1
|
Aourangzaib M, Chandra M, Maham R, Naz A, Malathi H, Qadeer S, Mateen RM, Parveen R. Solving the twin paradox-forensic strategies to identify the identical twins. Forensic Sci Int 2024; 363:112205. [PMID: 39213915 DOI: 10.1016/j.forsciint.2024.112205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Identical twins are also called monozygotic twins which originate from the same zygote that possesses the same genetic make-up. To discriminate between identical monozygotic twins, short tandem repeats has not been found effective, therefore, various techniques, including next-generation sequencing (NGS), are applied. Monozygotic twins can be identified through germ line genomes, through speech using deep learning networks, and through epigenetic analysis. Fingerprint analysis has also been used to distinguish between identical twins, as human beings have unique fingerprints. Two distinct levels of fingerprint are used to distinguish between monozygotic twins based upon the differences in the minutiae points. Examination of the methylation pattern of the genome has an enormous potential to differentiate between identical twins, as the methylation of DNA occurs uniquely to each individual. This article offers an insight into the latest methods and techniques used for the differentiation between the identical twins.
Collapse
Affiliation(s)
- Muhammad Aourangzaib
- Department of Life Sciences, School of Sciences, University of Management and Technology (UMT), Lahore, Punjab, Pakistan
| | - Muktesh Chandra
- Marwadi University Research Centre, Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University, Rajkot, Gujrat 360003, India
| | - Rabiya Maham
- Department of Life Sciences, School of Sciences, University of Management and Technology (UMT), Lahore, Punjab, Pakistan
| | - Alisha Naz
- Department of Life Sciences, School of Sciences, University of Management and Technology (UMT), Lahore, Punjab, Pakistan
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Saima Qadeer
- Department of Zoology, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Rana Muhammad Mateen
- Department of Life Sciences, School of Sciences, University of Management and Technology (UMT), Lahore, Punjab, Pakistan.
| | - Rukhsana Parveen
- Cenre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
2
|
Imamura A, Morimoto Y, Ono S, Kurotaki N, Kanegae S, Yamamoto N, Kinoshita H, Tsujita T, Okazaki Y, Ozawa H. Genetic and environmental factors of schizophrenia and autism spectrum disorder: insights from twin studies. J Neural Transm (Vienna) 2020; 127:1501-1515. [PMID: 32285255 PMCID: PMC7578126 DOI: 10.1007/s00702-020-02188-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023]
Abstract
Twin studies of psychiatric disorders such as schizophrenia and autism spectrum disorder have employed epidemiological approaches that determine heritability by comparing the concordance rate between monozygotic twins (MZs) and dizygotic twins. The basis for these studies is that MZs share 100% of their genetic information. Recently, biological studies based on molecular methods are now being increasingly applied to examine the differences between MZs discordance for psychiatric disorders to unravel their possible causes. Although recent advances in next-generation sequencing have increased the accuracy of this line of research, there has been greater emphasis placed on epigenetic changes versus DNA sequence changes as the probable cause of discordant psychiatric disorders in MZs. Since the epigenetic status differs in each tissue type, in addition to the DNA from the peripheral blood, studies using DNA from nerve cells induced from postmortem brains or induced pluripotent stem cells are being carried out. Although it was originally thought that epigenetic changes occurred as a result of environmental factors, and thus were not transmittable, it is now known that such changes might possibly be transmitted between generations. Therefore, the potential possible effects of intestinal flora inside the body are currently being investigated as a cause of discordance in MZs. As a result, twin studies of psychiatric disorders are greatly contributing to the elucidation of genetic and environmental factors in the etiology of psychiatric conditions.
Collapse
Affiliation(s)
- Akira Imamura
- Child and Adolescent Psychiatry Community Partnership Unit, Nagasaki University Hospital, Nagasaki, Japan.
| | - Yoshiro Morimoto
- Unit of Translation Medicine, Department of Neuropsychiatry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shinji Ono
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Naohiro Kurotaki
- Department of Clinical Psychiatry, Graduate School of Medicine, Kagawa University, Kita-gun, Japan
| | - Shinji Kanegae
- Child and Adolescent Psychiatry Community Partnership Unit, Nagasaki University Hospital, Nagasaki, Japan
| | - Naoki Yamamoto
- Child and Adolescent Psychiatry Community Partnership Unit, Nagasaki University Hospital, Nagasaki, Japan
- Unit of Translation Medicine, Department of Neuropsychiatry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hirohisa Kinoshita
- Unit of Translation Medicine, Department of Neuropsychiatry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | - Yuji Okazaki
- Koseikai Michinoo Hospital, Nagasaki, Japan
- Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - Hiroki Ozawa
- Child and Adolescent Psychiatry Community Partnership Unit, Nagasaki University Hospital, Nagasaki, Japan
- Unit of Translation Medicine, Department of Neuropsychiatry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
3
|
Sasaki A, de Vega WC, McGowan PO. Biological embedding in mental health: an epigenomic perspective. Biochem Cell Biol 2013; 91:14-21. [PMID: 23442137 DOI: 10.1139/bcb-2012-0070] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human epidemiological studies and studies of animal models provide many examples by which early life experiences influence health in a long-term manner, a concept known as biological embedding. Such experiences can have profound impacts during periods of high plasticity in prenatal and early postnatal life. Epigenetic mechanisms influence gene function in the absence of changes in gene sequence. In contrast to the relative stability of gene sequences, epigenetic mechanisms appear, at least to some extent, responsive to environmental signals. To date, a few examples appear to clearly link early social experiences to epigenetic changes in pathways relevant for mental health in adulthood. Our recent work using high-throughput epigenomic techniques points to large-scale changes in gene pathways in addition to candidate genes involved in the response to psychosocial stress and neuroplasticity. Elucidation of which pathways are epigenetically labile under what conditions will enable a more complete understanding of how the epigenome can mediate environmental interactions with the genome that are relevant for mental health. In this mini-review, we provide examples of nascent research into the influence of early life experience on mental health outcomes, discuss evidence of epigenetic mechanisms that may underlie these effects, and describe challenges for research in this area.
Collapse
Affiliation(s)
- Aya Sasaki
- Department of Biological Sciences, University of Toronto, Scarborough, Canada
| | | | | |
Collapse
|
4
|
McGowan PO, Szyf M. The epigenetics of social adversity in early life: implications for mental health outcomes. Neurobiol Dis 2010; 39:66-72. [PMID: 20053376 DOI: 10.1016/j.nbd.2009.12.026] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 12/20/2009] [Accepted: 12/26/2009] [Indexed: 11/16/2022] Open
Abstract
An organism's behavioral and physiological and social milieu influence and are influenced by the epigenome, which is composed predominantly of chromatin and the covalent modification of DNA by methylation. Epigenetic patterns are sculpted during development to shape the diversity of gene expression programs in the organism. In contrast to the genetic sequence, which is determined by inheritance and is virtually identical in all tissues, the epigenetic pattern varies from cell type to cell type and is potentially dynamic throughout life. It is postulated here that different environmental exposures, including early parental care, could impact epigenetic patterns, with important implications for mental health in humans. Because epigenetic programming defines the state of expression of genes, epigenetic differences could have the same consequences as genetic polymorphisms. Yet in contrast to genetic sequence differences, epigenetic alterations are potentially reversible. This review will discuss basic epigenetic mechanisms and how epigenetic processes early in life might play a role in defining inter-individual trajectories of human behavior. In this regard, we will examine evidence for the possibility that epigenetic mechanisms can contribute to later-onset neurological dysfunction and disease.
Collapse
Affiliation(s)
- Patrick O McGowan
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
5
|
Kakiuchi C, Ishiwata M, Nanko S, Ozaki N, Iwata N, Umekage T, Tochigi M, Kohda K, Sasaki T, Imamura A, Okazaki Y, Kato T. Up-regulation of ADM and SEPX1 in the lymphoblastoid cells of patients in monozygotic twins discordant for schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:557-64. [PMID: 18081029 DOI: 10.1002/ajmg.b.30643] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The contribution of genetic factors to schizophrenia is well established and recent studies have indicated several strong candidate genes. However, the pathophysiology of schizophrenia has not been totally elucidated yet. To date, studies of monozygotic twins discordant for schizophrenia have provided insight into the pathophysiology of this illness; this type of study can exclude inter-individual variability and confounding factors such as effects of drugs. In this study we used DNA microarray analysis to examine the mRNA expression patterns in the lymphoblastoid (LB) cells derived from two pairs of monozygotic twins discordant for schizophrenia. From five independent replicates for each pair of twins, we selected five genes, which included adrenomedullin (ADM) and selenoprotein X1 (SEPX1), as significantly changed in both twins with schizophrenia. Interestingly, ADM was previously reported to be up-regulated in both the LB cells and plasma of schizophrenic patients, and SEPX1 was included in the list of genes up-regulated in the peripheral blood cells of schizophrenia patients by microarray analysis. Then, we performed a genetic association study of schizophrenia in the Japanese population and examined the copy number variations, but observed no association. These findings suggest the possible role of ADM and SEPX1 as biomarkers of schizophrenia. The results also support the usefulness of gene expression analysis in LB cells of monozygotic twins discordant for an illness.
Collapse
Affiliation(s)
- Chihiro Kakiuchi
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kuratomi G, Iwamoto K, Bundo M, Kusumi I, Kato N, Iwata N, Ozaki N, Kato T. Aberrant DNA methylation associated with bipolar disorder identified from discordant monozygotic twins. Mol Psychiatry 2008; 13:429-41. [PMID: 17471289 DOI: 10.1038/sj.mp.4002001] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To search DNA methylation difference between monozygotic twins discordant for bipolar disorder, we applied a comprehensive genome scan method, methylation-sensitive representational difference analysis (MS-RDA) to lymphoblastoid cells derived from the twins. MS-RDA isolated 10 DNA fragments derived from 5' region of known genes/ESTs. Among these 10 regions, four regions showed DNA methylation differences between bipolar twin and control co-twin confirmed by bisulfite sequencing. We performed a case-control study of DNA methylation status of these four regions by pyrosequencing. Two regions, upstream regions of spermine synthase (SMS) and peptidylprolyl isomerase E-like (PPIEL) (CN265253), showed aberrant DNA methylation status in bipolar disorder. SMS, a gene on X chromosome, showed significantly higher DNA methylation level in female patients with bipolar disorder compared with control females. However, there was no difference of mRNA expression. In PPIEL, DNA methylation level was significantly lower in patients with bipolar II disorder than in controls. The expression level of PPIEL was significantly higher in bipolar II disorder than in controls. We found strong inverse correlation between gene expression and DNA methylation levels of PPIEL. These results suggest that altered DNA methylation statuses of PPIEL might have some significance in pathophysiology of bipolar disorder..
Collapse
Affiliation(s)
- G Kuratomi
- Laboratory for Molecular Dynamics of Mental Disorders, Brain Science Institute, RIKEN, Hirosawa, Wako, Saitama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
McGowan PO, Kato T. Epigenetics in mood disorders. Environ Health Prev Med 2008; 13:16-24. [PMID: 19568875 PMCID: PMC2698240 DOI: 10.1007/s12199-007-0002-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 06/25/2007] [Indexed: 01/10/2023] Open
Abstract
Depression develops as an interaction between stress and an individual's vulnerability to stress. The effect of early life stress and a gene-environment interaction may play a role in the development of stress vulnerability as a risk factor for depression. The epigenetic regulation of the promoter of the glucocorticoid receptor gene has been suggested as a molecular basis of such stress vulnerability. It has also been suggested that antidepressive treatment, such as antidepressant medication and electroconvulsive therapy, may be mediated by histone modification on the promoter of the brain-derived neurotrophic factor gene. Clinical genetic studies in bipolar disorder suggest the role of genomic imprinting, although no direct molecular evidence of this has been reported. The role of DNA methylation in mood regulation is indicated by the antimanic effect of valproate, a histone deacetylase inhibitor, and the antidepressive effect of S-adenosyl methionine, a methyl donor in DNA methylation. Studies of postmortem brains of patients have implicated altered DNA meA methylation of the promoter region of membrane-bound catechol-O-methyltransferase in bipolar disorder. An altered DNA methylation status of PPIEL (peptidylprolyl isomerase E-like) was found in a pair of monozygotic twins discordant for bipolar disorder. Hypomethylation of PPIEL was also found in patients with bipolar II disorder in a case control analysis. These fragmentary findings suggest the possible role of epigenetics in mood disorders. Further studies of epigenetics in mood disorders are warranted.
Collapse
Affiliation(s)
- Patrick O. McGowan
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| |
Collapse
|
8
|
Kato T, Iwamoto K, Kakiuchi C, Kuratomi G, Okazaki Y. Genetic or epigenetic difference causing discordance between monozygotic twins as a clue to molecular basis of mental disorders. Mol Psychiatry 2005; 10:622-30. [PMID: 15838537 DOI: 10.1038/sj.mp.4001662] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Classical twin research focused on differentiating genetic factors from environmental factors by comparing the concordance rate between monozygotic (MZ) and dizygotic twins. On the other hand, recent twin research tries to identify genetic or epigenetic differences between MZ twins discordant for mental disorders. There are a number of reports of MZ twins discordant for genetic disorders caused by genetic or epigenetic differences of known pathogenic genes. In the case of mental disorder research, for which the causative gene has not been established yet, we are trying to identify the 'pathogenic gene' by comprehensive analysis of genetic or epigenetic difference between discordant MZ twins. To date, no compelling evidence suggesting such difference between MZ twins has been reported. However, if the genetic or epigenetic difference responsible for the discordant phenotype is found, it will have impact on the biology of mental disorder, in which few conclusive molecular genetic evidences have been obtained.
Collapse
Affiliation(s)
- T Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Saitama, Japan.
| | | | | | | | | |
Collapse
|
9
|
Singh SM, McDonald P, Murphy B, O'Reilly R. Incidental neurodevelopmental episodes in the etiology of schizophrenia: an expanded model involving epigenetics and development. Clin Genet 2004; 65:435-40. [PMID: 15151498 DOI: 10.1111/j.1399-0004.2004.00269.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epidemiological data favors genetic predisposition for schizophrenia, a common and complex mental disorder in most populations. Search for the genes involved using candidate genes, positional cloning, and chromosomal aberrations including triplet repeat expansions have established a number of susceptibility loci and genomic sites but no causal gene(s) with a proven mechanism of action. Recent genome-wide gene expression studies on brains from schizophrenia patients and their matched controls have identified a number of genes that show an alteration in expression in the diseased brains. Although it is not possible to offer a cause and effect association between altered gene expression and disease, such observations support a neurodevelopmental model in schizophrenia. Here, we offer a mechanism of this disease, which takes into account the role of developmental noise and diversions of the neural system. It suggests that the final outcome of a neural developmental process is not fixed and exact. Rather it develops with a variation around the mean. More important, the phenotypic consequence may cross the norm as a result of fortuitous and/or epigenetic events. As a result, a normal genotype may develop as abnormal with a disease phenotype. More important, susceptible genotypes may have reduced penetrance and develop as a normal phenocopy. The incidental episodes in neurodevelopment will explain the frequency of schizophrenia in most populations and high discordance of monozygotic twins.
Collapse
Affiliation(s)
- S M Singh
- Molecular Genetics Unit, Department of Biology and Division of Medical Genetics, University of Western Ontario, London, Ontario, Canada N6A 5B7, USA.
| | | | | | | |
Collapse
|
10
|
Singh SM, Murphy B, O'Reilly RL. Involvement of gene-diet/drug interaction in DNA methylation and its contribution to complex diseases: from cancer to schizophrenia. Clin Genet 2004; 64:451-60. [PMID: 14986824 DOI: 10.1046/j.1399-0004.2003.00190.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most biological processes, including diseases, involve genetic and non-genetic factors. Also, the realization of a genetic potential may depend on environmental factors by directly affecting the expression of gene(s). Exactly how different environmental factors affect gene expression is not well understood. One of the mechanisms may involve DNA methylation and thereby gene expression. Diet, chemicals, and metals are known to affect DNA methylation and other epigenetic processes but are just beginning to be elucidated. For example, methylation of cytosine(s) in the promoter region could prevent the binding of transcription factors or create binding sites for complexes that deacetylate neighboring histones that in turn compact the chromatin, encouraging a gene to become silent. This article will discuss DNA methylation as an epigenetic mechanism of gene regulation and examine how factors like diet, chemicals, and metals may affect DNA methylation. The effect of alterations in DNA methylation may include aberrant expression of genes or genomes and chromosomal instability, which in turn may contribute to the etiology of complex multifactorial diseases. A similar mechanism is now recognized in a number of cancers. There is also indirect evidence to suggest that methylation could apply to a number of complex diseases, including schizophrenia.
Collapse
Affiliation(s)
- S M Singh
- Molecular Genetics Unit, Department of Biology, Division of Medical Genetics, University of Western Ontario, London, Ontario, Canada.
| | | | | |
Collapse
|