1
|
Shaboodien G, Spracklen TF, Kamuli S, Ndibangwi P, Van Niekerk C, Ntusi NAB. Genetics of inherited cardiomyopathies in Africa. Cardiovasc Diagn Ther 2020; 10:262-278. [PMID: 32420109 DOI: 10.21037/cdt.2019.10.03] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In sub-Saharan Africa (SSA), the burden of noncommunicable diseases (NCDs) is rising disproportionately in comparison to the rest of the world, affecting urban, semi-urban and rural dwellers alike. NCDs are predicted to surpass infections like human immunodeficiency virus, tuberculosis and malaria as the leading cause of mortality in SSA over the next decade. Heart failure (HF) is the dominant form of cardiovascular disease (CVD), and a leading cause of NCD in SSA. The main causes of HF in SSA are hypertension, cardiomyopathies, rheumatic heart disease, pericardial disease, and to a lesser extent, coronary heart disease. Of these, the cardiomyopathies deserve greater attention because of the relatively poor understanding of mechanisms of disease, poor outcomes and the disproportionate impact they have on young, economically active individuals. Morphofunctionally, cardiomyopathies are classified as dilated, hypertrophic, restrictive and arrhythmogenic; regardless of classification, at least half of these are inherited forms of CVD. In this review, we summarise all studies that have investigated the incidence of cardiomyopathy across Africa, with a focus on the inherited cardiomyopathies. We also review data on the molecular genetic underpinnings of cardiomyopathy in Africa, where there is a striking lack of studies reporting on the genetics of cardiomyopathy. We highlight the impact that genetic testing, through candidate gene screening, association studies and next generation sequencing technologies such as whole exome sequencing and targeted resequencing has had on the understanding of cardiomyopathy in Africa. Finally, we emphasise the need for future studies to fill large gaps in our knowledge in relation to the genetics of inherited cardiomyopathies in Africa.
Collapse
Affiliation(s)
- Gasnat Shaboodien
- Cardiovascular Genetics Laboratory, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Timothy F Spracklen
- Cardiovascular Genetics Laboratory, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Stephen Kamuli
- Cardiovascular Genetics Laboratory, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Polycarp Ndibangwi
- Cardiovascular Genetics Laboratory, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Carla Van Niekerk
- Cardiovascular Genetics Laboratory, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ntobeko A B Ntusi
- Cardiovascular Genetics Laboratory, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Cape Universities Body Imaging Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
2
|
|
3
|
Shamseldin HE, Kurdi W, Almusafri F, Alnemer M, Alkaff A, Babay Z, Alhashem A, Tulbah M, Alsahan N, Khan R, Sallout B, Al Mardawi E, Seidahmed MZ, Meriki N, Alsaber Y, Qari A, Khalifa O, Eyaid W, Rahbeeni Z, Kurdi A, Hashem M, Alshidi T, Al-Obeid E, Abdulwahab F, Ibrahim N, Ewida N, El-Akouri K, Al Mulla M, Ben-Omran T, Pergande M, Cirak S, Al Tala S, Shaheen R, Faqeih E, Alkuraya FS. Molecular autopsy in maternal-fetal medicine. Genet Med 2017; 20:420-427. [PMID: 28749478 DOI: 10.1038/gim.2017.111] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/14/2017] [Indexed: 12/16/2022] Open
Abstract
PurposeThe application of genomic sequencing to investigate unexplained death during early human development, a form of lethality likely enriched for severe Mendelian disorders, has been limited.MethodsIn this study, we employed exome sequencing as a molecular autopsy tool in a cohort of 44 families with at least one death or lethal fetal malformation at any stage of in utero development. Where no DNA was available from the fetus, we performed molecular autopsy by proxy, i.e., through parental testing.ResultsPathogenic or likely pathogenic variants were identified in 22 families (50%), and variants of unknown significance were identified in further 15 families (34%). These variants were in genes known to cause embryonic or perinatal lethality (ALPL, GUSB, SLC17A5, MRPS16, THSD1, PIEZO1, and CTSA), genes known to cause Mendelian phenotypes that do not typically include embryonic lethality (INVS, FKTN, MYBPC3, COL11A2, KRIT1, ASCC1, NEB, LZTR1, TTC21B, AGT, KLHL41, GFPT1, and WDR81) and genes with no established links to human disease that we propose as novel candidates supported by embryonic lethality of their orthologs or other lines of evidence (MS4A7, SERPINA11, FCRL4, MYBPHL, PRPF19, VPS13D, KIAA1109, MOCS3, SVOPL, FEN1, HSPB11, KIF19, and EXOC3L2).ConclusionOur results suggest that molecular autopsy in pregnancy losses is a practical and high-yield alternative to traditional autopsy, and an opportunity for bringing precision medicine to the clinical practice of perinatology.
Collapse
Affiliation(s)
- Hanan E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Wesam Kurdi
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fatima Almusafri
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Qatar
| | - Maha Alnemer
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Alya Alkaff
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Zeneb Babay
- Department of Obstetrics and Gynecology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Amal Alhashem
- Department of Pediatrics, Price Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Maha Tulbah
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nada Alsahan
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rubina Khan
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Bahauddin Sallout
- Maternal-Fetal Medicine Department, Women's Specialized Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Elham Al Mardawi
- Department of Obstetrics and Gynecology, Security Forces Hospital, Riyadh, Saudi Arabia
| | | | - Niema Meriki
- Department of Obstetrics and Gynecology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Yasser Alsaber
- Department of Obstetrics and Gynecology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Alya Qari
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ola Khalifa
- Genetics Unit, Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Wafaa Eyaid
- Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Zuhair Rahbeeni
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ahmed Kurdi
- Department of Obstetrics and Gynecology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tarfa Alshidi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eman Al-Obeid
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nour Ewida
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Karen El-Akouri
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Qatar
| | - Mariam Al Mulla
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Qatar
| | - Tawfeg Ben-Omran
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Qatar
| | | | - Sebahattin Cirak
- Cologne Center for Genomics, University of Cologne, Köln, Germany
| | - Saeed Al Tala
- Department of Pediatrics, Armed Forces Hospital Program Southwest Region, Khamis Mushait, Saudi Arabia
| | - Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eissa Faqeih
- Department of Pediatrics, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Andersen PS, Havndrup O, Hougs L, Sørensen KM, Jensen M, Larsen LA, Hedley P, Thomsen ARB, Moolman-Smook J, Christiansen M, Bundgaard H. Diagnostic yield, interpretation, and clinical utility of mutation screening of sarcomere encoding genes in Danish hypertrophic cardiomyopathy patients and relatives. Hum Mutat 2009; 30:363-70. [PMID: 19035361 DOI: 10.1002/humu.20862] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The American Heart Association (AHA) recommends family screening for hypertrophic cardiomyopathy (HCM). We assessed the outcome of family screening combining clinical evaluation and screening for sarcomere gene mutations in a cohort of 90 Danish HCM patients and their close relatives, in all 451 persons. Index patients were screened for mutations in all coding regions of 10 sarcomere genes (MYH7, MYL3, MYBPC3, TNNI3, TNNT2, TPM1, ACTC, CSRP3, TCAP, and TNNC1) and five exons of TTN. Relatives were screened for presence of minor or major diagnostic criteria for HCM and tracking of DNA variants was performed. In total, 297 adult relatives (>18 years) (51.2%) fulfilled one or more criteria for HCM. A total of 38 HCM-causing mutations were detected in 32 index patients. Six patients carried two disease-associated mutations. Twenty-two mutations have only been identified in the present cohort. The genetic diagnostic yield was almost twice as high in familial HCM (53%) vs. HCM of sporadic or unclear inheritance (19%). The yield was highest in families with an additional history of HCM-related clinical events. In relatives, 29.9% of mutation carriers did not fulfil any clinical diagnostic criterion, and in 37.5% of relatives without a mutation, one or more criteria was fulfilled. A total of 60% of family members had no mutation and could be reassured and further follow-up ceased. Genetic diagnosis may be established in approximately 40% of families with the highest yield in familial HCM with clinical events. Mutation-screening was superior to clinical investigation in identification of individuals not at increased risk, where follow-up is redundant, but should be offered in all families with relatives at risk for developing HCM.
Collapse
Affiliation(s)
- Paal Skytt Andersen
- Department of Clinical Biochemistry, Statens Serum Institute, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Brink PA. Mendelian-inherited heart disease: a gateway to understanding mechanisms in heart disease Update on work done at the University of Stellenbosch. Cardiovasc J Afr 2009; 20:57-63. [PMID: 19287818 PMCID: PMC4200874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The presence of founder effects in South Africa for many single-gene diseases, which include heart diseases such as progressive familial heart block types I and II, hypertrophic cardiomyopathy and the long QT syndromes, afforded us the opportunity to identify causal genes and associated mutations through genetic mapping and positional cloning. From finding the genes, the emphasis has shifted to elucidating how primary defects cause disease and recognising factors that could explain the often pronounced phenotypic variability seen in persons carrying the same inherited defect. In some of these diseases, sudden unexpected death has been a frequent occurrence in young, apparently healthy individuals who had not been aware that they had inherited an underlying risk. Herein, we review progress in identifying genes, mutations and risk factors associated with the diseases mentioned.
Collapse
Affiliation(s)
- PA Brink
- Department of Medicine, University of Stellenbosch, Stellenbosch
| |
Collapse
|
6
|
Revera M, Van der Merwe L, Heradien M, Goosen A, Corfield VA, Brink PA, Moolman-Smook JC. Long-term follow-up of R403WMYH7 and R92WTNNT2 HCM families: mutations determine left ventricular dimensions but not wall thickness during disease progression. Cardiovasc J Afr 2007; 18:146-53. [PMID: 17612745 PMCID: PMC4213759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The clinical profile and prognosis of patients with hypertrophic cardiomyopathy, a primary cardiac muscle disease caused mostly by mutations in sarcomeric protein-encoding genes, have been linked to particular disease-causing mutations in the past. However, such associations are often based on cross-sectional observations, as longitudinal studies of the progression of the disease in genotypically defined patients are sparse. Most importantly, the relative contribution of age, gender and genetic cause to disease profile and progression has not yet been reported, and the question remains whether one or more of these factors could mask the effect of the other(s). METHODS We previously described cross-sectional family studies of two hypertrophic cardiomyopathy (HCM)-causing mutations, R92W(TNNT2) and R403W(MYH7), both associated with minimal hypertrophy, but with widely different life expectancies. We re-investigated 22 and 26 R92W(TNNT2) and R403W(MYH7) mutation carriers in these and additional South African R92W(TNNT2) families after a mean 11.08 +/- 2.79 years, and compared the influence of the two mutations, in the context of age and gender, on disease progression. RESULTS We demonstrated a positive correlation between age and interventricular septal thickness for both mutations, with more than a third of all mutation carriers developing clinically recognised hypertrophy only after the age of 35 years. This period of hypertrophically silent HCM also coincided with the years in which most sudden cardiac deaths occurred, particularly in male R92W(TNNT2) carriers. Statistical analyses indicated that the particular mutation was the strongest determinant of left ventricular remodelling; particularly, LVESD increased and EF reduction was noted in the majority of R403W(MYH7) carriers, which may require clinical follow-up over the longer term. CONCLUSIONS Statistical modelling of follow-up data suggests that an interplay between unidentified, possibly gender-associated factors, and the causal mutation are the determinants of eventual cardiac function and survival, but not of the extent of hypertrophy, and emphasises the need for long-term follow-up even in individuals with apparently mild disease.
Collapse
Affiliation(s)
- Miriam Revera
- Department of Cardiology, IRCCS San Matteo Hospital, Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
7
|
Oakley CE, Hambly BD, Curmi PMG, Brown LJ. Myosin binding protein C: structural abnormalities in familial hypertrophic cardiomyopathy. Cell Res 2004; 14:95-110. [PMID: 15115610 DOI: 10.1038/sj.cr.7290208] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The muscle protein myosin binding protein C (MyBPC) is a large multi-domain protein whose role in the sarcomere is complex and not yet fully understood. Mutations in MyBPC are strongly associated with the heart disease familial hypertrophic cardiomyopathy (FHC) and these experiments of nature have provided some insight into the intricate workings of this protein in the heart. While some regions of the MyBPC molecule have been assigned a function in the regulation of muscle contraction, the interaction of other regions with various parts of the myosin molecule and the sarcomeric proteins, actin and titin, remain obscure. In addition, several intra-domain interactions between adjacent MyBPC molecules have been identified. Although the basic structure of the molecule (a series of immunoglobulin and fibronectin domains) has been elucidated, the assembly of MyBPC in the sarcomere is a topic for debate. By analysing the MyBPC sequence with respect to FHC-causing mutations it is possible to identify individual residues or regions of each domain that may be important either for binding or regulation. This review looks at the current literature, in concert with alignments and the structural models of MyBPC, in an attempt to understand how FHC mutations may lead to the disease state.
Collapse
Affiliation(s)
- Cecily E Oakley
- Department of Pathology, University of Sydney, NSW 2006, Australia.
| | | | | | | |
Collapse
|
8
|
Abstract
Myosin binding protein-C (MyBP-C) is a thick filament–associated protein localized to the crossbridge-containing C zones of striated muscle sarcomeres. The cardiac isoform is composed of eight immunoglobulin I–like domains and three fibronectin 3–like domains and is known to be a physiological substrate of cAMP-dependent protein kinase. MyBP-C contributes to thick filament structure via interactions at its C-terminus with the light meromyosin section of the myosin rod and with titin. The protein also has a role in the regulation of contraction, due to the binding of its N-terminus to the subfragment-2 portion of myosin, which reduces actomyosin ATPase activity; phosphorylation abolishes this interaction, resulting in release of the “brake” on crossbridge cycling. Several structural models of the interaction of MyBP-C with myosin have been proposed, although its precise arrangement on the thick filament remains to be elucidated. Mutations in the gene encoding cardiac MyBP-C are a common cause of hypertrophic cardiomyopathy, and this has led to increased interest in the protein’s function. Investigation of disease-causing mutations in domains with unknown function has led to further insights into the mechanism of cMyBP-C action. This Review aims to collate the published data on those aspects of MyBP-C that are well characterized and to consider new and emerging data that further define its structural and regulatory roles and its arrangement in the sarcomere. We also speculate on the mechanisms by which hypertrophic cardiomyopathy–causing truncation and missense mutations affect the normal functioning of the sarcomere.
Collapse
Affiliation(s)
- Emily Flashman
- Department of Cardiovascular Medicine, University of Oxford, UK
| | | | | | | |
Collapse
|
9
|
Konno T, Shimizu M, Ino H, Matsuyama T, Yamaguchi M, Terai H, Hayashi K, Mabuchi T, Kiyama M, Sakata K, Hayashi T, Inoue M, Kaneda T, Mabuchi H. A novel missense mutation in the myosin binding protein-C gene is responsible for hypertrophic cardiomyopathy with left ventricular dysfunction and dilation in elderly patients. J Am Coll Cardiol 2003; 41:781-6. [PMID: 12628722 DOI: 10.1016/s0735-1097(02)02957-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES We studied the clinical features of hypertrophic cardiomyopathy (HCM) caused by a novel mutation in the myosin binding protein-C (MyBP-C) gene in patients and family members of Japanese descent. BACKGROUND Previous reports have demonstrated that the clinical features of HCM associated with mutations in the MyBP-C gene include late onset and a favorable clinical course. Recently, some mutations in genes encoding sarcomeric proteins have been reported to be a cause of dilated cardiomyopathy (DCM), as well as HCM. However, mutations of the MyBP-C gene have not been reported as a cause of DCM up to now. METHODS We analyzed MyBP-C gene mutations in 250 unrelated probands with HCM and in 90 with DCM. We used electrocardiography (ECG) and echocardiography to determine clinical phenotypes. RESULTS We identified 17 individuals in 8 families (7 HCM, 1 DCM) with an Arg820Gln mutation in the MyBP-C gene. Overall, 2 (40%) of 5 carriers age >70 years displayed "burnt-out" phase HCM, and one of them had been diagnosed as having DCM before genetic identification. The disease penetrance in subjects age >50 years was 70% by echocardiography and 100% by ECG, and that in those age <50 years was 40% and 50%, respectively. CONCLUSIONS Elderly patients with Arg820Gln mutation may show "burnt-out" phase HCM, and patients with this mutation may be included among those diagnosed as having DCM. Screening of patients with DCM, as well as HCM, for this mutation is of significant importance because patients with this mutation may be diagnosed clinically as having DCM.
Collapse
MESH Headings
- Adolescent
- Adult
- Age Distribution
- Aged
- Cardiomyopathy, Dilated/diagnosis
- Cardiomyopathy, Dilated/epidemiology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Hypertrophic/diagnosis
- Cardiomyopathy, Hypertrophic/epidemiology
- Cardiomyopathy, Hypertrophic/genetics
- Carrier Proteins/genetics
- Cohort Studies
- Comorbidity
- Echocardiography
- Electrocardiography
- Female
- Genetic Predisposition to Disease
- Genetic Testing
- Humans
- Japan/epidemiology
- Male
- Middle Aged
- Mutation, Missense
- Pedigree
- Polymerase Chain Reaction
- Polymorphism, Genetic
- Prevalence
- Risk Assessment
- Severity of Illness Index
- Survival Rate
- Ventricular Dysfunction, Left/diagnosis
- Ventricular Dysfunction, Left/epidemiology
- Ventricular Dysfunction, Left/genetics
Collapse
Affiliation(s)
- Tetsuo Konno
- Molecular Genetics of Cardiovascular Disorders, Division of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Moolman-Smook J, Flashman E, de Lange W, Li Z, Corfield V, Redwood C, Watkins H. Identification of novel interactions between domains of Myosin binding protein-C that are modulated by hypertrophic cardiomyopathy missense mutations. Circ Res 2002; 91:704-11. [PMID: 12386147 DOI: 10.1161/01.res.0000036750.81083.83] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiac myosin binding protein-C (cMyBPC) is a modular protein consisting of 11 domains whose precise function and sarcomeric arrangement are incompletely understood. Identification of hypertrophic cardiomyopathy (HCM)--causing missense mutations in cMyBPC has highlighted the significance of certain domains. Of particular interest is domain C5, an immunoglobulin-like domain with a cardiac-specific insert, which is of unknown function yet is the site of two HCM-causing missense mutations. To identify interactors with this region, a human cardiac cDNA library was screened in a yeast two-hybrid (Y2H) assay using the C5 sequence as bait. Screening >7x10(6) clones surprisingly revealed that domain C5 preferentially bound to clones encoding C-terminal fragments of cMyBPC; the interacting region was narrowed to domain C8 by deletion mapping. A surface plasmon resonance assay using purified recombinant cMyBPC domains was used to measure the affinity of C5 and C8 in vitro (K(a)=1x10(5) mol/L(-1)). This affinity was decreased about 2-fold by the HCM mutation R654H, and by at least 10-fold by the mutation N755K. Further Y2H assays also demonstrated specific binding between domains C7 and C10 of cMyBPC. Based on these novel interactions, and previous biochemical and structural data, we propose that cMyBPC molecules trimerize into a collar around the thick filament, with overlaps of domains C5-C7 of one cMyBPC with C8-C10 of another. We speculate that this interaction may be dynamically formed and released, thereby restricting or favoring cross-bridge formation, respectively. We suggest that the HCM mutations act by altering the cMyBPC collar, indicating its importance in thick filament structure and regulation.
Collapse
Affiliation(s)
- Johanna Moolman-Smook
- US/MRC Centre for Molecular and Cellular Biology, University of Stellenbosch, Tygerberg, South Africa
| | | | | | | | | | | | | |
Collapse
|
11
|
Erdmann J, Raible J, Maki-Abadi J, Hummel M, Hammann J, Wollnik B, Frantz E, Fleck E, Hetzer R, Regitz-Zagrosek V. Spectrum of clinical phenotypes and gene variants in cardiac myosin-binding protein C mutation carriers with hypertrophic cardiomyopathy. J Am Coll Cardiol 2001; 38:322-30. [PMID: 11499719 DOI: 10.1016/s0735-1097(01)01387-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVES We studied the clinical and genetic features of hypertrophic cardiomyopathy (HCM) caused by mutations in the myosin-binding protein C gene (MYBPC3) in 110 consecutive, unrelated patients and family members of European descent. BACKGROUND Mutations in the MYBPC3 gene represent the cause of HCM in approximately 15% of familial cases. MYBPC3 mutations were reported to include mainly nonsense versus missense mutations and to be characterized by a delayed onset and benign clinical course of the disease in Japanese and French families. We investigated the features that characterize MYBPC3 variants in a large, unrelated cohort of consecutive patients. METHODS The MYBPC3 gene was screened by single-strand conformational polymorphism analysis and sequencing. The clinical phenotypes were analyzed using rest and 24-h electrocardiography, electrophysiology, two-dimensional and Doppler echocardiography and angiography. RESULTS We identified 13 mutations in the MYBPC3 gene: one nonsense, four missense and three splicing mutations and five small deletions and insertions. Of these, 11 were novel, and two were probably founder mutations. Patients with MYBPC3 mutations presented a broad range of phenotypes. In general, the 16 carriers of protein truncations had a tendency toward earlier disease manifestations (33 +/- 13 vs. 48 +/- 9 years; p = 0.06) and more frequently needed invasive procedures (septal ablation or cardioverter-defibrillator implantation) compared with the 9 carriers of missense mutations or in-frame deletions (12/16 vs. 1/9 patients; p < 0.01). CONCLUSIONS Multiple mutations, which include missense, nonsense and splicing mutations, as well as small deletions and insertions, occur in the MYBPC3 gene. Protein truncation mutations seem to cause a more severe disease phenotype than missense mutations or in-frame deletions.
Collapse
Affiliation(s)
- J Erdmann
- Department of Internal Medicine, Charité, Humboldt University and Deutsches Herzzentrum, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Moolman JA, Reith S, Uhl K, Bailey S, Gautel M, Jeschke B, Fischer C, Ochs J, McKenna WJ, Klues H, Vosberg HP. A newly created splice donor site in exon 25 of the MyBP-C gene is responsible for inherited hypertrophic cardiomyopathy with incomplete disease penetrance. Circulation 2000; 101:1396-402. [PMID: 10736283 DOI: 10.1161/01.cir.101.12.1396] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy is a myocardial disorder resulting from inherited sarcomeric dysfunction. We report a mutation in the myosin-binding protein-C (MyBP-C) gene, its clinical consequences in a large family, and myocardial tissue findings that may provide insight into the mechanism of disease. METHODS AND RESULTS History and clinical status (examination, ECG, and echocardiography) were assessed in 49 members of a multigeneration family. Linkage analysis implicated the MyBP-C gene on chromosome 11. Myocardial mRNA, genomic MyBP-C DNA, and the myocardial proteins of patients and healthy relatives were analyzed. A single guanine nucleotide insertion in exon 25 of the MyBP-C gene resulted in the loss of 40 bases in abnormally processed mRNA. A 30-kDa truncation at the C-terminus of the protein was predicted, but a polypeptide of the expected size ( approximately 95 kDa) was not detected by immunoblot testing. The disease phenotype in this family was characterized in detail: only 10 of 27 gene carriers fulfilled diagnostic criteria. Five carriers showed borderline hypertrophic cardiomyopathy, and 12 carriers were asymptomatic, with normal ECG and echocardiograms. The age of onset in symptomatic patients was late (29 to 68 years). In 2 patients, outflow obstruction required surgery. Two family members experienced premature sudden cardiac death, but survival at 50 years was 95%. CONCLUSIONS Penetrance of this mutation was incomplete and age-dependent. The large number of asymptomatic carriers and the good prognosis support the interpretation of benign disease.
Collapse
Affiliation(s)
- J A Moolman
- Department of Experimental Cardiology, Max-Planck-Institute for Physiological and Clinical Research, Bad Nauheim, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kunst G, Kress KR, Gruen M, Uttenweiler D, Gautel M, Fink RH. Myosin binding protein C, a phosphorylation-dependent force regulator in muscle that controls the attachment of myosin heads by its interaction with myosin S2. Circ Res 2000; 86:51-8. [PMID: 10625305 DOI: 10.1161/01.res.86.1.51] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Myosin binding protein C (MyBP-C) is one of the major sarcomeric proteins involved in the pathophysiology of familial hypertrophic cardiomyopathy (FHC). The cardiac isoform is tris-phosphorylated by cAMP-dependent protein kinase (cAPK) on beta-adrenergic stimulation at a conserved N-terminal domain (MyBP-C motif), suggesting a role in regulating positive inotropy mediated by cAPK. Recent data show that the MyBP-C motif binds to a conserved segment of sarcomeric myosin S2 in a phosphorylation-regulated way. Given that most MyBP-C mutations that cause FHC are predicted to result in N-terminal fragments of the protein, we investigated the specific effects of the MyBP-C motif on contractility and its modulation by cAPK phosphorylation. The diffusion of proteins into skinned fibers allows the investigation of effects of defined molecular regions of MyBP-C, because the endogenous MyBP-C is associated with few myosin heads. Furthermore, the effect of phosphorylation of cardiac MyBP-C can be studied in a defined unphosphorylated background in skeletal muscle fibers only. Triton skinned fibers were tested for maximal isometric force, Ca(2+)/force relation, rigor force, and stiffness in the absence and presence of the recombinant cardiac MyBP-C motif. The presence of unphosphorylated MyBP-C motif resulted in a significant (1) depression of Ca(2+)-activated maximal force with no effect on dynamic stiffness, (2) increase of the Ca(2+) sensitivity of active force (leftward shift of the Ca(2+)/force relation), (3) increase of maximal rigor force, and (4) an acceleration of rigor force and rigor stiffness development. Tris-phosphorylation of the MyBP-C motif by cAPK abolished these effects. This is the first demonstration that the S2 binding domain of MyBP-C is a modulator of contractility. The anchorage of the MyBP-C motif to the myosin filament is not needed for the observed effects, arguing that the mechanism of MyBP-C regulation is at least partly independent of a "tether," in agreement with a modulation of the head-tail mobility. Soluble fragments occurring in FHC, lacking the spatial specificity, might therefore lead to altered contraction regulation without affecting sarcomere structure directly.
Collapse
Affiliation(s)
- G Kunst
- Department of Anaesthesiology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Moolman-Smook JC, De Lange WJ, Bruwer ECD, Brink PA, Corfield VA. The origins of hypertrophic cardiomyopathy-causing mutations in two South African subpopulations: a unique profile of both independent and founder events. Am J Hum Genet 1999; 65:1308-20. [PMID: 10521296 PMCID: PMC1288283 DOI: 10.1086/302623] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an autosomal dominantly inherited disease of the cardiac sarcomere, caused by numerous mutations in genes encoding protein components of this structure. Mutation carriers are at risk of sudden cardiac death, mostly as adolescents or young adults. The reproductive disadvantage incurred may explain both the global occurrence of diverse independent HCM-associated mutations and the rare reports of founder effects within populations. We have investigated whether this holds true for two South African subpopulations, one of mixed ancestry and one of northern-European descent. Previously, we had detected three novel mutations-Ala797Thr in the beta-myosin heavy-chain gene (betaMHC), Arg92Trp in the cardiac troponin T gene (cTnT), and Arg645His in the myosin-binding protein C gene (MyBPC)-and two documented betaMHC mutations (Arg403Trp and Arg249Gln). Here we report three additional novel mutations-Gln499Lys in betaMHC and Val896Met and Deltac756 in MyBPC-and the documented betaMHC Arg719Gln mutation. Seven of the nine HCM-causing mutations arose independently; no conclusions can be drawn for the remaining two. However, the betaMHC Arg403Trp and Ala797Thr and cTnT Arg92Trp mutations were detected in another one, eight, and four probands, respectively, and haplotype analysis in families carrying these recurring mutations inferred their origin from three common ancestors. The milder phenotype of the betaMHC mutations may account for the presence of these founder effects, whereas population dynamics alone may have overridden the reproductive disadvantage incurred by the more lethal, cTnT Arg92Trp mutation.
Collapse
Affiliation(s)
- Johanna C. Moolman-Smook
- US/MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, University of Stellenbosch Medical School, and Department of Internal Medicine, University of Stellenbosch Medical School and Tygerberg Hospital, Tygerberg, South Africa
| | - Willem J. De Lange
- US/MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, University of Stellenbosch Medical School, and Department of Internal Medicine, University of Stellenbosch Medical School and Tygerberg Hospital, Tygerberg, South Africa
| | - Eduard C. D. Bruwer
- US/MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, University of Stellenbosch Medical School, and Department of Internal Medicine, University of Stellenbosch Medical School and Tygerberg Hospital, Tygerberg, South Africa
| | - Paul A. Brink
- US/MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, University of Stellenbosch Medical School, and Department of Internal Medicine, University of Stellenbosch Medical School and Tygerberg Hospital, Tygerberg, South Africa
| | - Valerie A. Corfield
- US/MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, University of Stellenbosch Medical School, and Department of Internal Medicine, University of Stellenbosch Medical School and Tygerberg Hospital, Tygerberg, South Africa
| |
Collapse
|
15
|
Bennett PM, Fürst DO, Gautel M. The C-protein (myosin binding protein C) family: regulators of contraction and sarcomere formation? Rev Physiol Biochem Pharmacol 1999; 138:203-34. [PMID: 10396142 DOI: 10.1007/bfb0119628] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- P M Bennett
- Randall Institute, King's College London, UK
| | | | | |
Collapse
|
16
|
Bennett PM, Fürst DO, Gautel M. The C-protein (myosin binding protein C) family: Regulators of contraction and sarcomere formation? Rev Physiol Biochem Pharmacol 1999. [DOI: 10.1007/bf02346664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Yang Q, Sanbe A, Osinska H, Hewett TE, Klevitsky R, Robbins J. A mouse model of myosin binding protein C human familial hypertrophic cardiomyopathy. J Clin Invest 1998; 102:1292-300. [PMID: 9769321 PMCID: PMC508976 DOI: 10.1172/jci3880] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Familial hypertrophic cardiomyopathy can be caused by mutations in genes encoding sarcomeric proteins, including the cardiac isoform of myosin binding protein C (MyBP-C), and multiple mutations which cause truncated forms of the protein to be made are linked to the disease. We have created transgenic mice in which varying amounts of a mutated MyBP-C, lacking the myosin and titin binding domains, are expressed in the heart. The transgenically encoded, truncated protein is stable but is not incorporated efficiently into the sarcomere. The transgenic muscle fibers showed a leftward shift in the pCa2+-force curve and, importantly, their power output was reduced. Additionally, expression of the mutant protein leads to decreased levels of endogenous MyBP-C, resulting in a striking pattern of sarcomere disorganization and dysgenesis.
Collapse
Affiliation(s)
- Q Yang
- Department of Pediatrics, Division of Molecular Cardiovascular Biology, Children's Hospital Research Foundation, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | |
Collapse
|
18
|
Bonne G, Carrier L, Richard P, Hainque B, Schwartz K. Familial hypertrophic cardiomyopathy: from mutations to functional defects. Circ Res 1998; 83:580-93. [PMID: 9742053 DOI: 10.1161/01.res.83.6.580] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypertrophic cardiomyopathy is characterized by left and/or right ventricular hypertrophy, which is usually asymmetric and involves the interventricular septum. Typical morphological changes include myocyte hypertrophy and disarray surrounding the areas of increased loose connective tissue. Arrhythmias and premature sudden deaths are common. Hypertrophic cardiomyopathy is familial in the majority of cases and is transmitted as an autosomal-dominant trait. The results of molecular genetics studies have shown that familial hypertrophic cardiomyopathy is a disease of the sarcomere involving mutations in 7 different genes encoding proteins of the myofibrillar apparatus: ss-myosin heavy chain, ventricular myosin essential light chain, ventricular myosin regulatory light chain, cardiac troponin T, cardiac troponin I, alpha-tropomyosin, and cardiac myosin binding protein C. In addition to this locus heterogeneity, there is a wide allelic heterogeneity, since numerous mutations have been found in all these genes. The recent development of animal models and of in vitro analyses have allowed a better understanding of the pathophysiological mechanisms associated with familial hypertrophic cardiomyopathy. One can thus tentatively draw the following cascade of events: The mutation leads to a poison polypeptide that would be incorporated into the sarcomere. This would alter the sarcomeric function that would result (1) in an altered cardiac function and then (2) in the alteration of the sarcomeric and myocyte structure. Some mutations induce functional impairment and support the pathogenesis hypothesis of a "hypocontractile" state followed by compensatory hypertrophy. Other mutations induce cardiac hyperfunction and determine a "hypercontractile" state that would directly induce cardiac hypertrophy. The development of other animal models and of other mechanistic studies linking the genetic mutation to functional defects are now key issues in understanding how alterations in the basic contractile unit of the cardiomyocyte alter the phenotype and the function of the heart.
Collapse
Affiliation(s)
- G Bonne
- From the INSERM Unit 153, the Service de Biochimie B, and the IFR de Physiologie et Génétique Cardiovasculaire, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | | | | | | | |
Collapse
|