1
|
Younger DS. Childhood muscular dystrophies. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:461-496. [PMID: 37562882 DOI: 10.1016/b978-0-323-98818-6.00024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Infancy- and childhood-onset muscular dystrophies are associated with a characteristic distribution and progression of motor dysfunction. The underlying causes of progressive childhood muscular dystrophies are heterogeneous involving diverse genetic pathways and genes that encode proteins of the plasma membrane, extracellular matrix, sarcomere, and nuclear membrane components. The prototypical clinicopathological features in an affected child may be adequate to fully distinguish it from other likely diagnoses based on four common features: (1) weakness and wasting of pelvic-femoral and scapular muscles with involvement of heart muscle; (2) elevation of serum muscle enzymes in particular serum creatine kinase; (3) necrosis and regeneration of myofibers; and (4) molecular neurogenetic assessment particularly utilizing next-generation sequencing of the genome of the likeliest candidates genes in an index case or family proband. A number of different animal models of therapeutic strategies have been developed for gene transfer therapy, but so far these techniques have not yet entered clinical practice. Treatment remains for the most part symptomatic with the goal of ameliorating locomotor and cardiorespiratory manifestations of the disease.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
2
|
Breton É, Légaré C, Overend G, Guay SP, Monckton D, Mathieu J, Gagnon C, Richer L, Gallais B, Bouchard L. DNA methylation at the DMPK gene locus is associated with cognitive functions in myotonic dystrophy type 1. Epigenomics 2020; 12:2051-2064. [PMID: 33301350 DOI: 10.2217/epi-2020-0328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Myotonic dystrophy type 1 (DM1) is caused by an unstable trinucleotide (CTG) expansion at the DMPK gene locus. Cognitive dysfunctions are often observed in the condition. We investigated the association between DMPK blood DNA methylation (DNAm) and cognitive functions in DM1, considering expansion length and variant repeats (VRs). Method: Data were obtained from 115 adult-onset DM1 patients. Molecular analyses consisted of pyrosequencing, small pool PCR and Southern blot hybridization. Cognitive functions were assessed by validated neuropsychological tests. Results: For patients without VRs (n = 103), blood DNAm at baseline independently contributed to predict cognitive functions 9 years later. Patients with VRs (n = 12) had different DNAm and cognitive profiles. Conclusion: DNAm allows to better understand DM1-related cognitive dysfunction etiology.
Collapse
Affiliation(s)
- Édith Breton
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada.,Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada
| | - Cécilia Légaré
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada.,Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada
| | - Gayle Overend
- Institute of Molecular, Cell & Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Simon-Pierre Guay
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada.,Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Darren Monckton
- Institute of Molecular, Cell & Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Jean Mathieu
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada.,Centre de recherche Charles-Le-Moyne-Saguenay-Lac-Saint-Jean sur les innovations en santé (CR-CSIS), Université de Sherbrooke, Saguenay, Québec G7H 5H6, Canada
| | - Cynthia Gagnon
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada.,Centre de recherche Charles-Le-Moyne-Saguenay-Lac-Saint-Jean sur les innovations en santé (CR-CSIS), Université de Sherbrooke, Saguenay, Québec G7H 5H6, Canada
| | - Louis Richer
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada.,Department of Health Sciences, Université du Québec à Chicoutimi (UQAC), Saguenay, Québec G7H 2B1, Canada
| | - Benjamin Gallais
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada.,Centre de recherche Charles-Le-Moyne-Saguenay-Lac-Saint-Jean sur les innovations en santé (CR-CSIS), Université de Sherbrooke, Saguenay, Québec G7H 5H6, Canada.,ÉCOBES - Recherche et transfert, Cégep de Jonquière, Saguenay, Québec G7X 7W2, Canada
| | - Luigi Bouchard
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada.,Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada.,Department of Medical Biology, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Chicoutimi, Saguenay, Québec G7H 5H6, Canada
| |
Collapse
|
3
|
Hildonen M, Knak KL, Dunø M, Vissing J, Tümer Z. Stable Longitudinal Methylation Levels at the CpG Sites Flanking the CTG Repeat of DMPK in Patients with Myotonic Dystrophy Type 1. Genes (Basel) 2020; 11:genes11080936. [PMID: 32823742 PMCID: PMC7465187 DOI: 10.3390/genes11080936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant multisystem disorder mainly characterized by gradual muscle loss, weakness, and delayed relaxation after muscle contraction. It is caused by an expanded CTG repeat in the 3′ UTR of DMPK, which is transcribed into a toxic gain-of-function mRNA that affects the splicing of a range of other genes. The repeat is unstable, with a bias towards expansions both in somatic cells and in the germline, which results in a tendency for earlier onset with each generation, as longer repeat lengths generally correlate with earlier onset. Previous studies have found hypermethylation in the regions flanking the repeat in congenital onset DM1 and in some patients with non-congenital DM1. We used pyrosequencing to investigate blood methylation levels in 68 patients with non-congenital DM1, compare the methylation levels between the blood and muscle, and assess whether methylation levels change over time in the blood. We found higher methylation levels in the blood of DM1 patients than in healthy controls and especially in the patients who had inherited the disease allele maternally. The methylation levels remained relatively stable over time and are a strong biomarker of the disease, as well as of the maternal inheritance of the disease.
Collapse
Affiliation(s)
- Mathis Hildonen
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark;
| | - Kirsten Lykke Knak
- Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (K.L.K.); (J.V.)
| | - Morten Dunø
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - John Vissing
- Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (K.L.K.); (J.V.)
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark;
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-2920-4855
| |
Collapse
|
4
|
Lanni S, Pearson CE. Molecular genetics of congenital myotonic dystrophy. Neurobiol Dis 2019; 132:104533. [PMID: 31326502 DOI: 10.1016/j.nbd.2019.104533] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/29/2019] [Accepted: 07/11/2019] [Indexed: 12/26/2022] Open
Abstract
Myotonic Dystrophy type 1 (DM1) is a neuromuscular disease showing strong genetic anticipation, and is caused by the expansion of a CTG repeat tract in the 3'-UTR of the DMPK gene. Congenital Myotonic Dystrophy (CDM1) represents the most severe form of the disease, with prenatal onset, symptoms distinct from adult onset DM1, and a high rate of perinatal mortality. CDM1 is usually associated with very large CTG expansions, but this correlation is not absolute and cannot explain the distinct clinical features and the strong bias for maternal transmission. This review focuses upon the molecular and epigenetic factors that modulate disease severity and might be responsible for CDM1. Changes in the epigenetic status of the DM1 locus and in gene expression have recently been observed. Increasing evidence supports a role of a CTCF binding motif as a cis-element, upstream of the DMPK CTG tract, whereby CpG methylation of this site regulates the interaction of the insulator protein CTCF as a modulating trans-factor responsible for the inheritance and expression of CDM1.
Collapse
Affiliation(s)
- Stella Lanni
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto M5G 0A4, Ontario, Canada
| | - Christopher E Pearson
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto M5G 0A4, Ontario, Canada; University of Toronto, Program of Molecular Genetics, Canada.
| |
Collapse
|
5
|
Légaré C, Overend G, Guay SP, Monckton DG, Mathieu J, Gagnon C, Bouchard L. DMPK gene DNA methylation levels are associated with muscular and respiratory profiles in DM1. NEUROLOGY-GENETICS 2019; 5:e338. [PMID: 31334355 PMCID: PMC6568328 DOI: 10.1212/nxg.0000000000000338] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/03/2022]
Abstract
Objective To assess the effects of dystrophia myotonica protein kinase (DMPK) DNA methylation (DNAme) epivariation on muscular and respiratory profiles in patients with myotonic dystrophy type 1 (DM1). Methods Phenotypes were assessed with standardized measures. Pyrosequencing of bisulfite-treated DNA was used to quantify DNAme levels in blood from 90 patients with DM1 (adult form). Modal CTG repeat length was assessed using small-pool PCR. The presence of Acil-sensitive variant repeats was also tested. Results DNAme levels upstream of the CTG expansion (exon and intron 11) were correlated with modal CTG repeat length (rs = −0.224, p = 0.040; rs = −0.317, p = 0.003; and rs = −0.241, p = 0.027), whereas correlations were observed with epivariations downstream of the CTG repeats (rs = 0.227; p = 0.037). The presence of a variant repeat was associated with higher DNAme levels at multiple CpG sites (up to 10% higher; p = 0.001). Stepwise multiple linear regression modeling showed that DNAme contributed significantly and independently to explain phenotypic variability in ankle dorsiflexor (3 CpGs: p = 0.001, 0.013, and 0.001), grip (p = 0.089), and pinch (p = 0.028) strengths and in forced vital capacity (2 CpGs: p = 0.002 and 0.021) and maximal inspiratory pressure (p = 0.012). Conclusions In addition to the CTG repeat length, DMPK epivariations independently explain phenotypic variability in DM1 and could thus improve prognostic accuracy for patients.
Collapse
Affiliation(s)
- Cécilia Légaré
- Department of Biochemistry (C.L., S.-P.G., L.B.), Université de Sherbrooke, Sherbrooke; ECOGENE-21 Biocluster (C.L., S.-P.G., L.B.), Chicoutimi, Québec, Canada; Groupe de Recherche interdisciplinaire sur les maladies neuromusculaires (C.L., J.M., C.G., L.B.), Saguenay, Canada; Institute of Molecular (G.O., D.G.M.), Cell and Systems Biology, University of Glasgow, United Kingdom; and Centre de Recherche Charles-Le-Moyne-Saguenay-Lac-StJean sur les innovations en santé (J.M., C.G.), Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada
| | - Gayle Overend
- Department of Biochemistry (C.L., S.-P.G., L.B.), Université de Sherbrooke, Sherbrooke; ECOGENE-21 Biocluster (C.L., S.-P.G., L.B.), Chicoutimi, Québec, Canada; Groupe de Recherche interdisciplinaire sur les maladies neuromusculaires (C.L., J.M., C.G., L.B.), Saguenay, Canada; Institute of Molecular (G.O., D.G.M.), Cell and Systems Biology, University of Glasgow, United Kingdom; and Centre de Recherche Charles-Le-Moyne-Saguenay-Lac-StJean sur les innovations en santé (J.M., C.G.), Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada
| | - Simon-Pierre Guay
- Department of Biochemistry (C.L., S.-P.G., L.B.), Université de Sherbrooke, Sherbrooke; ECOGENE-21 Biocluster (C.L., S.-P.G., L.B.), Chicoutimi, Québec, Canada; Groupe de Recherche interdisciplinaire sur les maladies neuromusculaires (C.L., J.M., C.G., L.B.), Saguenay, Canada; Institute of Molecular (G.O., D.G.M.), Cell and Systems Biology, University of Glasgow, United Kingdom; and Centre de Recherche Charles-Le-Moyne-Saguenay-Lac-StJean sur les innovations en santé (J.M., C.G.), Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada
| | - Darren G Monckton
- Department of Biochemistry (C.L., S.-P.G., L.B.), Université de Sherbrooke, Sherbrooke; ECOGENE-21 Biocluster (C.L., S.-P.G., L.B.), Chicoutimi, Québec, Canada; Groupe de Recherche interdisciplinaire sur les maladies neuromusculaires (C.L., J.M., C.G., L.B.), Saguenay, Canada; Institute of Molecular (G.O., D.G.M.), Cell and Systems Biology, University of Glasgow, United Kingdom; and Centre de Recherche Charles-Le-Moyne-Saguenay-Lac-StJean sur les innovations en santé (J.M., C.G.), Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada
| | - Jean Mathieu
- Department of Biochemistry (C.L., S.-P.G., L.B.), Université de Sherbrooke, Sherbrooke; ECOGENE-21 Biocluster (C.L., S.-P.G., L.B.), Chicoutimi, Québec, Canada; Groupe de Recherche interdisciplinaire sur les maladies neuromusculaires (C.L., J.M., C.G., L.B.), Saguenay, Canada; Institute of Molecular (G.O., D.G.M.), Cell and Systems Biology, University of Glasgow, United Kingdom; and Centre de Recherche Charles-Le-Moyne-Saguenay-Lac-StJean sur les innovations en santé (J.M., C.G.), Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada
| | - Cynthia Gagnon
- Department of Biochemistry (C.L., S.-P.G., L.B.), Université de Sherbrooke, Sherbrooke; ECOGENE-21 Biocluster (C.L., S.-P.G., L.B.), Chicoutimi, Québec, Canada; Groupe de Recherche interdisciplinaire sur les maladies neuromusculaires (C.L., J.M., C.G., L.B.), Saguenay, Canada; Institute of Molecular (G.O., D.G.M.), Cell and Systems Biology, University of Glasgow, United Kingdom; and Centre de Recherche Charles-Le-Moyne-Saguenay-Lac-StJean sur les innovations en santé (J.M., C.G.), Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada
| | - Luigi Bouchard
- Department of Biochemistry (C.L., S.-P.G., L.B.), Université de Sherbrooke, Sherbrooke; ECOGENE-21 Biocluster (C.L., S.-P.G., L.B.), Chicoutimi, Québec, Canada; Groupe de Recherche interdisciplinaire sur les maladies neuromusculaires (C.L., J.M., C.G., L.B.), Saguenay, Canada; Institute of Molecular (G.O., D.G.M.), Cell and Systems Biology, University of Glasgow, United Kingdom; and Centre de Recherche Charles-Le-Moyne-Saguenay-Lac-StJean sur les innovations en santé (J.M., C.G.), Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada
| |
Collapse
|
6
|
Barbé L, Lanni S, López-Castel A, Franck S, Spits C, Keymolen K, Seneca S, Tomé S, Miron I, Letourneau J, Liang M, Choufani S, Weksberg R, Wilson MD, Sedlacek Z, Gagnon C, Musova Z, Chitayat D, Shannon P, Mathieu J, Sermon K, Pearson CE. CpG Methylation, a Parent-of-Origin Effect for Maternal-Biased Transmission of Congenital Myotonic Dystrophy. Am J Hum Genet 2017; 100:488-505. [PMID: 28257691 PMCID: PMC5339342 DOI: 10.1016/j.ajhg.2017.01.033] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/26/2017] [Indexed: 12/13/2022] Open
Abstract
CTG repeat expansions in DMPK cause myotonic dystrophy (DM1) with a continuum of severity and ages of onset. Congenital DM1 (CDM1), the most severe form, presents distinct clinical features, large expansions, and almost exclusive maternal transmission. The correlation between CDM1 and expansion size is not absolute, suggesting contributions of other factors. We determined CpG methylation flanking the CTG repeat in 79 blood samples from 20 CDM1-affected individuals; 21, 27, and 11 individuals with DM1 but not CDM1 (henceforth non-CDM1) with maternal, paternal, and unknown inheritance; and collections of maternally and paternally derived chorionic villus samples (7 CVSs) and human embryonic stem cells (4 hESCs). All but two CDM1-affected individuals showed high levels of methylation upstream and downstream of the repeat, greater than non-CDM1 individuals (p = 7.04958 × 10−12). Most non-CDM1 individuals were devoid of methylation, where one in six showed downstream methylation. Only two non-CDM1 individuals showed upstream methylation, and these were maternally derived childhood onset, suggesting a continuum of methylation with age of onset. Only maternally derived hESCs and CVSs showed upstream methylation. In contrast, paternally derived samples (27 blood samples, 3 CVSs, and 2 hESCs) never showed upstream methylation. CTG tract length did not strictly correlate with CDM1 or methylation. Thus, methylation patterns flanking the CTG repeat are stronger indicators of CDM1 than repeat size. Spermatogonia with upstream methylation may not survive due to methylation-induced reduced expression of the adjacent SIX5, thereby protecting DM1-affected fathers from having CDM1-affected children. Thus, DMPK methylation may account for the maternal bias for CDM1 transmission, larger maternal CTG expansions, age of onset, and clinical continuum, and may serve as a diagnostic indicator.
Collapse
|
7
|
Santoro M, Masciullo M, Silvestri G, Novelli G, Botta A. Myotonic dystrophy type 1: role of CCG, CTC and CGG interruptions within DMPK alleles in the pathogenesis and molecular diagnosis. Clin Genet 2017; 92:355-364. [PMID: 27991661 DOI: 10.1111/cge.12954] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystem neuromuscular disease caused by a CTG triplet expansion in the 3'-untranslated region (3'-UTR) of DMPK gene. This CTG array is usually uninterrupted in both healthy and DM1 patients, but recent studies identified pathological variant expansions containing unstable CCG, CTC and CGG interruptions with a prevalence of 3-5% of cases. In this review, we will describe the clinical, molecular and genetic issues related to the occurrence of variant expansions associated with DM1. Indeed, the identification of these complex DMPK alleles leads to practical consequences in DM1 genetic counseling and testing, because these exams can give false negative results. Moreover, DM1 patients carrying interrupted alleles can manifest either additional atypical neurological symptoms or, conversely, mild, late-onset forms. Therefore, the prognosis of the disease in these patients is difficult to determine because of the great uncertainty about the genotype-phenotype correlations. We will discuss the putative effects of the variant DM1 alleles on the pathogenic disease mechanisms, including mitotic and meiotic repeats instability and splicing alteration typical of DM1 tissues. Interruptions within the DMPK expanded alleles could also interfere with the chromatin structure, the transcriptional activity of the DM1 locus and the interaction with RNA CUG-binding proteins.
Collapse
Affiliation(s)
- M Santoro
- Department of Neuroscience, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - M Masciullo
- SPInal REhabilitation Lab, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - G Silvestri
- Institute of Neurology, Fondazione Policlinico 'Gemelli', Rome, Italy
| | - G Novelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - A Botta
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
8
|
Santoro M, Fontana L, Masciullo M, Bianchi MLE, Rossi S, Leoncini E, Novelli G, Botta A, Silvestri G. Expansion size and presence of CCG/CTC/CGG sequence interruptions in the expanded CTG array are independently associated to hypermethylation at the DMPK locus in myotonic dystrophy type 1 (DM1). Biochim Biophys Acta Mol Basis Dis 2015; 1852:2645-52. [PMID: 26391753 DOI: 10.1016/j.bbadis.2015.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/09/2015] [Accepted: 09/16/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Massimo Santoro
- Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy.
| | - Luana Fontana
- Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | | | - Maria Laura Ester Bianchi
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Neurology, UCSC, Largo F. Vito 1, 00168 Rome Italy.
| | - Salvatore Rossi
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Neurology, UCSC, Largo F. Vito 1, 00168 Rome Italy.
| | - Emanuele Leoncini
- Institute of Public Health, Section of Hygiene, UCSC, Largo F. Vito 1, 00168 Rome, Italy.
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | - Annalisa Botta
- Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | - Gabriella Silvestri
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Neurology, UCSC, Largo F. Vito 1, 00168 Rome Italy.
| |
Collapse
|
9
|
Evans-Galea MV, Hannan AJ, Carrodus N, Delatycki MB, Saffery R. Epigenetic modifications in trinucleotide repeat diseases. Trends Mol Med 2013; 19:655-63. [DOI: 10.1016/j.molmed.2013.07.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 07/12/2013] [Accepted: 07/22/2013] [Indexed: 12/18/2022]
|
10
|
López Castel A, Nakamori M, Tomé S, Chitayat D, Gourdon G, Thornton CA, Pearson CE. Expanded CTG repeat demarcates a boundary for abnormal CpG methylation in myotonic dystrophy patient tissues. Hum Mol Genet 2010; 20:1-15. [PMID: 21044947 DOI: 10.1093/hmg/ddq427] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Myotonic dystrophy (DM1) affects multiple organs, shows age-dependent progression and is caused by CTG expansions at the DM1 locus. We determined the DM1 CpG methylation profile and CTG length in tissues from DM1 foetuses, DM1 adults, non-affected individuals and transgenic DM1 mice. Analysis included CTCF binding sites upstream and downstream of the CTG tract, as methylation-sensitive CTCF binding affects chromatinization and transcription of the DM1 locus. In humans, in a given foetus, expansions were largest in heart and smallest in liver, differing by 40-400 repeats; in adults, the largest expansions were in heart and cerebral cortex and smallest in cerebellum, differing by up to 5770 repeats in the same individual. Abnormal methylation was specific to the mutant allele. In DM1 adults, heart, liver and cortex showed high-to-moderate methylation levels, whereas cerebellum, kidney and skeletal muscle were devoid of methylation. Methylation decreased between foetuses and adults. Contrary to previous findings, methylation was not restricted to individuals with congenital DM1. The expanded repeat demarcates an abrupt boundary of methylation. Upstream sequences, including the CTCF site, were methylated, whereas the repeat itself and downstream sequences were not. In DM1 mice, expansion-, tissue- and age-specific methylation patterns were similar but not identical to those in DM1 individuals; notably in mice, methylation was present up- and downstream of the repeat, but greater upstream. Thus, in humans, the CpG-free expanded CTG repeat appears to maintain a highly polarized pattern of CpG methylation at the DM1 locus, which varies markedly with age and tissues.
Collapse
Affiliation(s)
- Arturo López Castel
- Genetics and Genome Biology, Department of Pediatrics, The Hospital for Sick Children, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
11
|
Gorbunova V, Seluanov A, Mittelman D, Wilson JH. Genome-wide demethylation destabilizes CTG.CAG trinucleotide repeats in mammalian cells. Hum Mol Genet 2004; 13:2979-89. [PMID: 15459182 DOI: 10.1093/hmg/ddh317] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many neurological diseases, including myotonic dystrophy, Huntington's disease and several spinocerebellar ataxias, result from intergenerational increases in the length of a CTG.CAG repeat tract. Although the basis for intergenerational repeat expansion is unclear, repeat tracts are especially unstable during germline development and production of gametes. Mammalian development is characterized by waves of genome-wide demethylation and remethylation. To test whether changes in methylation status might contribute to trinucleotide repeat instability, we examined the effects of DNA methyltransferase inhibitors on trinucleotide repeat stability in mammalian cells. Using a selectable genetic system for detection of repeat contractions in CHO cells, we showed that the rate of contractions increased >1000-fold upon treatment with the DNA methyltransferase inhibitor 5-aza-deoxycytidine (5-aza-CdR). The link between DNA demethylation and repeat instability was strengthened by similar results obtained with hydralazine treatment, which inhibits expression of DNA methyltransferase. In human cells from myotonic dystrophy patients, treatment with 5-aza-CdR strongly destabilized repeat tracts in the DMPK gene, with a clear bias toward expansion. The bias toward expansion events and changes in repeat length that occur in jumps, rather than by accumulation of small changes, are reminiscent of the intergenerational repeat instability observed in human patients. The dramatic destabilizing effect of DNA methyltransferase inhibitors supports the hypothesis that changes in methylation patterns during epigenetic reprogramming may trigger the intergenerational repeat expansions that lead to disease.
Collapse
Affiliation(s)
- Vera Gorbunova
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
12
|
Zeesman S, Carson N, Whelan DT. Paternal transmission of the congenital form of myotonic dystrophy type 1: a new case and review of the literature. AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 107:222-6. [PMID: 11807903 DOI: 10.1002/ajmg.10141] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant trinucleotide repeat disorder that shows anticipation. The mildest manifestations of the DM gene are usually noted in individuals with the smallest repeat sizes, while congenital myotonic dystrophy (CDM) is the most common clinical outcome of the larger expansions. For many years, it was thought that CDM could only be maternally transmitted. However, in the last few years, cases of paternal transmission of CDM have been described. We report a child with the CDM phenotype and 1, 800 CTG repeats born to an asymptomatic father with 65 repeats and compare this case to the four currently in the literature. We note that polyhydramnios was present in the majority of cases and that all fathers whose status was known had small repeat sizes and/or were asymptomatic at the time of their child's birth. Although it may be unusual, the possibility of the paternal transmission of CDM should be mentioned when counseling families with DM. The men who are at highest risk may be those who have small repeats sizes and are asymptomatic.
Collapse
Affiliation(s)
- Susan Zeesman
- Department of Pediatrics, McMaster University, Ontario, Canada.
| | | | | |
Collapse
|
13
|
Affiliation(s)
- J D Waring
- Solange Gauthier Karsh Laboratory, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | | |
Collapse
|
14
|
Tapscott SJ, Klesert TR, Widrow RJ, Stöger R, Laird CD. Fragile-X syndrome and myotonic dystrophy: parallels and paradoxes. Curr Opin Genet Dev 1998; 8:245-53. [PMID: 9610417 DOI: 10.1016/s0959-437x(98)80148-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fragile-X syndrome and myotonic dystrophy are caused by triplet repeat expansions embedded in CpG islands in the transcribed non-coding regions of the FMR1 and the DMPK genes, respectively. Although initial reports emphasized differences in the mechanisms by which the expanded triplet repeats caused these diseases, results published in the past year highlight remarkable parallels in the likely molecular etiologies. At both loci, expansion is associated with altered chromatin, aberrant methylation, and suppressed expression of the adjacent FMR1 and DMAHP genes, implicating epigenetic mediation of these genetic diseases.
Collapse
Affiliation(s)
- S J Tapscott
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
| | | | | | | | | |
Collapse
|
15
|
Steinbach P, Gläser D, Vogel W, Wolf M, Schwemmle S. The DMPK gene of severely affected myotonic dystrophy patients is hypermethylated proximal to the largely expanded CTG repeat. Am J Hum Genet 1998; 62:278-85. [PMID: 9463318 PMCID: PMC1376887 DOI: 10.1086/301711] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Using methylation-sensitive restriction enzymes, we characterized the methylation pattern on the 5' side of the CTG repeat in the DMPK gene of normal individuals and of patients affected with myotonic dystrophy, showing expansions of the repetitive sequence. The gene segment analyzed corresponds to the genomic SacI-HindIII fragment carrying exons 11-15. There is constitutive methylation in intron 12 at restriction sites of SacII and HhaI, localized 1,159-1,232 bp upstream of the CTG repeat, whereas most, if not all, of the other sites of SacII, HhaI, and HpaII in this region are unmethylated, in normal individuals and most of the patients. In a number of young and severely affected patients, however, complete methylation of these restriction sites was found in the mutated allele. In most of these patients, the onset of the disease was congenital. Preliminary in vivo footprinting data gave evidence for protein-DNA contact in normal genes at an Sp1 consensus binding site upstream of the CTG repeat and for a significant reduction of this interaction in cells with a hypermethylated DMPK gene.
Collapse
Affiliation(s)
- P Steinbach
- Abteilung Medizinische Genetik, Universitat Ulm, Klinikum, Ulm, Germany.
| | | | | | | | | |
Collapse
|
16
|
Heath SK, Carne S, Hoyle C, Johnson KJ, Wells DJ. Characterisation of expression of mDMAHP, a homeodomain-encoding gene at the murine DM locus. Hum Mol Genet 1997; 6:651-7. [PMID: 9158137 DOI: 10.1093/hmg/6.5.651] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We examined the expression of the murine homologue of myotonic dystrophy associated homeodomain protein (mDMAHP) using two different strategies. The first approach, RT-PCR, detected spliced transcripts in a wide range of embryonic and adult tissues, in a pattern overlapping substantially with the expression of mDMPK. A second approach, the generation of transgenic mice expressing the lacZ reporter gene from a 4.3 kb promoter fragment, also demonstrated expression in a range of tissues with potential links to the phenotype in myotonic dystrophy. We conclude that murine DMAHP has a similar pattern of expression to human DMAHP and will serve as a useful model for functional studies of this gene, although species differences, such as the reduced CpG island (1.8 kb compared with 3.5 kb) must be carefully considered.
Collapse
Affiliation(s)
- S K Heath
- Department of Pharmacology, Charing Cross & Westminster Medical School, London, UK
| | | | | | | | | |
Collapse
|
17
|
Wenger SL, Giangreco CA, Tarleton J, Wessel HB. Inability to induce fragile sites at CTG repeats in congenital myotonic dystrophy. AMERICAN JOURNAL OF MEDICAL GENETICS 1996; 66:60-3. [PMID: 8957513 DOI: 10.1002/(sici)1096-8628(19961202)66:1<60::aid-ajmg13>3.0.co;2-o] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Myotonic dystrophy (DM) is a trinucleotide repeat syndrome which can contain 50 to over 2,000 CTG repeats in affected individuals, but does not express a fragile site. Although one prior study [Jalal et al., Am J Med Genet 46:441-443, 1993] did not find evidence of fragility at 19q13.3 in six individuals affected with DM using induction protocols for folate sensitive fragile sites, other chemicals may induce fragile site expression at this site. In an attempt to induce fragile sites at 19q13.3, blood cultures from four congenital DM cases and four control individuals treated with fluorodeoxyuridine (folate-sensitive rare fragile sites), bromodeoxyurdine (rare and common fragile sites), aphidicolin (common fragile sites), and 5-azacytidine (common fragile sites) were harvested using routine cytogenetic technique. Slides were solid stained and 100 cells were examined for fragile site expression, particularly on F group chromosomes. The latter were photographed prior to destaining and G-banded to verify chromosome and band location of breakage. No culture conditions induced a fragile site at band 19q13.3 at > 1% expression in patients with congenital DM. Our results suggest that CTG repeats, even when present in > 1,000 copies, may behave differently from other large expansions which are associated with fragile sites. The CTG repeats in DM are not associated with a methylated CpG island, as are folate-sensitive fragile sites, which most likely plays a role in the expression of fragile sites at the trinucleotide repetitive site.
Collapse
Affiliation(s)
- S L Wenger
- Department of Pediatrics, University of Pittsburgh, Children's Hospital of Pittsburgh, Pennsylvania 15213-2583, USA
| | | | | | | |
Collapse
|
18
|
Affiliation(s)
- M G Hamshere
- Department of Ginetics, Queen's Medical Centre, University of Nottingham, UK.
| | | |
Collapse
|
19
|
Harris S, Moncrieff C, Johnson K. Myotonic dystrophy: will the real gene please step forward! Hum Mol Genet 1996; 5 Spec No:1417-23. [PMID: 8875246 DOI: 10.1093/hmg/5.supplement_1.1417] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The mutation underlying myotonic dystrophy (DM) was identified at the end of 1991 amidst great rejoicing from the patients supporting the research and, not least, from those who spent so long searching for it. Subsequently, the molecular genetic phenomena associated with DM have been clearly explained by the transmission behaviour of the expanding repeat, which remains the only mutation that has been described in patients. We understand the molecular basis of anticipation, why the severe congenital form is almost exclusively transmitted by affected mothers and we have widely accepted models of the population genetics of DM. Yet, despite all these clearly explained molecular events, we appear to be hardly any closer to understanding the molecular pathology of DM than when the mutation was first identified. To understand the reason for this, we have to look in detail at the mutation itself, and in particular at the locus and its complex nuances. In doing so, we begin to realise that DM is unique amongst the Mendelianly inherited disorders, in that the mutation, because of its location in a very gene-rich region of the genome, probably simultaneously renders several genes dysfunctional. The somatic heterogeneity of the repeat, coupled with the involvement of several genes, accounts for the pleiotropy observed in the phenotype. Added to this complexity is the uncertainty of the level at which gene dysfunction or gain of function is occurring. It is possibly at the level of DNA/chromatin structure and/or RNA regulation/processing, and all of these pathways may, in different tissues, contribute to the final phenotype.
Collapse
Affiliation(s)
- S Harris
- Division of Molecular Genetics, IBLS, University of Glasgow, Anderson College, UK
| | | | | |
Collapse
|
20
|
Wöhrle D, Schwemmle S, Steinbach P. DNA methylation and triplet repeat stability: new proposals addressing actual questions on the CGG repeat of fragile X syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS 1996; 64:266-7. [PMID: 8844061 DOI: 10.1002/ajmg.1320640202] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
21
|
Abstract
Evidence for recombination suppression has been identified in linkage studies of several unstable DNA diseases. Also sex-specific changes in recombination frequency have been detected at the loci of Huntington's disease and myotonic dystrophy. It can be hypothesized that meiotic recombination is regulated by genome-wide genomic imprinting and that changes in meiotic recombination imply the presence of the genomic imprinting defect. If aberrant recombination at the locus of trinucleotide repeat expansion is verified, new theoretical and experimental opportunities will arise in studies on the role of genomic imprinting in the unstable DNA disease.
Collapse
Affiliation(s)
- A Petronis
- Neurogenetics Section, Clarke Institute of Psychiatry, Toronto, Ontario, Canada.
| |
Collapse
|
22
|
Abstract
Trinucleotide repeat expansions have been identified as the underlying mutation in an increasing number of human genetic diseases, such as fragile site syndromes, myotonic dystrophy and several neurodegenerative disorders including Huntington's disease. By an unknown mechanism, polymorphic GC-rich triplet repeats expand in all these diseases. The expansions of a CCG repeat in fragile-site-associated disorders and the CTG repeat (in the 3'-untranslated region of the myotonin kinase gene) causing myotonic dystrophy are very large, whereas small expansions of CAG repeats have been identified in the open reading frame of genes in a number of neurological genetic disorders.
Collapse
Affiliation(s)
- H Hummerich
- Genome Analysis Laboratory, Imperial Cancer Research Fund, London, UK
| | | |
Collapse
|
23
|
Otten AD, Tapscott SJ. Triplet repeat expansion in myotonic dystrophy alters the adjacent chromatin structure. Proc Natl Acad Sci U S A 1995; 92:5465-9. [PMID: 7777532 PMCID: PMC41715 DOI: 10.1073/pnas.92.12.5465] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Myotonic dystrophy is caused by an expansion of a CTG triplet repeat sequence in the 3' noncoding region of a protein kinase gene, yet the mechanism by which the triplet repeat expansion causes disease remains unknown. This report demonstrates that a DNase I hypersensitive site is positioned 3' of the triplet repeat in the wild-type allele in both fibroblasts and skeletal muscle cells. In three unrelated individuals with myotonic dystrophy that have large expansions of the triplet repeat, the allele with the triplet repeat expansion exhibited both overall DNase I resistance and inaccessibility of nucleases to the adjacent hypersensitive site. These results indicate that the triplet repeat expansion alters the adjacent chromatin structure, establishing a region of condensed chromatin, and suggests a molecular mechanism for myotonic dystrophy.
Collapse
Affiliation(s)
- A D Otten
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98104, USA
| | | |
Collapse
|
24
|
Chatkupt S, Antonowicz M, Johnson WG. Parents do matter: genomic imprinting and parental sex effects in neurological disorders. J Neurol Sci 1995; 130:1-10. [PMID: 7650524 DOI: 10.1016/0022-510x(94)00284-u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Genomic imprinting is a recently recognized phenomenon of differential expression of genetic material depending upon whether the genetic material has come from the male or female parent. This process of differential phenotypic expression involves mammalian development both in the normal and abnormal situations, resulting in parental sex effects. However, some parental sex effects may be due to other mechanisms such as mitochondrial inheritance. In the following article, evidence for genomic imprinting in experimental animals and in diseases are summarized. Relevant human neurological disorders manifesting parental sex effects discussed here include myotonic dystrophy, Huntington's disease, fragile X syndrome, spinocerebellar ataxia type 1, and neurofibromatosis type 1 and 2. A possible mechanism of imprinting involves the processes of methylation imprint and replication imprint. The knowledge of imprinting is helpful in clinical practice particularly in the areas of genetic counseling, prenatal diagnosis, and possible future gene therapy.
Collapse
Affiliation(s)
- S Chatkupt
- Department of Neurosciences, UMDNJ-New Jersey Medical School, Newark 07103, USA
| | | | | |
Collapse
|
25
|
Abstract
In the past 3 years, seven human neurological disorders have been found to be associated with an abnormal number of unstable trinucleotide repeats within exons or non-expressed regions of a gene. These forms of mutations are called dynamic mutations. The expansion in copy number of trinucleotide repeats may represent a large number of hereditary disorders. The correlation between the length of the repeated size and the disease severity and variable onset has provided some genetic explanation for a phenomenon called anticipation. However, there are numerous questions which cannot be explained by anticipation. Many other factors such as genomic imprinting and variable DNA methylation may also contribute to the puzzling features of these phenotypes.
Collapse
Affiliation(s)
- B S Shastry
- Eye Research Institute, Oakland University, Rochester, Michigan 48309-4401
| |
Collapse
|
26
|
Ashizawa T, Anvret M, Baiget M, Barceló JM, Brunner H, Cobo AM, Dallapiccola B, Fenwick RG, Grandell U, Harley H. Characteristics of intergenerational contractions of the CTG repeat in myotonic dystrophy. Am J Hum Genet 1994; 54:414-23. [PMID: 8116611 PMCID: PMC1918128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In myotonic dystrophy (DM), the size of a CTG repeat in the DM kinase gene generally increases in successive generations with clinical evidence of anticipation. However, there have also been cases with an intergenerational contraction of the repeat. We examined 1,489 DM parent-offspring pairs, of which 95 (6.4%) showed such contractions in peripheral blood leukocytes (PBL). In 56 of the 95 pairs, clinical data allowed an analysis of their anticipation status. It is surprising that anticipation occurred in 27 (48%) of these 56 pairs, while none clearly showed a later onset of DM in the symptomatic offspring. The contraction occurred in 76 (10%) of 753 paternal transmissions and in 19 (3%) of 736 maternal transmissions. Anticipation was observed more frequently in maternal (85%) than in paternal (37%) transmissions (P < .001). The parental repeat size correlated with the size of intergenerational contraction (r2 = .50, P << .001), and the slope of linear regression was steeper in paternal (-.62) than in maternal (-.30) transmissions (P << .001). Sixteen DM parents had multiple DM offspring with the CTG repeat contractions. This frequency was higher than the frequency expected from the probability of the repeat contractions (6.4%) and the size of DM sib population (1.54 DM offspring per DM parent, in 968 DM parents). We conclude that (1) intergenerational contractions of the CTG repeat in leukocyte DNA frequently accompanies apparent anticipation, especially when DM is maternally transmitted, and (2) the paternal origin of the repeat and the presence of the repeat contraction in a sibling increase the probability of the CTG repeat contraction.
Collapse
Affiliation(s)
- T Ashizawa
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hofmann-Radvanyi H, Junien C. Myotonic dystrophy: over-expression or/and under-expression? A critical review on a controversial point. Neuromuscul Disord 1993; 3:497-501. [PMID: 8186700 DOI: 10.1016/0960-8966(93)90104-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Myotonic dystrophy (DM) results from the amplification of an unstable (CTG)n sequence in the 3' untranslated region of the myotonin-protein kinase (MT-PK) gene. The expression of the enlarged allele in DM patients with a number of repeats below or beyond 200, was analysed by three different groups. Two groups showed a decreased or absent expression of mutant alleles in DM adults, in congenitally affected infants (CDM) and in an affected fetus. On the contrary, another group reported the increased expression of the mutated allele in several tissues of a CDM infant. These discrepancies may be explained by the different methods used, the small number of patients, the individuals and tissues used as controls, or reflect the use of primers located in different regions of the MT-PK gene.
Collapse
|