1
|
Achard S, Campion M, Parodi M, MacAskill M, Hochet B, Simon F, Rouillon I, Jonard L, Serey-Gaut M, Denoyelle F, Loundon N, Marlin S. Recurrent Benign Paroxysmal Positional Vertigo in DFNB16 Patients with Biallelic STRC Gene Deletions. Otol Neurotol 2023; 44:e241-e245. [PMID: 36764706 DOI: 10.1097/mao.0000000000003825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
OBJECTIVE Deletions of STRC gene (DFNB16) account for 12% of isolated congenital mild to moderate hearing loss (HL). In mice, the stereocilin protein, encoded by STRC , is present in the vestibular kinocilium embedded in the otoconial membrane of the utricular macula. Despite this, effects on vestibular function have not been widely investigated. The aim of this study was to investigate the prevalence of benign paroxysmal positional vertigo (BPPV) in a cohort of DFNB16 patients. STUDY DESIGN Observational descriptive epidemiological study. SETTING Single-center study, in a tertiary referral center. PATIENTS Older than 5 years, with a genetic diagnosis of HL related to biallelic STRC gene deletions, diagnosed between 2015 and 2021. INTERVENTION Patients or their parents were interviewed to determine whether they had experienced vertigo or episodes of BPPV. MAIN OUTCOME MEASURE Criteria were at least five acute episodes of rotatory vertigo, each lasting less than 1 minute, episodes triggered by changes in specific head position, and an absence of neurological symptoms. RESULTS Sixty-four patients having mild (33%) to moderate (66%) HL were included. Median age was 15 years (range, 6-48 yr). Prevalence of BPPV was 39% (25 of 64). Median age of first onset was 13 years (range, 3-18 yr). CONCLUSIONS This study showed recurrent BPPV and early age of onset in patients with biallelic STRC gene deletions. BPPV may be associated with the HL phenotype in patients with STRC gene deletions. It is important to inform patients and families of this potential risk such that appropriate management can be proposed.
Collapse
Affiliation(s)
| | - Margaux Campion
- Department of Paediatric Otolaryngology, 149 rue de Sèvres, Hôpital Necker-Enfants Malades, AP-HP
| | | | - Melissa MacAskill
- Centre de Recherche en Audiologie pédiatrique, 149 rue de Sèvres, Hôpital Necker, F-75015 Paris
| | - Baptiste Hochet
- Department of Otolaryngology, 40 Rue Worth, 92150 Suresnes, Hôpital Foch, Suresnes F-92150
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Acharya A, Schrauwen I, Leal SM. Identification of autosomal recessive nonsyndromic hearing impairment genes through the study of consanguineous and non-consanguineous families: past, present, and future. Hum Genet 2022; 141:413-430. [PMID: 34291353 PMCID: PMC10416318 DOI: 10.1007/s00439-021-02309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/24/2021] [Indexed: 10/20/2022]
Abstract
Hearing impairment (HI) is one of the most common sensory disabilities with exceptionally high genetic heterogeneity. Of genetic HI cases, 30% are syndromic and 70% are nonsyndromic. For nonsyndromic (NS) HI, 77% of the cases are due to autosomal recessive (AR) inheritance. ARNSHI is usually congenital/prelingual, severe-to-profound, affects all frequencies and is not progressive. Thus far, 73 ARNSHI genes have been identified. Populations with high rates of consanguinity have been crucial in the identification of ARNSHI genes, and 92% (67/73) of these genes were identified in consanguineous families. Recent changes in genomic technologies and analyses have allowed a shift towards ARNSHI gene discovery in outbred populations. The latter is crucial towards understanding the genetic architecture of ARNSHI in diverse and understudied populations. We present an overview of the 73 ARNSHI genes, the methods used to identify them, including next-generation sequencing which revolutionized the field, and new technologies that show great promise in advancing ARNSHI discoveries.
Collapse
Affiliation(s)
- Anushree Acharya
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Suzanne M Leal
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY, USA.
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.
- Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
3
|
Nishio SY, Usami SI. Frequency of the STRC-CATSPER2 deletion in STRC-associated hearing loss patients. Sci Rep 2022; 12:634. [PMID: 35022556 PMCID: PMC8755823 DOI: 10.1038/s41598-021-04688-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/21/2021] [Indexed: 01/14/2023] Open
Abstract
The STRC gene, located on chromosome 15q15.3, is one of the genetic causes of autosomal recessive mild-to-moderate sensorineural hearing loss. One of the unique characteristics of STRC-associated hearing loss is the high prevalence of long deletions or copy number variations observed on chromosome 15q15.3. Further, the deletion of chromosome 15q15.3 from STRC to CATSPER2 is also known to be a genetic cause of deafness infertility syndrome (DIS), which is associated with not only hearing loss but also male infertility, as CATSPER2 plays crucial roles in sperm motility. Thus, information regarding the deletion range for each patient is important to the provision of appropriate genetic counselling for hearing loss and male infertility. In the present study, we performed next-generation sequencing (NGS) analysis for 9956 Japanese hearing loss patients and analyzed copy number variations in the STRC gene based on NGS read depth data. In addition, we performed Multiplex Ligation-dependent Probe Amplification analysis to determine the deletion range including the PPIP5K1, CKMT1B, STRC and CATSPER2 genomic region to estimate the prevalence of the STRC-CATSPER deletion, which is causative for DIS among the STRC-associated hearing loss patients. As a result, we identified 276 cases with STRC-associated hearing loss. The prevalence of STRC-associated hearing loss in Japanese hearing loss patients was 2.77% (276/9956). In addition, 77.1% of cases with STRC homozygous deletions carried a two copy loss of the entire CKMT1B-STRC-CATSPER2 gene region. This information will be useful for the provision of more appropriate genetic counselling regarding hearing loss and male infertility for the patients with a STRC deletion.
Collapse
Affiliation(s)
- Shin-Ya Nishio
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Shin-Ichi Usami
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
| |
Collapse
|
4
|
Simi A, Perry J, Schindler E, Oza A, Luo M, Hartman T, Krantz ID, Germiller JA, Kawai K, Kenna M. Audiologic Phenotype and Progression in Pediatric STRC-Related Autosomal Recessive Hearing Loss. Laryngoscope 2021; 131:E2897-E2903. [PMID: 34111299 DOI: 10.1002/lary.29680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVES Sensorineural hearing loss (SNHL) is a common sensory deficit affecting pediatric populations. The majority of pediatric SNHL is genetic in etiology, with over 123 identified nonsyndromic causative genes. One such gene is STRC, which has been identified as the second most frequent autosomal recessive nonsyndromic gene associated with SNHL in multiple populations. The objective of this study was to investigate the phenotypic presentation and incidence of audiologic progression in pediatric patients with STRC-related hearing loss (HL). METHODS Thirty-nine pediatric patients with confirmed HL and biallelic pathogenic STRC mutations were identified at two pediatric hospitals. A retrospective chart review was completed including demographics, medical history, genetic testing results, and audiologic data. HL progression was assessed using air conduction thresholds from pure-tone audiograms and auditory brain stem responses, and masked bone conduction thresholds from pure-tone audiograms. RESULTS Thirty-six patients had homozygous STRC deletions. Three were compound heterozygotes. All patients had bilateral, symmetric SNHL. Baseline HL was mild in 39% of ears, moderate in 52%, and moderate-severe in 3%. Of the 31 patients for which sufficient data were available to evaluate progression, 18 (58%) had some degree of progressive HL. Among these 31 patients assessed for progression, the mean hearing threshold declined by 0.6 dB per year (95% confidence interval: 0.5, 0.8; P < .001). CONCLUSIONS These biallelic STRC patients displayed HL ranging from mild to moderate-severe at baseline and progressing in 58%. The variability of the STRC phenotype and the possibility of audiologic progression should be considered in the clinical management of pediatric STRC-related SNHL. LEVEL OF EVIDENCE 3 Laryngoscope, 2021.
Collapse
Affiliation(s)
- Andrea Simi
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts, U.S.A.,Case Western Reserve University School of Medicine, Cleveland, Ohio, U.S.A
| | - Julia Perry
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts, U.S.A
| | - Emma Schindler
- Department of Otorhinolaryngology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | - Andrea Oza
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts, U.S.A.,Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, Massachusetts, U.S.A
| | - Minjie Luo
- Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, U.S.A.,Department of Pathology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | - Tiffiney Hartman
- Roberts Individualized Medical Genetics Center, Division of Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, U.S.A
| | - Ian D Krantz
- Roberts Individualized Medical Genetics Center, Division of Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, U.S.A.,Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | - John A Germiller
- Department of Otorhinolaryngology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A.,Division of Otolaryngology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, U.S.A
| | - Kosuke Kawai
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts, U.S.A.,Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Margaret Kenna
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts, U.S.A.,Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, U.S.A
| |
Collapse
|
5
|
Hamad L, Kreidieh K, Hamdan MB, Nakouzi G, Yazbek S. Mapping the Diverse Genetic Disorders and Rare Diseases Among the Syrian Population: Implications on Refugee Health and Health Services in Host Countries. J Immigr Minor Health 2020; 22:1347-1367. [PMID: 32172498 DOI: 10.1007/s10903-020-00987-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim of this systematic review is to provide physicians and researchers with a comprehensive list of reported genetic disorders in patients of Syrian origin-those who have become part of the largest displaced population globally-and to highlight the need to consider migrant population-based risk for the development of genetic disease control and prevention programs. This review was performed based on the 2015 PRISMA and the international prospective register of systematic reviews. The present review reports on a total of 166 genetic disorders (only 128 reported on OMIM) identified in the Syrian population. Of these disorders, 27% are endocrine-, nutritional- and metabolic-related diseases. Second to metabolic disorders are congenital malformations, deformations and chromosomal abnormalities. Diseases of the blood and the blood-forming organs accounted for 13% of the total genetic disorders. The majority of the genetic disorders reported in Syrian patients followed an autosomal recessive mode of inheritance. These findings are a reflection of the high rates of consanguineous marriages that favor the increase in incidence of these diseases. From the diseases that followed an autosomal recessive mode of inheritance, 22% are reported to be only present in Syria and other regional countries. Twelve of these genetic diseases were identified to be strictly diagnosed in individuals of Syrian origin. The present systematic review highlights the need to develop programs that target genetic disorders affecting Syrian migrants in host countries. These programs would have potential financial and economic benefits, as well as a positive impact on the physical and mental health of members of the Syrian refugee community and those of their host societies. In turn, this would decrease the burden on the health systems in host countries.
Collapse
Affiliation(s)
- Lina Hamad
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Khalil Kreidieh
- Office of Faculty Affairs, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Mirna Bou Hamdan
- Medical Laboratory Sciences Program, Faculty of Health Sciences, American University of Beirut, Riad El Solh, P.O Box 11-0236, Beirut, 1107 2020, Lebanon
| | - Ghunwa Nakouzi
- Department of Clinical Pathology, Cleveland Clinic Hospital, Cleveland, OH, USA.
| | - Soha Yazbek
- Medical Laboratory Sciences Program, Faculty of Health Sciences, American University of Beirut, Riad El Solh, P.O Box 11-0236, Beirut, 1107 2020, Lebanon.
| |
Collapse
|
6
|
Clinical features of hearing loss caused by STRC gene deletions/mutations in Russian population. Int J Pediatr Otorhinolaryngol 2020; 138:110247. [PMID: 32705992 DOI: 10.1016/j.ijporl.2020.110247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/29/2022]
Abstract
UNLABELLED Congenital sensorineural hearing loss is related to mutations in numerous genes encoding the structures of the inner ear in majority of the cases. Mutations in GJB2 gene are the most frequently identified causes of congenital nonsyndromal hearing loss. GJB2 gene testing became a routine clinical tool. For GJB2-negative patients new genetic approaches including methods based on new generation sequencing give a chance to identify mutations in other genes. The frequent reason of mild-to-moderate hearing loss such as the deletions/mutations of the gene STRC encoding stereocilin protein were recognized (OMIM: 606440). OBJECTIVES To evaluate the audiological features in hearing impaired patients with deletions and point mutations in the STRC gene. PATIENTS AND METHODS The group of 28 patients from 21 unrelated families with pathological mutations in the STRC gene underwent audiological examination. The description and analysis of the results of full audiological examination was provided. RESULTS All patients initially had bilateral nonsyndromal sensorineural hearing loss. Among 11 homozygotes of large deletion harboring STRC to CATSPER2 genes were 7 male individuals indicating the presence of male infertility syndrome. In general, 7 children failed audiological screening and 4 children underwent audiological assessment in the age of 3 and 6 months. The most frequently hearing thresholds were registered between 35 and 55 dB that corresponds to mild-to-moderate hearing impairment. The average age of diagnostics was 7.9 years (ranged from 3 months to 45 years). In the majority of patients the audiological profiles were flat or descending with elevation of thresholds at middle and high frequencies and relatively preserved thresholds at low frequencies. Hearing thresholds are symmetric and stable with age. CONCLUSION STRC-linked hearing loss is congenital, of mild and moderate severity. Special clinical and genetic approach for children who failed newborn hearing screening with mild-to-moderate hearing loss is necessary.
Collapse
|
7
|
Markova TG, Alekseeva NN, Mironovich OL, Bliznets EA, Lalayants MR, Polyakov AV, Tavartkiladze GA. [Hearing loss due to mutations or lack of the gene coding protein stereocillin]. Vestn Otorinolaringol 2020; 85:14-20. [PMID: 32476383 DOI: 10.17116/otorino20208502114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The description of a clinical picture and audiological features at the hearing loss caused by changes of a STRC gene, coding protein stereocillin (MIM: 606440). Mutations in the numerous genes responsible for the inner ear proteins are the reason for congenital sensorineural hearing loss. The main cause of congenital bilateral sensorineural hearing loss in the Russian Federation are mutations in GJB2 gene it reaches up 68% of cases identified in infancy. GJB2 gene tests already became routine around the world. Possibilities of new methods based on sequencing of new generation (NGS, next generation sequencing) allow to conduct a research of more rare genes connected with a hearing impairment. The most often among GJB2 negative patients reveal mutations and deletion of a gene of STRC. PATIENTS AND METHODS Full audiological examination of 5 children and one adult with a hearing loss from 2 unrelated families is provided. Mutations in STRC gene were identified. All children are examined aged before 8 years, and 3 children failed universal audiological screening in maternity hospital, to two children screening was not carried out as they were born till 2009. RESULTS The children with the sensorineural hearing loss connected with mutations and deletion of STRC gene failed hearing screening in maternity hospital because of the OAE is not registered, what indicates the congenital nature of a hearing loss. Recently it could not be noticed earlier because of slight increase of hearing thresholds and was regarded only as the early onset. Our data emphasize that the of thresholds from 35 to 60 dB in frequencies 0,5-4 kHz is common for mutations/deletions of STRC gene. CONCLUSION The development of molecular genetics methods confirms the hereditary causes of GJB2-negative patients and expands indications for family counseling. Special approach for child with hearing loss so early revealed is necessary and the consultation of parents frightened of screening results is very important.
Collapse
Affiliation(s)
- T G Markova
- National Resarch Center for Audiology and Hearing Rehabilitation, Moscow, Russia.,Russian Medical Academy of Postdoctoral Education of the Ministry of Health of Russia, Moscow, Russia
| | - N N Alekseeva
- National Resarch Center for Audiology and Hearing Rehabilitation, Moscow, Russia.,Russian Medical Academy of Postdoctoral Education of the Ministry of Health of Russia, Moscow, Russia
| | - O L Mironovich
- Academician N.P. Bochkov Medical and Genetic Research Center, Moscow, Russia
| | - E A Bliznets
- Academician N.P. Bochkov Medical and Genetic Research Center, Moscow, Russia
| | - M R Lalayants
- National Resarch Center for Audiology and Hearing Rehabilitation, Moscow, Russia.,Russian Medical Academy of Postdoctoral Education of the Ministry of Health of Russia, Moscow, Russia
| | - A V Polyakov
- Academician N.P. Bochkov Medical and Genetic Research Center, Moscow, Russia
| | - G A Tavartkiladze
- National Resarch Center for Audiology and Hearing Rehabilitation, Moscow, Russia.,Russian Medical Academy of Postdoctoral Education of the Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
8
|
Otogelin, otogelin-like, and stereocilin form links connecting outer hair cell stereocilia to each other and the tectorial membrane. Proc Natl Acad Sci U S A 2019; 116:25948-25957. [PMID: 31776257 DOI: 10.1073/pnas.1902781116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The function of outer hair cells (OHCs), the mechanical actuators of the cochlea, involves the anchoring of their tallest stereocilia in the tectorial membrane (TM), an acellular structure overlying the sensory epithelium. Otogelin and otogelin-like are TM proteins related to secreted epithelial mucins. Defects in either cause the DFNB18B and DFNB84B genetic forms of deafness, respectively, both characterized by congenital mild-to-moderate hearing impairment. We show here that mutant mice lacking otogelin or otogelin-like have a marked OHC dysfunction, with almost no acoustic distortion products despite the persistence of some mechanoelectrical transduction. In both mutants, these cells lack the horizontal top connectors, which are fibrous links joining adjacent stereocilia, and the TM-attachment crowns coupling the tallest stereocilia to the TM. These defects are consistent with the previously unrecognized presence of otogelin and otogelin-like in the OHC hair bundle. The defective hair bundle cohesiveness and the absence of stereociliary imprints in the TM observed in these mice have also been observed in mutant mice lacking stereocilin, a model of the DFNB16 genetic form of deafness, also characterized by congenital mild-to-moderate hearing impairment. We show that the localizations of stereocilin, otogelin, and otogelin-like in the hair bundle are interdependent, indicating that these proteins interact to form the horizontal top connectors and the TM-attachment crowns. We therefore suggest that these 2 OHC-specific structures have shared mechanical properties mediating reaction forces to sound-induced shearing motion and contributing to the coordinated displacement of stereocilia.
Collapse
|
9
|
Abstract
HYPOTHESIS We hypothesized that patients with DFNB16 caused hearing loss show characteristical audiological findings depending on genetic results. BACKGROUND Hearing loss belongs to the most frequent congenital diseases. In 50-70% of individuals, hearing loss is caused by genetic defects. DFNB1 (deafness, neurosensory, autosomal-recessive) is the most frequently affected locus. Despite its great genetic heterogeneity, comprehensive analysis of genes like STRC, encoding stereocilin (DFNB16) is possible. The genetic architecture of the DFNB16 locus is challenging and requires a unique molecular genetic testing assay. The aim of the study is a systematic characterization of the audiological phenotype in DFNB16-positive patients. METHODS Since 2011, 290 patients with suspicion of inherited hearing loss received a human genetic exploration. Eighty two DFNB1-negative patients advanced to further testing in the DFNB16 locus. STRC-positive patients obtained complete audiological diagnostic workup. Additionally, epidemiological data was collected. RESULTS Nine of 82 (11%) of the examined patients (mean age 5 yr) showed mutations in the STRC (3 homozygous, 6 compound heterozygous). Aside from a moderate hearing loss in the pure tone audiogram, auditory brainstem response thresholds were 40-50 dB nHL. Otoacoustic emissions were detectable in only one patient. CONCLUSIONS Examination of the DFNB16-locus should be a standard diagnostic test after negative DFNB1-gene screening result. Notably, DFNB16-associated hearing loss can be audiologically characterized as moderate sensorineural hearing loss in the main speech field with absent otoacoustic emissions. Our study is the first to correlate audiological findings with genetic results in patients with hearing loss due to STRC.
Collapse
|
10
|
Sagong B, Baek JI, Bok J, Lee KY, Kim UK. Identification of a nonsense mutation in the STRC gene in a Korean family with moderate hearing loss. Int J Pediatr Otorhinolaryngol 2016; 80:78-81. [PMID: 26746617 DOI: 10.1016/j.ijporl.2015.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 10/26/2015] [Accepted: 11/17/2015] [Indexed: 12/28/2022]
Abstract
Hereditary hearing loss is a heterogeneous disorder that results in a common sensorineural disorder. To date, more than 150 loci and 89 genes have been reported for non-syndromic hearing loss. Next generation sequencing has recently been developed as a powerful genetic strategy for identifying pathogenic mutations in heterogeneous disorders with various causative genes. In this study, we performed targeted sequencing to identify the causative mutation in a Korean family that had moderate hearing loss. We targeted 64 genes associated with non-syndromic hearing loss and sorted the homozygous variations according to the autosomal recessive inheritance pattern of the family. Implementing a bioinformatic platform for filtering and detecting variations allowed for the identification of two variations within different genes (c.650G>A in TRIOBP and c.4057C>T in STRC). These variants were selected for further analysis. Among these, c.4057C>T (p.Q1353X) was a divergent sequence variation between the STRC gene and the STRC pseudogene. This was the critical difference that resulted in loss of the protein-coding ability of the pseudogene. Therefore, we hypothesized that the p.Q1353X variation in the STRC gene is the causative mutation for hearing loss. This result suggests that application of targeted sequencing will be valuable for the diagnosis of heterogeneous disorders.
Collapse
Affiliation(s)
- Borum Sagong
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Jeong-In Baek
- Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA
| | - Jinwoong Bok
- Department of Anatomy, BrainKorea21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyu-Yup Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Kyungpook National University, Daegu, South Korea.
| | - Un-Kyung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea; School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
11
|
Comprehensive diagnostic testing for stereocilin: an approach for analyzing medically important genes with high homology. J Mol Diagn 2014; 16:639-47. [PMID: 25157971 DOI: 10.1016/j.jmoldx.2014.06.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/21/2014] [Accepted: 06/18/2014] [Indexed: 11/20/2022] Open
Abstract
Next-generation sequencing (NGS) technologies have revolutionized genetic testing by enabling simultaneous analysis of unprecedented numbers of genes. However, genes with high-sequence homology pose challenges to current NGS technologies. Because diagnostic sequencing is moving toward exome analysis, knowledge of these homologous genes is essential to avoid false positive and negative results. An example is the STRC gene, one of >70 genes known to contribute to the genetic basis of hearing loss. STRC is 99.6% identical to a pseudogene (pSTRC) and therefore inaccessible to standard NGS methodologies. The STRC locus is also known to be a common site for large deletions. Comprehensive diagnostic testing for inherited hearing loss therefore necessitates a combination of several approaches to avoid pseudogene interference. We have developed a clinical test that combines standard NGS and NGS-based copy number assessment supplemented with a long-range PCR-based Sanger or MiSeq assay to eliminate pseudogene contamination. By using this combination of assays we could identify biallelic STRC variants in 14% (95% CI, 8%-24%) of individuals with isolated nonsyndromic hearing loss who had previously tested negative on our 70-gene hearing loss panel, corresponding to a detection rate of 11.2% (95% CI, 6%-19%) for previously untested patients. This approach has broad applicability because medically significant genes for many disease areas include genes with high-sequence homology.
Collapse
|
12
|
|
13
|
Francey LJ, Conlin LK, Kadesch HE, Clark D, Berrodin D, Sun Y, Glessner J, Hakonarson H, Jalas C, Landau C, Spinner NB, Kenna M, Sagi M, Rehm HL, Krantz ID. Genome-wide SNP genotyping identifies the Stereocilin (STRC) gene as a major contributor to pediatric bilateral sensorineural hearing impairment. Am J Med Genet A 2011; 158A:298-308. [PMID: 22147502 DOI: 10.1002/ajmg.a.34391] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 10/14/2011] [Indexed: 11/11/2022]
Abstract
Hearing loss is the most prevalent sensory perception deficit in humans, affecting 1/500 newborns, can be syndromic or nonsyndromic and is genetically heterogeneous. Nearly 80% of inherited nonsyndromic bilateral sensorineural hearing loss (NBSNHI) is autosomal recessive. Although many causal genes have been identified, most are minor contributors, except for GJB2, which accounts for nearly 50% of all recessive cases of severe to profound congenital NBSNHI in some populations. More than 60% of children with a NBSNHI do not have an identifiable genetic cause. To identify genetic contributors, we genotyped 659 GJB2 mutation negative pediatric probands with NBSNHI and assayed for copy number variants (CNVs). After identifying 8 mild-moderate NBSNHI probands with a Chr15q15.3 deletion encompassing the Stereocilin (STRC) gene amongst this cohort, sequencing of STRC was undertaken in these probands as well as 50 probands and 14 siblings with mild-moderate NBSNHI and 40 probands with moderately severe-profound NBSNHI who were GJB2 mutation negative. The existence of a STRC pseudogene that is 99.6% homologous to the STRC coding region has made the sequencing interpretation complicated. We identified 7/50 probands in the mild-moderate cohort to have biallelic alterations in STRC, not including the 8 previously identified deletions. We also identified 2/40 probands to have biallelic alterations in the moderately severe-profound NBSNHI cohort, notably no large deletions in combination with another variant were found in this cohort. The data suggest that STRC may be a common contributor to NBSNHI among GJB2 mutation negative probands, especially in those with mild to moderate hearing impairment.
Collapse
Affiliation(s)
- Lauren J Francey
- The Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Al-Gazali L, Ali BR. Mutations of a country: a mutation review of single gene disorders in the United Arab Emirates (UAE). Hum Mutat 2010; 31:505-520. [PMID: 20437613 DOI: 10.1002/humu.21232] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The United Arab Emirates inhabitants are ethnically diverse, with ancestries from Arabia, Persia, Baluchistan, and Africa. However, the majority of the current five million inhabitants are expatriates from the Asian subcontinent, Middle Eastern, African, and European countries. Consanguineous marriages within most UAE subpopulations are still the norm, leading to the formation of isolates and higher frequencies of recessive conditions. The UAE is ranked sixth in terms of prevalence of birth defects, with more than 270 genetic disorders reported in the national population. The UAE has high frequencies of blood disorders including thalassemias, sickle cell disease, and G6PD. In addition, certain genetic conditions are relatively common including cystic fibrosis, Joubert, and Meckel syndromes. Furthermore, numerous rare congenital malformations and metabolic disorders have been reported. We review the single gene disorders that have been studied at the molecular level in the UAE (which currently stand at 76) and compile the mutations found. Several novel (p.S2439fs) mutations have been reported including c.7317delA in NF1, c.5C>T (p.A2V) in DKC1, c.1766T>A (p.I589N) in TP63, and c.2117G>T (p.R706L) in VLDLR. We hope that this review will form the basis to establish a UAE mutations database and serve as a model for the collection of mutations of a country.
Collapse
Affiliation(s)
- Lihadh Al-Gazali
- Departments of Paediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
| | | |
Collapse
|
15
|
Rossbach HC, Dalence C, Wynn T, Tebbi C. Faisalabad histiocytosis mimics Rosai-Dorfman disease: brothers with lymphadenopathy, intrauterine fractures, short stature, and sensorineural deafness. Pediatr Blood Cancer 2006; 47:629-32. [PMID: 16155931 DOI: 10.1002/pbc.20605] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rosai-Dorfman disease (RDD) is a rare, sporadic histiocytic disorder characterized by painless but protracted lymphadenopathy. Its etiology remains unclear. The observation of congenital disease and reports of familial cases with seven pairs of siblings including three sets of identical twins suggests a genetic predisposition in some patients with this condition. We now report two brothers of consanguineous Palestinian parents, whose lymphadenopathy, lymph node histology, and polyclonal hypergammaglobulinemia indicated RDD. The presence of intrauterine fractures, short stature, and sensorineural hearing impairment suggested a rare familial form of the disorder. Moynihan et al. recently described a Pakistani family with a familial histiocytic disorder highly reminiscent of the brothers reported here, whose lymph node morphology was apparently consistent with RDD as well. The presence of sensorineural deafness, short stature, and joint contractures, however, suggested a separate, rare autosomal recessive syndrome referred to as Faisalabad histiocytosis, after the family's place of origin. We believe that the brothers described here represent a second family with Faisalabad histiocytosis, which mimics RDD histologically.
Collapse
Affiliation(s)
- Hans-Christoph Rossbach
- Division of Pediatric Hematology/Oncology, St. Joseph Children's Hospital, Tampa, University of South Florida 33607, USA.
| | | | | | | |
Collapse
|
16
|
Abstract
Non-syndromic deafness is a paradigm of genetic heterogeneity with 85 loci and 39 nuclear disease genes reported so far. Autosomal-recessive genes are responsible for about 80% of the cases of hereditary non-syndromic deafness of pre-lingual onset with 23 different genes identified to date. In the present article, we review these 23 genes, their function, and their contribution to genetic deafness in different populations. The wide range of functions of these DFNB genes reflects the heterogeneity of the genes involved in hearing and hearing loss. Several of these genes are involved in both recessive and dominant deafness, or in both non-syndromic and syndromic deafness. Mutations in the GJB2 gene encoding connexin 26 are responsible for as much as 50% of pre-lingual, recessive deafness. By contrast, mutations in most of the other DFNB genes have so far been detected in only a small number of families, and their contribution to deafness on a population scale might therefore be limited. Identification of all genes involved in hereditary hearing loss will help in our understanding of the basic mechanisms underlying normal hearing, in early diagnosis and therapy.
Collapse
Affiliation(s)
- M B Petersen
- Department of Genetics, Institute of Child Health, Aghia Sophia Children's Hospital, Athens, Greece.
| | | |
Collapse
|
17
|
Al-Gazali LI, Alwash R, Abdulrazzaq YM. United Arab Emirates: communities and community genetics. Public Health Genomics 2006; 8:186-96. [PMID: 16113536 DOI: 10.1159/000086764] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The UAE society is cosmopolitan, but the indigenous inhabitants are traditional with puritanical values despite their exposure to other vastly different cultures and habits. Marriages between consanguineous couples are still the norm rather than the exception. As a result, there is a high frequency of genetic disorders, particularly autosomal recessive types. Despite the high frequency of genetic disorders like haemoglobinopathies and others characteristically found in this population, genetic services are inadequate. Screening for certain disorders like thalassaemia are not applied on a wide scale. Abortion is illegal, and therefore, prenatal diagnosis or preconception tests are not done. With the absence of a good national database, deficiency of genetic services and absence of preventative alternatives for carrier couples, genetic counsellors find it difficult to advice pragmatic solutions to issues relating to genetic diseases. This paper reviews common genetic problems in the UAE with special emphasis on available genetic services and support to families with children with inherited disorders. Existing barriers to the improvement of clinical services by prenatal counselling are also discussed.
Collapse
Affiliation(s)
- L I Al-Gazali
- Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | | |
Collapse
|
18
|
Shahin H, Walsh T, Sobe T, Abu Sa’ed J, Abu Rayan A, Lynch ED, Lee MK, Avraham KB, King MC, Kanaan M. Mutations in a novel isoform of TRIOBP that encodes a filamentous-actin binding protein are responsible for DFNB28 recessive nonsyndromic hearing loss. Am J Hum Genet 2006; 78:144-52. [PMID: 16385458 PMCID: PMC1380212 DOI: 10.1086/499495] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Accepted: 11/07/2005] [Indexed: 11/03/2022] Open
Abstract
In a large consanguineous Palestinian kindred, we previously mapped DFNB28--a locus associated with recessively inherited, prelingual, profound sensorineural hearing impairment--to chromosome 22q13.1. We report here that mutations in a novel 218-kDa isoform of TRIOBP (TRIO and filamentous actin [F-actin] binding protein) are associated with DFNB28 hearing loss in a total of nine Palestinian families. Two nonsense mutations (R347X and Q581X) truncate the protein, and a potentially deleterious missense mutation (G1019R) occurs in a conserved motif in a putative SH3-binding domain. In seven families, 27 deaf individuals are homozygous for one of the nonsense mutations; in two other families, 3 deaf individuals are compound heterozygous for the two nonsense mutations or for Q581X and G1019R. The novel long isoform of TRIOBP has a restricted expression profile, including cochlea, retina, and fetal brain, whereas the original short isoform is widely expressed. Antibodies to TRIOBP reveal expression in sensory cells of the inner ear and colocalization with F-actin along the length of the stereocilia.
Collapse
Affiliation(s)
- Hashem Shahin
- Department of Life Sciences, Bethlehem University, Bethlehem; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv; and Departments of Medicine and Genome Sciences, University of Washington, Seattle
| | - Tom Walsh
- Department of Life Sciences, Bethlehem University, Bethlehem; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv; and Departments of Medicine and Genome Sciences, University of Washington, Seattle
| | - Tama Sobe
- Department of Life Sciences, Bethlehem University, Bethlehem; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv; and Departments of Medicine and Genome Sciences, University of Washington, Seattle
| | - Judeh Abu Sa’ed
- Department of Life Sciences, Bethlehem University, Bethlehem; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv; and Departments of Medicine and Genome Sciences, University of Washington, Seattle
| | - Amal Abu Rayan
- Department of Life Sciences, Bethlehem University, Bethlehem; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv; and Departments of Medicine and Genome Sciences, University of Washington, Seattle
| | - Eric D. Lynch
- Department of Life Sciences, Bethlehem University, Bethlehem; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv; and Departments of Medicine and Genome Sciences, University of Washington, Seattle
| | - Ming K. Lee
- Department of Life Sciences, Bethlehem University, Bethlehem; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv; and Departments of Medicine and Genome Sciences, University of Washington, Seattle
| | - Karen B. Avraham
- Department of Life Sciences, Bethlehem University, Bethlehem; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv; and Departments of Medicine and Genome Sciences, University of Washington, Seattle
| | - Mary-Claire King
- Department of Life Sciences, Bethlehem University, Bethlehem; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv; and Departments of Medicine and Genome Sciences, University of Washington, Seattle
| | - Moein Kanaan
- Department of Life Sciences, Bethlehem University, Bethlehem; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv; and Departments of Medicine and Genome Sciences, University of Washington, Seattle
| |
Collapse
|
19
|
Ahmad J, Khan SN, Khan SY, Ramzan K, Riazuddin S, Ahmed ZM, Wilcox ER, Friedman TB, Riazuddin S. DFNB48, a new nonsyndromic recessive deafness locus, maps to chromosome 15q23-q25.1. Hum Genet 2005; 116:407-12. [PMID: 15711797 DOI: 10.1007/s00439-004-1247-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Accepted: 12/11/2004] [Indexed: 11/29/2022]
Abstract
Nonsyndromic deafness locus (DFNB48) segregating as an autosomal recessive trait has been mapped to the long arm of chromosome 15 in bands q23-q25.1 in five large Pakistani families. The deafness phenotype in one of these five families (PKDF245) is linked to D15S1005 with a lod score of 8.6 at theta=0, and there is a critical linkage interval of approximately 7 cM on the Marshfield human genetic map, bounded by microsatellite markers D15S216 (70.73 cM) and D15S1041 (77.69 cM). MYO9A, NR2E3, BBS4, and TMC3 are among the candidate genes in the DFNB48 region. The identification of another novel nonsyndromic recessive deafness locus demonstrates the high degree of locus heterogeneity for hearing impairment, particularly in the Pakistani population.
Collapse
Affiliation(s)
- Jamil Ahmad
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, 53700 Pakistan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Given the unique biological requirements of sound transduction and the selective advantage conferred upon a species capable of sensitive sound detection, it is not surprising that up to 1% of the approximately 30,000 or more human genes are necessary for hearing. There are hundreds of monogenic disorders for which hearing loss is one manifestation of a syndrome or the only disorder and therefore is nonsyndromic. Herein we review the supporting evidence for identifying over 30 genes for dominantly and recessively inherited, nonsyndromic, sensorineural deafness. The state of knowledge concerning their biological roles is discussed in the context of the controversies within an evolving understanding of the intricate molecular machinery of the inner ear.
Collapse
Affiliation(s)
- Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland 20850, USA.
| | | |
Collapse
|
21
|
Verpy E, Masmoudi S, Zwaenepoel I, Leibovici M, Hutchin TP, Del Castillo I, Nouaille S, Blanchard S, Lainé S, Popot JL, Moreno F, Mueller RF, Petit C. Mutations in a new gene encoding a protein of the hair bundle cause non-syndromic deafness at the DFNB16 locus. Nat Genet 2001; 29:345-9. [PMID: 11687802 DOI: 10.1038/ng726] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hearing impairment affects about 1 in 1,000 children at birth. Approximately 70 loci implicated in non-syndromic forms of deafness have been reported in humans and 24 causative genes have been identified (see also http://www.uia.ac.be/dnalab/hhh). We report a mouse transcript, isolated by a candidate deafness gene approach, that is expressed almost exclusively in the inner ear. Genomic analysis shows that the human ortholog STRC (so called owing to the name we have given its protein-stereocilin), which is located on chromosome 15q15, contains 29 exons encompassing approximately 19 kb. STRC is tandemly duplicated, with the coding sequence of the second copy interrupted by a stop codon in exon 20. We have identified two frameshift mutations and a large deletion in the copy containing 29 coding exons in two families affected by autosomal recessive non-syndromal sensorineural deafness linked to the DFNB16 locus. Stereocilin is made up of 1,809 amino acids, and contains a putative signal petide and several hydrophobic segments. Using immunohistolabeling, we demonstrate that, in the mouse inner ear, stereocilin is expressed only in the sensory hair cells and is associated with the stereocilia, the stiff microvilli forming the structure for mechanoreception of sound stimulation.
Collapse
Affiliation(s)
- E Verpy
- Unité de Génétique des Déficits Sensoriels, CNRS URA 1968, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris cedex 15, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mangino M, Flex E, Capon F, Sangiuolo F, Carraro E, Gualandi F, Mazzoli M, Martini A, Novelli G, Dallapiccola B. Mapping of a new autosomal dominant nonsyndromic hearing loss locus (DFNA30) to chromosome 15q25-26. Eur J Hum Genet 2001; 9:667-71. [PMID: 11571554 DOI: 10.1038/sj.ejhg.5200707] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2001] [Revised: 06/29/2001] [Accepted: 07/03/2001] [Indexed: 11/10/2022] Open
Abstract
Hearing impairment is the most common inherited human sensory defect. Nonsyndromic Hearing Impairment (NSHI) is the most genetically heterogeneous trait known. Over 70 loci have been mapped and a total of 19 genes have been identified. We report here a novel locus (DFNA 30) for autosomal dominant NSHI that we mapped to chromosome 15q25-26 in an Italian four-generation family. The haplotype analysis has identified a critical interval of 18 cM between markers D15S151 and D15S130. This region does not overlap with DFNB16 locus but partially coincides with the otosclerosis (OTS) locus. Localisation of the locus DFNA30 is a first step towards the identification of the gene.
Collapse
Affiliation(s)
- M Mangino
- CSS Mendel Institute, IRCCS, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The punc gene, encoding a member of the neural cell adhesion molecule family expressed in the developing central nervous system, limbs, and inner ear, was identified. To extend studies of the normal expression pattern of punc and to determine its function, a mouse strain bearing a lacZ/neo insertion in a 5' coding exon was created. The complex pattern of punc expression in embryos from embryonic day 9.5 (E9.5) to E11.5 was mimicked accurately by beta-galactosidase (beta-Gal) activity. As development proceeded, the distribution of beta-Gal activity was increasingly restricted, finally becoming confined to the brain and inner ear by E15.5. In the adult, beta-Gal activity was detected in several regions of the inner ear and brain and was particularly strong in the cerebellar Bergmann glia. Genetic analysis of this null allele demonstrated that punc is not required for normal embryogenesis. Interestingly, comparisons of beta-Gal activity and punc transcripts in heterozygous and homozygous mutant individuals demonstrated that punc is negatively autoregulated in some tissues. Adult punc-deficient mice were overtly normal and had normal hearing. Compared with control littermates, however, homozygous mutants had significantly reduced retention times on the Rotarod, suggesting a role for Bergmann glia-expressed Punc in the cerebellar control of motor coordination.
Collapse
Affiliation(s)
- W Yang
- Department of Human Genetics, University of Utah, 15 N 2030 E, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
24
|
Abbott CA, Yu DM, Woollatt E, Sutherland GR, McCaughan GW, Gorrell MD. Cloning, expression and chromosomal localization of a novel human dipeptidyl peptidase (DPP) IV homolog, DPP8. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6140-6150. [PMID: 11012666 DOI: 10.1046/j.1432-1327.2000.01617.x] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dipeptidyl peptidase (DPP) IV has roles in T-cell costimulation, chemokine biology, type-II diabetes and tumor biology. Fibroblast activation protein (FAP) has been implicated in tumor growth and cirrhosis. Here we describe DPP8, a novel human postproline dipeptidyl aminopeptidase that is homologous to DPPIV and FAP. Northern-blot hybridization showed that the tissue expression of DPP8 mRNA is ubiquitous, similar to that of DPPIV. The DPP8 gene was localized to chromosome 15q22, distinct from a closely related gene at 19p13.3 which we named DPP9. The full-length DPP8 cDNA codes for an 882-amino-acid protein that has about 27% identity and 51% similarity to DPPIV and FAP, but no transmembrane domain and no N-linked or O-linked glycosylation. Western blots and confocal microscopy of transfected COS-7 cells showed DPP8 to be a 100-kDa monomeric protein expressed in the cytoplasm. Purified recombinant DPP8 hydrolyzed the DPPIV substrates Ala-Pro, Arg-Pro and Gly-Pro. Thus recombinant DPP8 shares a postproline dipeptidyl aminopeptidase activity with DPPIV and FAP. DPP8 enzyme activity had a neutral pH optimum consistent with it being nonlysosomal. The similarities between DPP8 and DPPIV in tissue expression pattern and substrates suggests a potential role for DPP8 in T-cell activation and immune function.
Collapse
Affiliation(s)
- C A Abbott
- A. W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Centenary Institute of Cancer Medicine and Cell Biologyand The University of Sydney, NSW, Australia.
| | | | | | | | | | | |
Collapse
|
25
|
Stabach PR, Morrow JS. Identification and characterization of beta V spectrin, a mammalian ortholog of Drosophila beta H spectrin. J Biol Chem 2000; 275:21385-95. [PMID: 10764729 DOI: 10.1074/jbc.c000159200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Four mammalian beta-spectrin genes are currently recognized, all encode proteins of approximately 240-280,000 M(r) and display 17 triple helical homologous approximately 106-residue repeat units. In Drosophila and Caenorhabditis elegans, a variant beta spectrin with unusual properties has been recognized. Termed beta heavy (beta(H)), this spectrin contains 30 spectrin repeats, has a molecular weight in excess of 400,000, and associates with the apical domain of polarized epithelia. We have cloned and characterized from a human retina cDNA library a mammalian ortholog of Drosophila beta(H) spectrin, and in accord with standard spectrin naming conventions we term this new mammalian spectrin beta 5 (betaV). The gene for human betaV spectrin (HUBSPECV) is on chromosome 15q21. The 11, 722-nucleotide cDNA of betaV spectrin is generated from 68 exons and is predicted to encode a protein with a molecular weight of 416,960. Like its fly counterpart, the derived amino acid sequence of this unusual mammalian spectrin displays 30 spectrin repeats, a modestly conserved actin-binding domain, a conserved membrane association domain 1, a conserved self-association domain, and a pleckstrin homology domain near its COOH terminus. Its putative ankyrin-binding domain is poorly conserved and may be inactive. These structural features suggest that betaV spectrin is likely to form heterodimers and oligomers with alpha spectrin and to interact directly with cellular membranes. Unlike its Drosophila ortholog, betaV spectrin does not contain an SH3 domain but displays in repeat 5 a 45-residue insertion that displays 42% identity to amino acids 85-115 of the E4 protein of type 75 human papilloma virus. Human betaV spectrin is expressed at low levels in many tissues. By indirect immunofluorescence, it is detected prominently in the outer segments of photoreceptor rods and cones and in the basolateral membrane and cytosol of gastric epithelial cells. Unlike its Drosophila ortholog, a distinct apical distribution of betaV spectrin is inapparent in the epithelial cell populations examined, although it is confined to the outer segments of photoreceptor cells. The complete cDNA sequence of human betaV spectrin is available from GenBank(TM) as accession number.
Collapse
Affiliation(s)
- P R Stabach
- Department of Pathology and the Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
26
|
Abstract
Nearly all genes for autosomal recessive nonsyndromal inherited hearing loss (ARNSHL) localized thus far cause prelingual severe to profound or profound hearing impairment. Of the 25 reported loci, most have been identified using single consanguineous families. Six of these genes have been cloned and encode a variety of proteins, including ion channels, extracellular matrix components, cytoskeletal components, and proteins essential for synaptic vesicular trafficking. One of these genes appears to be responsible for approximately 50% of all congenital severe to profound or profound hearing loss in many world populations, and mutations in two other genes can lead to either syndromic or nonsyndromic forms of deafness. The identification of additional genes that cause ARNSHL and elucidation of their function will refine our understanding of auditory physiology at the molecular level.
Collapse
Affiliation(s)
- R A Sundstrom
- Interdepartmental Genetics Program, the University of Iowa, Iowa, USA
| | | | | | | |
Collapse
|
27
|
Robertson NG, Morton CC. Beginning of a molecular era in hearing and deafness. Clin Genet 1999. [DOI: 10.1034/j.1399-0004.2000.57si04.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Villamar M, del Castillo I, Valle N, Romero L, Moreno F. Deafness locus DFNB16 is located on chromosome 15q13-q21 within a 5-cM interval flanked by markers D15S994 and D15S132. Am J Hum Genet 1999; 64:1238-41. [PMID: 10090914 PMCID: PMC1377853 DOI: 10.1086/302321] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
29
|
Affiliation(s)
- N G Robertson
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|