1
|
Mehawej C, Maalouf JE, Abdelkhalik M, Mahfouz P, Chouery E, Megarbane A. CNV Analysis through Exome Sequencing Reveals a Large Duplication Involved in Sex Reversal, Neurodevelopmental Delay, Epilepsy and Optic Atrophy. Genes (Basel) 2024; 15:901. [PMID: 39062680 PMCID: PMC11275410 DOI: 10.3390/genes15070901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Duplications on the short arm of chromosome X, including the gene NR0B1, have been associated with gonadal dysgenesis and with male to female sex reversal. Additional clinical manifestations can be observed in the affected patients, depending on the duplicated genomic region. Here we report one of the largest duplications on chromosome X, in a Lebanese patient, and we provide the first comprehensive review of duplications in this genomic region. CASE PRESENTATION A 2-year-old female patient born to non-consanguineous Lebanese parents, with a family history of one miscarriage, is included in this study. The patient presents with sex reversal, dysmorphic features, optic atrophy, epilepsy, psychomotor and neurodevelopmental delay. Single nucleotide variants and copy number variants analysis were carried out on the patient through exome sequencing (ES). This showed an increased coverage of a genomic region of around 23.6 Mb on chromosome Xp22.31-p21.2 (g.7137718-30739112) in the patient, suggestive of a large duplication encompassing more than 60 genes, including the NR0B1 gene involved in sex reversal. A karyotype analysis confirmed sex reversal in the proband presenting with the duplication, and revealed a balanced translocation between the short arms of chromosomes X and 14:46, X, t(X;14) (p11;p11) in her/his mother. CONCLUSIONS This case highlights the added value of CNV analysis from ES data in the genetic diagnosis of patients. It also underscores the challenges encountered in announcing unsolicited incidental findings to the family.
Collapse
Affiliation(s)
- Cybel Mehawej
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon; (C.M.); (E.C.)
| | - Joy El Maalouf
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon; (J.E.M.); (P.M.)
| | - Mohamad Abdelkhalik
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon; (J.E.M.); (P.M.)
| | - Peter Mahfouz
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon; (J.E.M.); (P.M.)
| | - Eliane Chouery
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon; (C.M.); (E.C.)
| | - Andre Megarbane
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon; (C.M.); (E.C.)
- Institut Jérôme Lejeune, 75015 Paris, France
| |
Collapse
|
2
|
Podolska A, Kobelt A, Fuchs S, Hackmann K, Rump A, Schröck E, Kutsche K, Di Donato N. Functional monosomy of 6q27-qter and functional disomy of Xpter-p22.11 due to X;6 translocation with an atypical X-inactivation pattern. Am J Med Genet A 2017; 173:1334-1341. [PMID: 28371302 DOI: 10.1002/ajmg.a.38183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/20/2016] [Accepted: 01/26/2017] [Indexed: 12/20/2022]
Abstract
Pattern of X chromosome inactivation (XCI) is typically random in females. However, chromosomal rearrangements affecting the X chromosome can result in XCI skewing due to cell growth disadvantage. In case of an X;autosome translocation, this usually leads to an XCI pattern of 100:0 with the derivative X being the active one in the majority of females. A de novo balanced X;6 translocation [46,X,t(X;6)(p22.1;q27)] and a completely skewed XCI pattern (100:0) were detected in a female patient with microcephaly, cerebellar vermis hypoplasia, heart defect, and severe developmental delay. We mapped the breakpoint regions using fluorescence in situ hybridization and found the X-linked gene POLA1 to be disrupted. POLA1 codes for the catalytic subunit of the polymerase α-primase complex which is responsible for initiation of the DNA replication process; absence of POLA1 is probably incompatible with life. Consequently, by RBA banding we determined which of the X chromosomes was the active one in the patient. In all examined lymphocytes the wild-type X chromosome was active. We propose that completely skewed XCI favoring the normal X chromosome resulted from death of cells with an active derivative X that was caused by a non-functional POLA1 gene. In summary, we conclude that functional monosomy of 6q27-qter and functional disomy of Xpter-p22.11 are responsible for the clinical phenotype of the patient. This case demonstrates the importance of determining which one of the X chromosomes underwent inactivation to correlate clinical features of a female with an X;autosome translocation with the nature of the genetic alteration.
Collapse
Affiliation(s)
- Anna Podolska
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Sigrid Fuchs
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karl Hackmann
- Institute for Clinical Genetics, TU Dresden, Dresden, Germany
| | - Andreas Rump
- Institute for Clinical Genetics, TU Dresden, Dresden, Germany
| | - Evelin Schröck
- Institute for Clinical Genetics, TU Dresden, Dresden, Germany
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
3
|
Nistal M, Paniagua R, González-Peramato P, Reyes-Múgica M. Perspectives in Pediatric Pathology, Chapter 16. Klinefelter Syndrome and Other Anomalies in X and Y Chromosomes. Clinical and Pathological Entities. Pediatr Dev Pathol 2016; 19:259-77. [PMID: 25105890 DOI: 10.2350/14-06-1512-pb.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Manuel Nistal
- 1 Department of Pathology, Hospital La Paz, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo No. 2, Madrid 28029, Spain
| | - Ricardo Paniagua
- 2 Department of Cell Biology, Universidad de Alcala, Madrid, Spain
| | - Pilar González-Peramato
- 1 Department of Pathology, Hospital La Paz, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo No. 2, Madrid 28029, Spain
| | - Miguel Reyes-Múgica
- 3 Department of Pathology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| |
Collapse
|
4
|
Salaria M, Burgess T, Setyapranata S, Winship I. Phenotype in novel Xp duplication. Am J Med Genet A 2012; 158A:2342-6. [PMID: 22887700 DOI: 10.1002/ajmg.a.35538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 05/30/2012] [Indexed: 11/08/2022]
Abstract
A novel duplication of Xp is described. A 20-year-old man had minor anomalies ichthyosis, congenital heart defect, varicose veins, and hypogonadotropic hypogonadism. He had an interstitial duplication of approximately 2.8 Mb from chromosome region Xp22.31p22.2. His similarly affected brother and asymptomatic mother were shown to carry the same duplication. Knowledge about this duplication and its resultant phenotype will add to our understanding of the role of X chromosome duplications.
Collapse
Affiliation(s)
- Manju Salaria
- Genetic Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
5
|
PICCIONE MARIA, SANFILIPPO CINZIA, CAVANI SIMONA, SALATIELLO PATRIZIA, MALACARNE MICHELA, PIERLUIGI MAURO, FICHERA MARCO, LUCIANO DANIELA, CORSELLO GIOVANNI. Molecular and clinical characterization of a small duplication Xp in a human female with psychiatric disorders. J Genet 2011; 90:473-7. [DOI: 10.1007/s12041-011-0096-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
6
|
Thorson L, Bryke C, Rice G, Artzer A, Schilz C, Israel J, Huber S, Laffin J, Raca G. Clinical and molecular characterization of overlapping interstitial Xp21-p22 duplications in two unrelated individuals. Am J Med Genet A 2010; 152A:904-15. [DOI: 10.1002/ajmg.a.33340] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Golabi M, James AW, Desai N, Culver K, Cotter PD. Gardner-Silengo-Wachtel or genito-palato-cadiac syndrome with associated autosomal aneuploidy. Am J Med Genet A 2009; 149A:693-7. [DOI: 10.1002/ajmg.a.32755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Ghosh A, Higgins L, Larkins SA, Miller C, Ostojic N, Martin WL, Kilby MD. Prenatal diagnosis and prenatal imaging of ade novo46,X,der(Y)t(X;Y)(p22.13;q11.23) leading to functional disomy for the distal end of the X chromosome short arm from Xp22.13 in a phenotypically male fetus with posterior fossa abnormalities. Prenat Diagn 2008; 28:1068-71. [DOI: 10.1002/pd.2089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
|
10
|
Tzschach A, Chen W, Erdogan F, Hoeller A, Ropers HH, Castellan C, Ullmann R, Schinzel A. Characterization of interstitial Xp duplications in two families by tiling path array CGH. Am J Med Genet A 2007; 146A:197-203. [DOI: 10.1002/ajmg.a.32070] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Robertshaw BA, MacPherson J. Scope for more genetic testing in learning disability. Case report of an inherited duplication on the X-chromosome. Br J Psychiatry 2006; 189:99-101. [PMID: 16880477 DOI: 10.1192/bjp.189.2.99] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
There have been major advances in the past few years in our understanding of the X-linked learning disabilities. The most common of these is the fragile-X syndrome, but the number of other gene defects that are now recognised to be linked with learning disability is increasing year on year. We describe one family displaying a family displaying a rare X-linked abnormality. Repeat genetic testing was requested for a family member with mild learning disability when, following chromosomal analysis for her brother, it became known that he had a genetic defect. The genetic defect 46, Xdup(X) (p22.13 p22.31) was identified. To our knowledge this is the first time this precise configuration has been demonstrated. We conclude that genetic testing for individuals with learning disability is worthwhile, even when there may be only a low index of suspicion.
Collapse
Affiliation(s)
- B A Robertshaw
- Sniperley House Learning Disability Centre, Earls House, Lanchester Road, Durham City DH1 5RD, UK.
| | | |
Collapse
|
12
|
Corssmit EPM, Seminara SB, Pitteloud N, Fliers E. Kallmann syndrome in a 47,XXX patient. Am J Med Genet A 2005; 139:52-3. [PMID: 16222664 DOI: 10.1002/ajmg.a.30996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Sanlaville D, Vialard F, Thépot F, Vue-Droy L, Ardalan A, Nizard P, Corré A, Devauchelle B, Martin-Denavit T, Nouchy M, Malan V, Taillemite JL, Portnoï MF. Functional disomy of Xp including duplication ofDAX1gene with sex reversal due to t(X;Y)(p21.2;p11.3). Am J Med Genet A 2004; 128A:325-30. [PMID: 15216557 DOI: 10.1002/ajmg.a.30115] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Translocations involving the short arms of the X and Y in human chromosomes are uncommon. One of the best-known consequences of such exchanges is sex reversal in 46,XX males and some 46,XY females, due to exchange in the paternal germline of terminal portions of Xp and Yp, including the SRY gene. Translocations of Xp segments to the Y chromosome result in functional disomy of the X chromosome with an abnormal phenotype and sex reversal if the DSS locus, mapped in Xp21, is present. We describe a 7-month-old girl with severe psychomotor retardation, minor anomalies, malformations, and female external genitalia. Cytogenetic analysis showed a 46,X,mar karyotype. The marker was identified as a der(Y)t(Xp;Yp) by fluorescence in situ hybridisation analysis. Further studies with specific locus probes of X and Y chromosomes made it possible to clarify the break points and demonstrated the presence of two copies of the DAX1 gene, one on the normal X chromosome and one on the der(Y). The karyotype of the child was: 46,X,der(Y)t(X;Y)(p21.2;p11.3). The syndrome resulted from functional disomy Xp21.2-pter, with sex reversal related to the presence of two active copies of the DAX1 gene located in Xp21. Few cases of Xp disomy with sex reversal have been reported, primarily related to Xp duplications with 46,XY karyotype, and less often to Xp;Yq translocations. To our knowledge, our patient with sex reversal and a t(Xp;Yp) is the second reported case.
Collapse
|
14
|
Binder G, Eggermann T, Enders H, Ranke MB, Dufke A. Tall stature, gonadal dysgenesis, and stigmata of Turner's syndrome caused by a structurally altered X chromosome. J Pediatr 2001; 138:285-7. [PMID: 11174634 DOI: 10.1067/mpd.2001.110277] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genetic analysis in a tall 14-year-old girl with gonadal dysgenesis and some stigmata of Turner's syndrome revealed a duplication of the short arm in a monocentric X chromosome with partial loss of Xq. We suggest that triple gene dosage of SHOX and estrogen deficiency caused the unique overgrowth.
Collapse
Affiliation(s)
- G Binder
- University-Children's Hospital and Growth Research Center, Tübingen, Germany
| | | | | | | | | |
Collapse
|
15
|
Matsuo M, Muroya K, Kosaki K, Ishii T, Fukushima Y, Anzo M, Ogata T. Random X-inactivation in a girl with duplication Xp11.21-p21.3: Report of a patient and review of the literature. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1096-8628(19990903)86:1<44::aid-ajmg8>3.0.co;2-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Stavropoulou C, Mignon C, Delobel B, Moncla A, Depetris D, Croquette MF, Mattei MG. Severe phenotype resulting from an active ring X chromosome in a female with a complex karyotype: characterisation and replication study. J Med Genet 1998; 35:932-8. [PMID: 9832041 PMCID: PMC1051487 DOI: 10.1136/jmg.35.11.932] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We report on the characterisation of a complex chromosome rearrangement, 46,X,del(Xq)/47,X,del(Xq),+r(X), in a female newborn with multiple malformations. Cytogenetic and molecular methods showed that the del(Xq) contains the XIST locus and is non-randomly inactivated in all metaphases. The tiny r(X) chromosome gave a positive FISH signal with UBE1, ZXDA, and MSN cosmid probes, but not with a XIST cosmid probe. Moreover, it has an active status, as shown by a very short (three hour) terminal BrdU pulse followed by fluorescent anti-BrdU antibody staining. The normal X is of paternal origin and both rearranged chromosomes originate from the same maternal chromosome. We suggest that both abnormal chromosomes result from the three point breakage of a maternal isodicentric idic(X)(q21.1). Finally, the phenotype of our patient is compared to other published cases and, despite the absence of any 45,X clone, it appears very similar to those with a 45,X/46,X,r(X) karyotype where the tiny r(X) is active.
Collapse
Affiliation(s)
- C Stavropoulou
- INSERM U491, Faculté de Médecine Timone, Marseille, France
| | | | | | | | | | | | | |
Collapse
|