.1 and 15q14q15.1—providing new evidence of its contribution to the phenotype. This study adds further proof of including chromosomal microarray analysis (CMA) as a mandatory test to improve the diagnosis in the adult patients in psychiatric services.
Collapse
Affiliation(s)
- Marina Viñas-Jornet
- Genetics lab, UDIAT-centre diagnostic. Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, C/Parc Tauli,1, 08208, Sabadell, Barcelona, Spain.,Cellular Biology, Physiology and Immunology Department, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Susanna Esteba-Castillo
- Mental Health and Intellectual Disability Specialized Service, Institut Assistència Sanitària (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Neus Baena
- Genetics lab, UDIAT-centre diagnostic. Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, C/Parc Tauli,1, 08208, Sabadell, Barcelona, Spain
| | - Núria Ribas-Vidal
- Mental Health and Intellectual Disability Specialized Service, Institut Assistència Sanitària (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Anna Ruiz
- Genetics lab, UDIAT-centre diagnostic. Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, C/Parc Tauli,1, 08208, Sabadell, Barcelona, Spain
| | - David Torrents-Rodas
- Mental Health and Intellectual Disability Specialized Service, Institut Assistència Sanitària (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Elisabeth Gabau
- Pediatry-Clinical Genetics Service, Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Elisabet Vilella
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, CIBERSAM, Reus, Spain
| | - Lourdes Martorell
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, CIBERSAM, Reus, Spain
| | - Lluís Armengol
- Research and Development Department, qGenomics Laboratory, Barcelona, Spain
| | - Ramon Novell
- Mental Health and Intellectual Disability Specialized Service, Institut Assistència Sanitària (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Míriam Guitart
- Genetics lab, UDIAT-centre diagnostic. Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, C/Parc Tauli,1, 08208, Sabadell, Barcelona, Spain.
| |
Collapse
|
25
|
Diets IJ, Waanders E, Ligtenberg MJ, van Bladel DAG, Kamping EJ, Hoogerbrugge PM, Hopman S, Olderode-Berends MJ, Gerkes EH, Koolen DA, Marcelis C, Santen GW, van Belzen MJ, Mordaunt D, McGregor L, Thompson E, Kattamis A, Pastorczak A, Mlynarski W, Ilencikova D, van Silfhout AV, Gardeitchik T, de Bont ES, Loeffen J, Wagner A, Mensenkamp AR, Kuiper RP, Hoogerbrugge N, Jongmans MC. High Yield of Pathogenic Germline Mutations Causative or Likely Causative of the Cancer Phenotype in Selected Children with Cancer. Clin Cancer Res 2018; 24:1594-1603. [PMID: 29351919 DOI: 10.1158/1078-0432.ccr-17-1725] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/11/2017] [Accepted: 01/12/2018] [Indexed: 11/16/2022]
Abstract
Purpose: In many children with cancer and characteristics suggestive of a genetic predisposition syndrome, the genetic cause is still unknown. We studied the yield of pathogenic mutations by applying whole-exome sequencing on a selected cohort of children with cancer.Experimental Design: To identify mutations in known and novel cancer-predisposing genes, we performed trio-based whole-exome sequencing on germline DNA of 40 selected children and their parents. These children were diagnosed with cancer and had at least one of the following features: (1) intellectual disability and/or congenital anomalies, (2) multiple malignancies, (3) family history of cancer, or (4) an adult type of cancer. We first analyzed the sequence data for germline mutations in 146 known cancer-predisposing genes. If no causative mutation was found, the analysis was extended to the whole exome.Results: Four patients carried causative mutations in a known cancer-predisposing gene: TP53 and DICER1 (n = 3). In another 4 patients, exome sequencing revealed mutations causing syndromes that might have contributed to the malignancy (EP300-based Rubinstein-Taybi syndrome, ARID1A-based Coffin-Siris syndrome, ACTB-based Baraitser-Winter syndrome, and EZH2-based Weaver syndrome). In addition, we identified two genes, KDM3B and TYK2, which are possibly involved in genetic cancer predisposition.Conclusions: In our selected cohort of patients, pathogenic germline mutations causative or likely causative of the cancer phenotype were found in 8 patients, and two possible novel cancer-predisposing genes were identified. Therewith, our study shows the added value of sequencing beyond a cancer gene panel in selected patients, to recognize childhood cancer predisposition. Clin Cancer Res; 24(7); 1594-603. ©2018 AACR.
Collapse
Affiliation(s)
- Illja J Diets
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Esmé Waanders
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marjolijn J Ligtenberg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands.,Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Diede A G van Bladel
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Eveline J Kamping
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | | | - Saskia Hopman
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Maran J Olderode-Berends
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Erica H Gerkes
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - David A Koolen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Carlo Marcelis
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gijs W Santen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Martine J van Belzen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Dylan Mordaunt
- Department of Genetics and Molecular Pathology, SA Pathology, Women's and Children's Hospital, North Adelaide, Australia
| | - Lesley McGregor
- Department of Genetics and Molecular Pathology, SA Pathology, Women's and Children's Hospital, North Adelaide, Australia
| | - Elizabeth Thompson
- Department of Genetics and Molecular Pathology, SA Pathology, Women's and Children's Hospital, North Adelaide, Australia
| | - Antonis Kattamis
- First Department of Pediatrics, Athens University Medical School, Athens, Greece
| | - Agata Pastorczak
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Lodz, Poland
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Lodz, Poland
| | - Denisa Ilencikova
- 2nd Pediatric Department, Children's University Hospital, Comenius University, Bratislava, Slovakia
| | | | - Thatjana Gardeitchik
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Eveline S de Bont
- Department of Pediatric Oncology and Hematology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, the Netherlands
| | - Jan Loeffen
- Department of Pediatric Oncology and Hematology, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Anja Wagner
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Arjen R Mensenkamp
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Roland P Kuiper
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Marjolijn C Jongmans
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands. .,Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
26
|
Baldassarre G, Mussa A, Carli D, Molinatto C, Ferrero GB. Constitutional bone impairment in Noonan syndrome. Am J Med Genet A 2017; 173:692-698. [PMID: 28211980 DOI: 10.1002/ajmg.a.38086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/18/2016] [Indexed: 12/28/2022]
Abstract
Noonan syndrome (NS) is an autosomal dominant trait characterized by genotypic and phenotypic variability. It belongs to the Ras/MAPK pathway disorders collectively named Rasopathies or neurocardiofaciocutaneous syndromes. Phenotype is characterized by short stature, congenital heart defects, facial dysmorphisms, skeletal and ectodermal anomalies, cryptorchidism, mild to moderate developmental delay/learning disability, and tumor predisposition. Short stature and skeletal dysmorphisms are almost constant and several studies hypothesized a role for the RAS pathway in regulating bone metabolism. In this study, we investigated the bone quality assessed by phalangeal quantitative ultrasound (QUS) and the metabolic bone profiling in a group of patients with NS, to determine whether low bone mineralization is primary or secondary to NS characteristics. Thirty-five patients were enrolled, including 20 males (55.6%) and 15 females (44.5%) aged 1.0-17.8 years (mean 6.4 ± 4.5, median 4.9 years). Each patients was submitted to clinical examination, estimation of the bone age, laboratory assays, and QUS assessment. Twenty-five percent of the cohort shows reduced QUS values for their age based on bone transmission time. Bone measurement were adjusted for multiple factors frequently observed in NS patients, such as growth retardation, delayed bone age, retarded puberty, and reduced body mass index, potentially affecting bone quality or its appraisal. In spite of the correction attempts, QUS measurement indicates that bone impairment persists in nearly 15% of the cohort studied. Our results indicate that bone impairment in NS is likely primary and not secondary to any of the phenotypic traits of NS, nor consistent with metabolic disturbances. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | - Diana Carli
- Department of Pediatric and Public Health Sciences, University of Turin, Turin, Italy
| | - Cristina Molinatto
- Department of Pediatric and Public Health Sciences, University of Turin, Turin, Italy
| | | |
Collapse
|
27
|
SPRED1 Interferes with K-ras but Not H-ras Membrane Anchorage and Signaling. Mol Cell Biol 2016; 36:2612-25. [PMID: 27503857 DOI: 10.1128/mcb.00191-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022] Open
Abstract
The Ras/mitogen-activated protein kinase (MAPK) signaling pathway is tightly controlled by negative feedback regulators, such as the tumor suppressor SPRED1. The SPRED1 gene also carries loss-of-function mutations in the RASopathy Legius syndrome. Growth factor stimulation translocates SPRED1 to the plasma membrane, triggering its inhibitory activity. However, it remains unclear whether SPRED1 there acts at the level of Ras or Raf. We show that pharmacological or galectin-1 (Gal-1)-mediated induction of B- and C-Raf-containing dimers translocates SPRED1 to the plasma membrane. This is facilitated in particular by SPRED1 interaction with B-Raf and, via its N terminus, with Gal-1. The physiological significance of these novel interactions is supported by two Legius syndrome-associated mutations that show diminished binding to both Gal-1 and B-Raf. On the plasma membrane, SPRED1 becomes enriched in acidic membrane domains to specifically perturb membrane organization and extracellular signal-regulated kinase (ERK) signaling of active K-ras4B (here, K-ras) but not H-ras. However, SPRED1 also blocks on the nanoscale the positive effects of Gal-1 on H-ras. Therefore, a combinatorial expression of SPRED1 and Gal-1 potentially regulates specific patterns of K-ras- and H-ras-dependent signaling output. More broadly, our results open up the possibility that related SPRED and Sprouty proteins act in a similar Ras and Raf isoform-specific manner.
Collapse
|
28
|
Gilbert-Dussardier B, Briand-Suleau A, Laurendeau I, Bilan F, Cavé H, Verloes A, Vidaud M, Vidaud D, Pasmant E. Copy number variants and rasopathies: germline KRAS duplication in a patient with syndrome including pigmentation abnormalities. Orphanet J Rare Dis 2016; 11:101. [PMID: 27450488 PMCID: PMC4957908 DOI: 10.1186/s13023-016-0479-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/01/2016] [Indexed: 12/04/2022] Open
Abstract
RAS/MAPK pathway germline mutations were described in Rasopathies, a class of rare genetic syndromes combining facial abnormalities, heart defects, short stature, skin and genital abnormalities, and mental retardation. The majority of the mutations identified in the Rasopathies are point mutations which increase RAS/MAPK pathway signaling. Duplications encompassing RAS/MAPK pathway genes (PTPN11, RAF1, MEK2, or SHOC2) were more rarely described. Here we report, a syndromic familial case of a 12p duplication encompassing the dosage sensitive gene KRAS, whose phenotype overlapped with rasopathies. The patient was referred because of a history of mild learning disabilities, small size, facial dysmorphy, and pigmentation abnormalities (café-au-lait and achromic spots, and axillar lentigines). This phenotype was reminiscent of rasopathies. No mutation was identified in the most common genes associated with Noonan, cardio-facio-cutaneous, Legius, and Costello syndromes, as well as neurofibromatosis type 1. The patient constitutional DNA exhibited a ~10.5 Mb duplication at 12p, including the KRAS gene. The index case’s mother carried the same chromosome abnormality and also showed development delay with short stature, and numerous café-au-lait spots. Duplication of the KRAS gene may participate in the propositus phenotype, in particular of the specific pigmentation abnormalities. Array-CGH or some other assessment of gene/exon CNVs of RAS/MAPK pathway genes should be considered in the evaluation of individuals with rasopathies.
Collapse
Affiliation(s)
- Brigitte Gilbert-Dussardier
- Service de Génétique, C.H.U. de Poitiers, Centre de Référence Anomalies du Développement Ouest, Poitiers, France.,EA 3808 Université de Poitiers, Poitiers, France
| | - Audrey Briand-Suleau
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), Bâtiment Jean Dausset, 3ème étage, 27 rue du Faubourg Saint Jacques, Paris, France
| | - Ingrid Laurendeau
- EA7331, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, Paris, France
| | - Frédéric Bilan
- Service de Génétique, C.H.U. de Poitiers, Centre de Référence Anomalies du Développement Ouest, Poitiers, France.,EA 3808 Université de Poitiers, Poitiers, France
| | - Hélène Cavé
- Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Département de Génétique, INSERM UMR_S1131, Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne-Paris-Cité, Paris, France
| | - Alain Verloes
- Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Département de Génétique, INSERM UMR 1141, Université Paris Diderot, Sorbonne-Paris-Cité, Paris, France
| | - Michel Vidaud
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), Bâtiment Jean Dausset, 3ème étage, 27 rue du Faubourg Saint Jacques, Paris, France.,EA7331, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, Paris, France
| | - Dominique Vidaud
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), Bâtiment Jean Dausset, 3ème étage, 27 rue du Faubourg Saint Jacques, Paris, France.,EA7331, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, Paris, France
| | - Eric Pasmant
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), Bâtiment Jean Dausset, 3ème étage, 27 rue du Faubourg Saint Jacques, Paris, France. .,EA7331, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, Paris, France.
| |
Collapse
|
29
|
Bernier A, Larbrisseau A, Perreault S. Café-au-lait Macules and Neurofibromatosis Type 1: A Review of the Literature. Pediatr Neurol 2016; 60:24-29.e1. [PMID: 27212418 DOI: 10.1016/j.pediatrneurol.2016.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/10/2016] [Accepted: 03/13/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND The first sign of neurofibromatosis type 1 (NF1) in a child is often the presence of multiple café-au-lait macules. Although previous studies reported that almost individuals with multiple café-au-lait macules will eventually develop NF1 based on clinical criteria, recent studies and clinical observations suggest that a significant percentage of them do not have NF1. METHODS We conducted the first systematic review of the literature on the prevalence of definitive NF1 among patients referred for isolated café-au-lait macules, searching more precisely for the proportion of those patients who do not have NF1. Because we now know that the presence of café-au-lait macules and freckling might not distinguish between NF1 and other conditions such as Legius syndrome, definitive NF1 was defined as the presence of café-au-lait macules with or without freckling plus one of the following: Lisch nodules, neurofibroma, plexiform neurofibroma, bone dysplasia, optic pathway glioma, or familial history of NF1. RESULTS Six articles reported sufficient data to meet our inclusion criteria. Grouping all studies together, we found that 19.5% to 57.1% of all patients with isolated café-au-lait macules did not have a diagnosis of NF1 after follow-up or genetic testing. CONCLUSION A significant portion of the patients presenting with isolated café-au-lait macules at initial consultation might not have NF1. Genetic testing could help guide the follow-up of those patients, but further evidence is required to make recommendations.
Collapse
Affiliation(s)
- Anne Bernier
- Division of Pediatric Neurology, CHU Ste-Justine, Montreal, Quebec, Canada
| | - Albert Larbrisseau
- Division of Pediatric Neurology, CHU Ste-Justine, Montreal, Quebec, Canada
| | | |
Collapse
|
30
|
Roelofs RL, Janssen N, Wingbermühle E, Kessels RPC, Egger JIM. Intellectual development in Noonan syndrome: a longitudinal study. Brain Behav 2016; 6:e00479. [PMID: 27247851 PMCID: PMC4864201 DOI: 10.1002/brb3.479] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/16/2016] [Accepted: 03/19/2016] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Although cognitive impairments in adults with Noonan syndrome seem to be limited to a low-average intelligence and slower processing speed, studies in children with Noonan syndrome have demonstrated more extensive cognitive problems. These include deficits in language skills, memory, attention, and executive functioning. This longitudinal study is the first to investigate intellectual development in a group of individuals with Noonan syndrome. METHODS Sixteen patients with Noonan syndrome underwent intelligence assessment both in childhood and in adulthood, using Wechsler's intelligence scales. IQ scores and Wechsler standard scores achieved in childhood and adulthood were compared. Subsequently, verbal and performance IQ in childhood were used as predictors for adult IQ and index scores. RESULTS Compared with childhood scores, adult full-scale IQ and performance IQ significantly increased. Adult performance IQ was higher than verbal IQ. Childhood performance IQ and verbal IQ together predicted all adult IQ and index scores, except for the processing speed index. DISCUSSION Childhood IQ was a significant predictor of adult intelligence in patients with Noonan syndrome. Performance IQ advanced to a normal level in adulthood, while verbal IQ did not develop proportionately, resulting in a discrepancy between adult performance IQ and verbal IQ. This finding could suggest a delay in the development of executive functioning in patients with Noonan syndrome, which seems to be outgrown in adulthood.
Collapse
Affiliation(s)
- Renée L Roelofs
- Centre of Excellence for Neuropsychiatry Vincent van Gogh Institute for Psychiatry Venray The Netherlands; Centre of Excellence for Korsakoff and Alcohol-Related Cognitive Disorders Vincent van Gogh Institute for Psychiatry Venray The Netherlands; Donders Institute for Brain Cognition and Behavior Radboud University Nijmegen Nijmegen The Netherlands; Behavioral Science Institute Radboud University Nijmegen NijmegenThe Netherlands
| | - Nikki Janssen
- School of Psychology and Artificial Intelligence Radboud University Nijmegen Nijmegen The Netherlands
| | - Ellen Wingbermühle
- Centre of Excellence for Neuropsychiatry Vincent van Gogh Institute for Psychiatry Venray The Netherlands; Donders Institute for Brain Cognition and Behavior Radboud University Nijmegen Nijmegen The Netherlands
| | - Roy P C Kessels
- Centre of Excellence for Korsakoff and Alcohol-Related Cognitive Disorders Vincent van Gogh Institute for Psychiatry Venray The Netherlands; Donders Institute for Brain Cognition and Behavior Radboud University Nijmegen Nijmegen The Netherlands; Department of Medical Psychology Radboud University Medical Center Nijmegen The Netherlands
| | - Jos I M Egger
- Centre of Excellence for Neuropsychiatry Vincent van Gogh Institute for Psychiatry Venray The Netherlands; Centre of Excellence for Korsakoff and Alcohol-Related Cognitive Disorders Vincent van Gogh Institute for Psychiatry Venray The Netherlands; Donders Institute for Brain Cognition and Behavior Radboud University Nijmegen Nijmegen The Netherlands; Behavioral Science Institute Radboud University Nijmegen NijmegenThe Netherlands
| |
Collapse
|
31
|
Hirata Y, Brems H, Suzuki M, Kanamori M, Okada M, Morita R, Llano-Rivas I, Ose T, Messiaen L, Legius E, Yoshimura A. Interaction between a Domain of the Negative Regulator of the Ras-ERK Pathway, SPRED1 Protein, and the GTPase-activating Protein-related Domain of Neurofibromin Is Implicated in Legius Syndrome and Neurofibromatosis Type 1. J Biol Chem 2015; 291:3124-34. [PMID: 26635368 DOI: 10.1074/jbc.m115.703710] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Indexed: 11/06/2022] Open
Abstract
Constitutional heterozygous loss-of-function mutations in the SPRED1 gene cause a phenotype known as Legius syndrome, which consists of symptoms of multiple café-au-lait macules, axillary freckling, learning disabilities, and macrocephaly. Legius syndrome resembles a mild neurofibromatosis type 1 (NF1) phenotype. It has been demonstrated that SPRED1 functions as a negative regulator of the Ras-ERK pathway and interacts with neurofibromin, the NF1 gene product. However, the molecular details of this interaction and the effects of the mutations identified in Legius syndrome and NF1 on this interaction have not yet been investigated. In this study, using a yeast two-hybrid system and an immunoprecipitation assay in HEK293 cells, we found that the SPRED1 EVH1 domain interacts with the N-terminal 16 amino acids and the C-terminal 20 amino acids of the GTPase-activating protein (GAP)-related domain (GRD) of neurofibromin, which form two crossing α-helix coils outside the GAP domain. These regions have been shown to be dispensable for GAP activity and are not present in p120(GAP). Several mutations in these N- and C-terminal regions of the GRD in NF1 patients and pathogenic missense mutations in the EVH1 domain of SPRED1 in Legius syndrome reduced the binding affinity between the EVH1 domain and the GRD. EVH1 domain mutations with reduced binding to the GRD also disrupted the ERK suppression activity of SPRED1. These data clearly demonstrate that SPRED1 inhibits the Ras-ERK pathway by recruiting neurofibromin to Ras through the EVH1-GRD interaction, and this study also provides molecular basis for the pathogenic mutations of NF1 and Legius syndrome.
Collapse
Affiliation(s)
- Yasuko Hirata
- From the Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hilde Brems
- the Department of Human Genetics, Catholic University of Leuven, 3000 Leuven, Belgium
| | - Mayu Suzuki
- From the Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mitsuhiro Kanamori
- From the Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masahiro Okada
- From the Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Rimpei Morita
- From the Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Isabel Llano-Rivas
- the Department of Genetics, Hospital Universitario Cruces, BioCruces Health Research Institute, Biscay, Spain
| | - Toyoyuki Ose
- Department of Pharmaceutical Sciences, Hokkaido University, N12W6, Sapporo 060-0812, Japan, and
| | - Ludwine Messiaen
- the Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Eric Legius
- the Department of Human Genetics, Catholic University of Leuven, 3000 Leuven, Belgium
| | - Akihiko Yoshimura
- From the Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan,
| |
Collapse
|
32
|
Rojnueangnit K, Xie J, Gomes A, Sharp A, Callens T, Chen Y, Liu Y, Cochran M, Abbott M, Atkin J, Babovic‐Vuksanovic D, Barnett CP, Crenshaw M, Bartholomew DW, Basel L, Bellus G, Ben‐Shachar S, Bialer MG, Bick D, Blumberg B, Cortes F, David KL, Destree A, Duat‐Rodriguez A, Earl D, Escobar L, Eswara M, Ezquieta B, Frayling IM, Frydman M, Gardner K, Gripp KW, Hernández‐Chico C, Heyrman K, Ibrahim J, Janssens S, Keena BA, Llano‐Rivas I, Leppig K, McDonald M, Misra VK, Mulbury J, Narayanan V, Orenstein N, Galvin‐Parton P, Pedro H, Pivnick EK, Powell CM, Randolph L, Raskin S, Rosell J, Rubin K, Seashore M, Schaaf CP, Scheuerle A, Schultz M, Schorry E, Schnur R, Siqveland E, Tkachuk A, Tonsgard J, Upadhyaya M, Verma IC, Wallace S, Williams C, Zackai E, Zonana J, Lazaro C, Claes K, Korf B, Martin Y, Legius E, Messiaen L. High Incidence of Noonan Syndrome Features Including Short Stature and Pulmonic Stenosis in Patients carrying NF1 Missense Mutations Affecting p.Arg1809: Genotype-Phenotype Correlation. Hum Mutat 2015; 36:1052-63. [PMID: 26178382 PMCID: PMC5049609 DOI: 10.1002/humu.22832] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/19/2015] [Indexed: 12/15/2022]
Abstract
Neurofibromatosis type 1 (NF1) is one of the most frequent genetic disorders, affecting 1:3,000 worldwide. Identification of genotype-phenotype correlations is challenging because of the wide range clinical variability, the progressive nature of the disorder, and extreme diversity of the mutational spectrum. We report 136 individuals with a distinct phenotype carrying one of five different NF1 missense mutations affecting p.Arg1809. Patients presented with multiple café-au-lait macules (CALM) with or without freckling and Lisch nodules, but no externally visible plexiform neurofibromas or clear cutaneous neurofibromas were found. About 25% of the individuals had Noonan-like features. Pulmonic stenosis and short stature were significantly more prevalent compared with classic cohorts (P < 0.0001). Developmental delays and/or learning disabilities were reported in over 50% of patients. Melanocytes cultured from a CALM in a segmental NF1-patient showed two different somatic NF1 mutations, p.Arg1809Cys and a multi-exon deletion, providing genetic evidence that p.Arg1809Cys is a loss-of-function mutation in the melanocytes and causes a pigmentary phenotype. Constitutional missense mutations at p.Arg1809 affect 1.23% of unrelated NF1 probands in the UAB cohort, therefore this specific NF1 genotype-phenotype correlation will affect counseling and management of a significant number of patients.
Collapse
|
33
|
Mühl B, Hägele J, Tasdogan A, Loula P, Schuh K, Bundschu K. SPREDs (Sprouty related proteins with EVH1 domain) promote self-renewal and inhibit mesodermal differentiation in murine embryonic stem cells. Dev Dyn 2015; 244:591-606. [PMID: 25690936 DOI: 10.1002/dvdy.24261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 01/11/2015] [Accepted: 01/23/2015] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Pluripotency, self-renewal, and differentiation are special features of embryonic stem (ES) cells, thereby providing valuable perspectives in regenerative medicine. Developmental processes require a fine-tuned organization, mainly regulated by the well-known JAK/STAT, PI3K/AKT, and ERK/MAPK pathways. SPREDs (Sprouty related proteins with EVH1 domain) were discovered as inhibitors of the ERK/MAPK signaling pathway, whereas nothing was known about their functions in ES cells and during early differentiation, so far. RESULTS We generated SPRED1 and SPRED2 overexpressing and SPRED2 knockout murine ES cells to analyze the functions of SPRED proteins in ES cells and during early differentiation. Overexpression of SPREDs increases significantly the self-renewal and clonogenicity of murine ES cells, whereas lack of SPRED2 reduces proliferation and increases apoptosis. During early differentiation in embryoid bodies, SPREDs promote the pluripotent state and inhibit differentiation whereby mesodermal differentiation into cardiomyocytes is considerably delayed and inhibited. LIF- and growth factor-stimulation revealed that SPREDs inhibit ERK/MAPK activation in murine ES cells. However, no effects were detectable on LIF-induced activation of the JAK/STAT3, or PI3K/AKT signaling pathway by SPRED proteins. CONCLUSIONS We show that SPREDs promote self-renewal and inhibit mesodermal differentiation of murine ES cells by selective suppression of the ERK/MAPK signaling pathway in pluripotent cells.
Collapse
Affiliation(s)
- Bastian Mühl
- Institute for Biochemistry and Molecular Biology, Ulm University, Ulm, Germany; Laboratory for Human Genetics, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Neurofibromatosis type 1 molecular diagnosis: what can NGS do for you when you have a large gene with loss of function mutations? Eur J Hum Genet 2014; 23:596-601. [PMID: 25074460 DOI: 10.1038/ejhg.2014.145] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/30/2014] [Accepted: 06/25/2014] [Indexed: 01/04/2023] Open
Abstract
Molecular diagnosis of neurofibromatosis type 1 (NF1) is challenging owing to the large size of the tumour suppressor gene NF1, and the lack of mutation hotspots. A somatic alteration of the wild-type NF1 allele is observed in NF1-associated tumours. Genetic heterogeneity in NF1 was confirmed in patients with SPRED1 mutations. Here, we present a targeted next-generation sequencing (NGS) of NF1 and SPRED1 using a multiplex PCR approach (230 amplicons of ∼150 bp) on a PGM sequencer. The chip capacity allowed mixing 48 bar-coded samples in a 4-day workflow. We validated the NGS approach by retrospectively testing 30 NF1-mutated samples, and then prospectively analysed 279 patients in routine diagnosis. On average, 98.5% of all targeted bases were covered by at least 20X and 96% by at least 100X. An NF1 or SPRED1 alteration was found in 246/279 (88%) and 10/279 (4%) patients, respectively. Genotyping throughput was increased over 10 times, as compared with Sanger, with ∼90[euro ] for consumables per sample. Interestingly, our targeted NGS approach also provided quantitative information based on sequencing depth allowing identification of multiexons deletion or duplication. We then addressed the NF1 somatic mutation detection sensitivity in mosaic NF1 patients and tumours.
Collapse
|
35
|
Pasmant E, Gilbert-Dussardier B, Petit A, de Laval B, Luscan A, Gruber A, Lapillonne H, Deswarte C, Goussard P, Laurendeau I, Uzan B, Pflumio F, Brizard F, Vabres P, Naguibvena I, Fasola S, Millot F, Porteu F, Vidaud D, Landman-Parker J, Ballerini P. SPRED1, a RAS MAPK pathway inhibitor that causes Legius syndrome, is a tumour suppressor downregulated in paediatric acute myeloblastic leukaemia. Oncogene 2014; 34:631-8. [PMID: 24469042 DOI: 10.1038/onc.2013.587] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 11/11/2013] [Accepted: 12/03/2013] [Indexed: 01/10/2023]
Abstract
Constitutional dominant loss-of-function mutations in the SPRED1 gene cause a rare phenotype referred as neurofibromatosis type 1 (NF1)-like syndrome or Legius syndrome, consisted of multiple café-au-lait macules, axillary freckling, learning disabilities and macrocephaly. SPRED1 is a negative regulator of the RAS MAPK pathway and can interact with neurofibromin, the NF1 gene product. Individuals with NF1 have a higher risk of haematological malignancies. SPRED1 is highly expressed in haematopoietic cells and negatively regulates haematopoiesis. SPRED1 seemed to be a good candidate for leukaemia predisposition or transformation. We performed SPRED1 mutation screening and expression status in 230 paediatric lymphoblastic and acute myeloblastic leukaemias (AMLs). We found a loss-of-function frameshift SPRED1 mutation in a patient with Legius syndrome. In this patient, the leukaemia blasts karyotype showed a SPRED1 loss of heterozygosity, confirming SPRED1 as a tumour suppressor. Our observation confirmed that acute leukaemias are rare complications of the Legius syndrome. Moreover, SPRED1 was significantly decreased at RNA and protein levels in the majority of AMLs at diagnosis compared with normal or paired complete remission bone marrows. SPRED1 decreased expression correlated with genetic features of AML. Our study reveals a new mechanism which contributes to deregulate RAS MAPK pathway in the vast majority of paediatric AMLs.
Collapse
Affiliation(s)
- E Pasmant
- 1] UMR_S745 INSERM, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes Sorbonne Paris Cité, Paris, France [2] Service de Biochimie et Génétique Moléculaire, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - A Petit
- 1] Service d'Hématologie-Oncologie, Hôpital A Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France [2] Université Pierre et Marie Curie Paris 6, Paris, France [3] UMR938, Université Paris 6, Pierre et Marie Curie, Paris, France
| | - B de Laval
- INSERM 1016, Institut Cochin, CNRS UMR8104, Université Paris Descartes, Paris, France
| | - A Luscan
- 1] UMR_S745 INSERM, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes Sorbonne Paris Cité, Paris, France [2] Service de Biochimie et Génétique Moléculaire, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - A Gruber
- UMR_S745 INSERM, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - H Lapillonne
- 1] UMR938, Université Paris 6, Pierre et Marie Curie, Paris, France [2] Service d'Hématologie Biologique, Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - C Deswarte
- 1] Service d'Hématologie-Oncologie, Hôpital A Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France [2] Université Pierre et Marie Curie Paris 6, Paris, France [3] UMR938, Université Paris 6, Pierre et Marie Curie, Paris, France
| | - P Goussard
- Service de Biochimie et Génétique Moléculaire, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - I Laurendeau
- UMR_S745 INSERM, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - B Uzan
- UMR967, CEA, Université Paris 7, Fontenay aux Roses, France
| | - F Pflumio
- UMR967, CEA, Université Paris 7, Fontenay aux Roses, France
| | - F Brizard
- Laboratoire d'Hématologie Biologique, C.H.U. de Poitiers, Poitiers, France
| | - P Vabres
- Service de Dermatologie, C.H.U. de Dijon et EA 4271, Université de Bourgogne, France
| | - I Naguibvena
- UMR967, CEA, Université Paris 7, Fontenay aux Roses, France
| | - S Fasola
- 1] Service d'Hématologie-Oncologie, Hôpital A Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France [2] Université Pierre et Marie Curie Paris 6, Paris, France
| | - F Millot
- Service de Pédiatrie, C.H.U de Poitiers, Poitiers, France
| | - F Porteu
- INSERM 1016, Institut Cochin, CNRS UMR8104, Université Paris Descartes, Paris, France
| | - D Vidaud
- 1] UMR_S745 INSERM, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes Sorbonne Paris Cité, Paris, France [2] Service de Biochimie et Génétique Moléculaire, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France [3] Service de Génétique, C.H.U. de Poitiers, Poitiers, France
| | - J Landman-Parker
- 1] Service d'Hématologie-Oncologie, Hôpital A Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France [2] Université Pierre et Marie Curie Paris 6, Paris, France [3] UMR938, Université Paris 6, Pierre et Marie Curie, Paris, France
| | - P Ballerini
- Service d'Hématologie Biologique, Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
36
|
Sabbagh A, Pasmant E, Imbard A, Luscan A, Soares M, Blanché H, Laurendeau I, Ferkal S, Vidaud M, Pinson S, Bellanné-Chantelot C, Vidaud D, Parfait B, Wolkenstein P. NF1 molecular characterization and neurofibromatosis type I genotype-phenotype correlation: the French experience. Hum Mutat 2013; 34:1510-8. [PMID: 23913538 DOI: 10.1002/humu.22392] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 07/25/2013] [Indexed: 12/20/2022]
Abstract
Neurofibromatosis type 1 (NF1) affects about one in 3,500 people in all ethnic groups. Most NF1 patients have private loss-of-function mutations scattered along the NF1 gene. Here, we present an original NF1 investigation strategy and report a comprehensive mutation analysis of 565 unrelated patients from the NF-France Network. A NF1 mutation was identified in 546 of the 565 patients, giving a mutation detection rate of 97%. The combined cDNA/DNA approach showed that a significant proportion of NF1 missense mutations (30%) were deleterious by affecting pre-mRNA splicing. Multiplex ligation-dependent probe amplification allowed the identification of restricted rearrangements that would have been missed if only sequencing or microsatellite analysis had been performed. In four unrelated families, we identified two distinct NF1 mutations within the same family. This fortuitous association points out the need to perform an exhaustive NF1 screening in the case of molecular discordant-related patients. A genotype-phenotype study was performed in patients harboring a truncating (N = 368), in-frame splicing (N = 36), or missense (N = 35) mutation. The association analysis of these mutation types with 12 common NF1 clinical features confirmed a weak contribution of the allelic heterogeneity of the NF1 mutation to the NF1 variable expressivity.
Collapse
Affiliation(s)
- Audrey Sabbagh
- UMR745 INSERM, PRES Sorbonne Paris Cité, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France; IRD, UMR216, Mère et enfant face aux infections tropicales, Paris, France; PRES Sorbonne Paris Cité, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Khor SS, Miyagawa T, Toyoda H, Yamasaki M, Kawamura Y, Tanii H, Okazaki Y, Sasaki T, Lin L, Faraco J, Rico T, Honda Y, Honda M, Mignot E, Tokunaga K. Genome-wide association study of HLA-DQB1*06:02 negative essential hypersomnia. PeerJ 2013; 1:e66. [PMID: 23646285 PMCID: PMC3642778 DOI: 10.7717/peerj.66] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/20/2013] [Indexed: 12/23/2022] Open
Abstract
Essential hypersomnia (EHS), a sleep disorder characterized by excessive daytime sleepiness, can be divided into two broad classes based on the presence or absence of the HLA-DQB1*06:02 allele. HLA-DQB1*06:02-positive EHS and narcolepsy with cataplexy are associated with the same susceptibility genes. In contrast, there are fewer studies of HLA-DQB1*06:02 negative EHS which, we hypothesized, involves a different pathophysiological pathway than does narcolepsy with cataplexy. In order to identify susceptibility genes associated with HLA-DQB1*06:02 negative EHS, we conducted a genome-wide association study (GWAS) of 125 unrelated Japanese EHS patients lacking the HLA-DQB1*06:02 allele and 562 Japanese healthy controls. A comparative study was also performed on 268 HLA-DQB1*06:02 negative Caucasian hypersomnia patients and 1761 HLA-DQB1*06:02 negative Caucasian healthy controls. We identified three SNPs that each represented a unique locus— rs16826005 (P = 1.02E-07; NCKAP5), rs11854769 (P = 6.69E-07; SPRED1), and rs10988217 (P = 3.43E-06; CRAT) that were associated with an increased risk of EHS in this Japanese population. Interestingly, rs10988217 showed a similar tendency in its association with both HLA-DQB1*06:02 negative EHS and narcolepsy with cataplexy in both Japanese and Caucasian populations. This is the first GWAS of HLA-DQB1*06:02 negative EHS, and the identification of these three new susceptibility loci should provide additional insights to the pathophysiological pathway of this condition.
Collapse
Affiliation(s)
- Seik-Soon Khor
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Taylor Tavares AL, Willatt L, Armstrong R, Simonic I, Park SM. Mosaic deletion of the NF1 gene in a patient with cognitive disability and dysmorphic features but without diagnostic features of NF1. Am J Med Genet A 2013; 161A:1185-8. [PMID: 23532973 DOI: 10.1002/ajmg.a.35853] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 12/17/2012] [Indexed: 11/08/2022]
|
39
|
King PD, Lubeck BA, Lapinski PE. Nonredundant functions for Ras GTPase-activating proteins in tissue homeostasis. Sci Signal 2013; 6:re1. [PMID: 23443682 DOI: 10.1126/scisignal.2003669] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inactivation of the small guanosine triphosphate-binding protein Ras during receptor signal transduction is mediated by Ras guanosine triphosphatase (GTPase)-activating proteins (RasGAPs). Ten different RasGAPs have been identified and have overlapping patterns of tissue distribution. However, genetic analyses are revealing critical nonredundant functions for each RasGAP in tissue homeostasis and as regulators of disease processes in mouse and man. Here, we discuss advances in understanding the role of RasGAPs in the maintenance of tissue integrity.
Collapse
Affiliation(s)
- Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
40
|
Muram TM, Stevenson DA, Watts-Justice S, Viskochil DH, Carey JC, Mao R, Jackson B. A cost savings approach to SPRED1 mutational analysis in individuals at risk for neurofibromatosis type 1. Am J Med Genet A 2013; 161A:467-72. [PMID: 23401230 DOI: 10.1002/ajmg.a.35718] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 08/05/2012] [Indexed: 01/09/2023]
Abstract
Neurofibromatosis type 1 (NF1) is a clinically diagnosed autosomal dominant disorder requiring routine clinical management, particularly during the pediatric years. An overlapping disorder, Legius syndrome, at times is clinically indistinguishable from NF1 and results in a small percentage of individuals being mischaracterized. Distinguishing these two entities is increasingly important for prognosis, reproductive planning, and clinical management. The goal of our study was to evaluate the cost impact of genetic testing for patients with solely pigmentary findings. The costs of genetic testing in patients aged 1.5-18 years were modeled using a simulated population, assuming the clinical management approach of a single NF1 clinic. Two genetic testing algorithms (SPRED1 testing alone, and NF1 mutation analysis with reflex to SPRED1) were compared against a baseline of no genetic testing. The cost for SPRED1 mutation analysis for each individual meeting NF1 diagnostic criteria without neoplastic or boney manifestation, when compared to the no-testing approach with routine follow-up mutations between the ages of 10 and 14 years, was minimal (range of $4-$16). Based on the clinical practice of one NF1 clinic, we found that the cost difference to perform SPRED1 mutation analysis on individuals who meet diagnostic criteria for NF1 without neoplastic or boney manifestation were minimal. Therefore it is important that "when to test decisions" remain a physician/patient discussion, as individual benefits may be greatest at a different age than when it is most cost efficient.
Collapse
Affiliation(s)
- Talia M Muram
- Department of Pathology, University of Utah, Utah, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Diggs-Andrews KA, Gutmann DH. Modeling cognitive dysfunction in neurofibromatosis-1. Trends Neurosci 2013; 36:237-47. [PMID: 23312374 DOI: 10.1016/j.tins.2012.12.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/19/2012] [Accepted: 12/12/2012] [Indexed: 12/17/2022]
Abstract
Cognitive dysfunction, including significant impairments in learning, behavior, and attention, is found in over 10% of children in the general population. However, in the common inherited cancer predisposition syndrome, neurofibromatosis type 1 (NF1), the prevalence of these cognitive deficits approaches 70%. As a monogenic disorder, NF1 provides a unique genetic tool to identify and dissect mechanistically the molecular and cellular bases underlying cognitive dysfunction. In this review, we discuss Nf1 fly and mouse systems that mimic many of the cognitive abnormalities seen in children with NF1. Further, we describe discoveries from these models that have uncovered defects in the regulation of Ras activity, cAMP generation, and dopamine homeostasis as key mechanisms important for cognitive dysfunction in children with NF1.
Collapse
Affiliation(s)
- Kelly A Diggs-Andrews
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | |
Collapse
|
42
|
|
43
|
Abstract
The "neurofibromatoses" are a set of distinct genetic disorders that have in common the occurrence of tumors of the nerve sheath. They include NF1, NF2, and schwannomatosis. All are dominantly inherited with a high rate of new mutation and variable expression. NF1 includes effects on multiple systems of the body. The major NF1-associated tumor is the neurofibroma. In addition, clinical manifestations include bone dysplasia, learning disabilities, and an increased risk of malignancy. NF2 includes schwannomas of multiple cranial and spinal nerves, especially the vestibular nerve, as well as other tumors such as meningiomas and ependymomas. The schwannomatosis phenotype is limited to multiple schwannomas, and usually presents with pain. The genes that underlie each of the disorders are known: NF1 for neurofibromatosis type 1, NF2 for neurofibromatosis type 2, and INI1/SMARCB1 for schwannomatosis. Genetic testing is possible to identify mutations. Insights into pathogenesis are beginning to suggest new treatment strategies, and therapeutic trials with several new forms of treatment are underway.
Collapse
Affiliation(s)
- Bruce R Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
44
|
Stowe IB, Mercado EL, Stowe TR, Bell EL, Oses-Prieto JA, Hernández H, Burlingame AL, McCormick F. A shared molecular mechanism underlies the human rasopathies Legius syndrome and Neurofibromatosis-1. Genes Dev 2012; 26:1421-6. [PMID: 22751498 DOI: 10.1101/gad.190876.112] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The Ras/mitogen-activated protein kinase (MAPK) pathway plays a critical role in transducing mitogenic signals from receptor tyrosine kinases. Loss-of-function mutations in one feedback regulator of Ras/MAPK signaling, SPRED1 (Sprouty-related protein with an EVH1 domain), cause Legius syndrome, an autosomal dominant human disorder that resembles Neurofibromatosis-1 (NF1). Spred1 functions as a negative regulator of the Ras/MAPK pathway; however, the underlying molecular mechanism is poorly understood. Here we show that neurofibromin, the NF1 gene product, is a Spred1-interacting protein that is necessary for Spred1's inhibitory function. We show that Spred1 binding induces the plasma membrane localization of NF1, which subsequently down-regulates Ras-GTP levels. This novel mechanism for the regulation of neurofibromin provides a molecular bridge for understanding the overlapping pathophysiology of NF1 and Legius syndrome.
Collapse
Affiliation(s)
- Irma B Stowe
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94158, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Brems H, Pasmant E, Van Minkelen R, Wimmer K, Upadhyaya M, Legius E, Messiaen L. Review and update of SPRED1 mutations causing Legius syndrome. Hum Mutat 2012; 33:1538-46. [PMID: 22753041 DOI: 10.1002/humu.22152] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/07/2012] [Indexed: 01/24/2023]
Abstract
Legius syndrome presents as a mild neurofibromatosis type 1 (NF1) phenotype. Multiple café-au-lait spots and macrocephaly are present with or without axillary or inguinal freckling. Other typical NF1-associated features (Lisch nodules, bone abnormalities, neurofibromas, optic pathway gliomas, and malignant peripheral nerve sheath tumors) are systematically absent. Legius syndrome is caused by germline loss-of-function SPRED1 mutations, resulting in overactivation of the RAS-MAPK signal transduction cascade. The first families were identified in 2007. Here, we review all identified SPRED1 mutations and summarize molecular, clinical, and functional data. All mutations have been deposited in a database created using the Leiden Open Variation Database software and accessible at http://www.lovd.nl/SPRED1. At present, the database contains 89 different mutations identified in 146 unrelated probands, including 16 new variants described for the first time. The database contains a spectrum of mutations: 29 missense, 28 frameshift, 19 nonsense, eight copy number changes, two splicing, one silent, one in-frame deletion and a mutation affecting the initiation codon. Sixty-three mutations and deletions are definitely pathogenic or most likely pathogenic, eight SPRED1 mutations are probably benign rare variants, and 17 SPRED1 missense mutations are still unclassified and need further family and functional studies to help with the interpretation.
Collapse
Affiliation(s)
- Hilde Brems
- Department of Human Genetics, Catholic University Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
46
|
The systems biology of neurofibromatosis type 1 — Critical roles for microRNA. Exp Neurol 2012; 235:464-8. [DOI: 10.1016/j.expneurol.2011.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/17/2011] [Accepted: 10/25/2011] [Indexed: 01/07/2023]
|
47
|
Piard J, Verloes A, Cavé H, Peuchmaur M, Bennaceur S, Leheup B. Extensive abdominal lipomatosis in a patient with Noonan/LEOPARD syndrome (Noonan syndrome-Multiple Lentigines). Am J Med Genet A 2012; 158A:1406-10. [PMID: 22528600 DOI: 10.1002/ajmg.a.35329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 02/13/2012] [Indexed: 12/31/2022]
Abstract
Noonan syndrome (NS) is a tumor predisposing disorder. Leukemia is observed in 1-3% of patients with NS, with rare occurrences of solid tumors. It also appears to predispose to non-malignant tumors. We report on a 26-year-old female with features of Noonan syndrome-Multiple Lentigines and a heterozygous mutation: c.1517A > C-p.Gln506Pro in the PTPN11 gene. The patient developed an unusual extensive lipomatosis and we discuss possible relationship between her lipomatosis and NS.
Collapse
Affiliation(s)
- Juliette Piard
- Centre de Référence Syndromes Malformatifs et Anomalies du Développement, Service de Médecine Infantile III et Génétique Clinique, CHU de Nancy et PRES de l'Université de Lorraine, UHP, Nancy, France.
| | | | | | | | | | | |
Collapse
|
48
|
Denayer E, Chmara M, Brems H, Kievit AM, van Bever Y, Van den Ouweland AMW, Van Minkelen R, de Goede-Bolder A, Oostenbrink R, Lakeman P, Beert E, Ishizaki T, Mori T, Keymolen K, Van den Ende J, Mangold E, Peltonen S, Brice G, Rankin J, Van Spaendonck-Zwarts KY, Yoshimura A, Legius E. Legius syndrome in fourteen families. Hum Mutat 2011; 32:E1985-98. [PMID: 21089071 PMCID: PMC3038325 DOI: 10.1002/humu.21404] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Legius syndrome presents as an autosomal dominant condition characterized by café-au-lait macules with or without freckling and sometimes a Noonan-like appearance and/or learning difficulties. It is caused by germline loss-of-function SPRED1 mutations and is a member of the RAS-MAPK pathway syndromes. Most mutations result in a truncated protein and only a few inactivating missense mutations have been reported. Since only a limited number of patients has been reported up until now, the full clinical and mutational spectrum is still unknown. We report mutation data and clinical details in fourteen new families with Legius syndrome. Six novel germline mutations are described. The Trp31Cys mutation is a new pathogenic SPRED1 missense mutation. Clinical details in the 14 families confirmed the absence of neurofibromas, and Lisch nodules, and the absence of a high prevalence of central nervous system tumors. We report white matter T2 hyperintensities on brain MRI scans in 2 patients and a potential association between postaxial polydactyly and Legius syndrome. © 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Ellen Denayer
- Department of Human Genetics, Catholic University of Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
The SPRED1 Variants Repository for Legius Syndrome. G3-GENES GENOMES GENETICS 2011; 1:451-6. [PMID: 22384355 PMCID: PMC3276167 DOI: 10.1534/g3.111.000687] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/16/2011] [Indexed: 11/23/2022]
Abstract
Legius syndrome (LS) is an autosomal dominant disorder caused by germline loss-of-function mutations in the sprouty-related, EVH1 domain containing 1 (SPRED1) gene. The phenotype of LS is multiple café au lait macules (CALM) with other commonly reported manifestations, including intertriginous freckling, lipomas, macrocephaly, and learning disabilities including ADHD and developmental delays. Since the earliest signs of LS and neurofibromatosis type 1 (NF1) syndrome are pigmentary findings, the two are indistinguishable and individuals with LS may meet the National Institutes of Health diagnostic criteria for NF1 syndrome. However, individuals are not known to have an increased risk for developing tumors (compared with NF1 patients). It is therefore important to fully characterize the phenotype differences between NF1 and LS because the prognoses of these two disorders differ greatly. We have developed a mutation database that characterizes the known variants in the SPRED1 gene in an effort to facilitate this process for testing and interpreting results. This database is free to the public and will be updated quarterly.
Collapse
|
50
|
Laycock-van Spyk S, Jim HP, Thomas L, Spurlock G, Fares L, Palmer-Smith S, Kini U, Saggar A, Patton M, Mautner V, Pilz DT, Upadhyaya M. Identification of five novel SPRED1 germline mutations in Legius syndrome. Clin Genet 2011; 80:93-6. [PMID: 21649642 DOI: 10.1111/j.1399-0004.2010.01618.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|