1
|
Karimi K, Mol MO, Haghshenas S, Relator R, Levy MA, Kerkhof J, McConkey H, Brooks A, Zonneveld-Huijssoon E, Gerkes EH, Tedder ML, Vissers L, Salzano E, Piccione M, Asaftei SD, Carli D, Mussa A, Shukarova-Angelovska E, Trajkova S, Brusco A, Merla G, Alders MM, Bouman A, Sadikovic B. Identification of DNA methylation episignature for the intellectual developmental disorder, autosomal dominant 21 syndrome, caused by variants in the CTCF gene. Genet Med 2024; 26:101041. [PMID: 38054406 DOI: 10.1016/j.gim.2023.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023] Open
Abstract
PURPOSE The main objective of this study was to assess clinical features and genome-wide DNA methylation profiles in individuals affected by intellectual developmental disorder, autosomal dominant 21 (IDD21) syndrome, caused by variants in the CCCTC-binding factor (CTCF) gene. METHODS DNA samples were extracted from peripheral blood of 16 individuals with clinical features and genetic findings consistent with IDD21. DNA methylation analysis was performed using the Illumina Infinium Methylation EPIC Bead Chip microarrays. The methylation levels were fitted in a multivariate linear regression model to identify the differentially methylated probes. A binary support vector machine classification model was constructed to differentiate IDD21 samples from controls. RESULTS We identified a highly specific, reproducible, and sensitive episignature associated with CTCF variants. Six variants of uncertain significance were tested, of which 2 mapped to the IDD21 episignature and clustered alongside IDD21 cases in both heatmap and multidimensional scaling plots. Comparison of the genomic DNA methylation profile of IDD21 with that of 56 other neurodevelopmental disorders provided insights into the underlying molecular pathophysiology of this disorder. CONCLUSION The robust and specific CTCF/IDD21 episignature expands the growing list of neurodevelopmental disorders with distinct DNA methylation profiles, which can be applied as supporting evidence in variant classification.
Collapse
Affiliation(s)
- Karim Karimi
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Canada
| | - Merel O Mol
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Canada
| | - Alice Brooks
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Evelien Zonneveld-Huijssoon
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Erica H Gerkes
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Lisenka Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Emanuela Salzano
- Medical Genetics Unit, AOOR Villa Sofia-Cervello Hospitals, Palermo, Italy
| | - Maria Piccione
- Medical Genetics Unit, AOOR Villa Sofia-Cervello Hospitals, Palermo, Italy; Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Sebastian Dorin Asaftei
- Pediatric Onco-Hematology, Regina Margherita Children's Hospital, Città della Salute e della Scienza di Torino, Torino, Italy
| | - Diana Carli
- Department of Medical Sciences, University of Turin, Turin, Italy; Immunogenetics and Transplant Biology Service, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Alessandro Mussa
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Elena Shukarova-Angelovska
- Department of Endocrinology and Genetics, University Clinic for Children's Diseases, Medical Faculty, University Sv. Kiril i Metodij, Skopje, North Macedonia
| | - Slavica Trajkova
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Turin, Turin, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Giuseppe Merla
- Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (Foggia), Italy; Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Marielle M Alders
- Amsterdam UMC, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Arjan Bouman
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Canada.
| |
Collapse
|
2
|
Brase L, You SF, D'Oliveira Albanus R, Del-Aguila JL, Dai Y, Novotny BC, Soriano-Tarraga C, Dykstra T, Fernandez MV, Budde JP, Bergmann K, Morris JC, Bateman RJ, Perrin RJ, McDade E, Xiong C, Goate AM, Farlow M, Sutherland GT, Kipnis J, Karch CM, Benitez BA, Harari O. Single-nucleus RNA-sequencing of autosomal dominant Alzheimer disease and risk variant carriers. Nat Commun 2023; 14:2314. [PMID: 37085492 PMCID: PMC10121712 DOI: 10.1038/s41467-023-37437-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/15/2023] [Indexed: 04/23/2023] Open
Abstract
Genetic studies of Alzheimer disease (AD) have prioritized variants in genes related to the amyloid cascade, lipid metabolism, and neuroimmune modulation. However, the cell-specific effect of variants in these genes is not fully understood. Here, we perform single-nucleus RNA-sequencing (snRNA-seq) on nearly 300,000 nuclei from the parietal cortex of AD autosomal dominant (APP and PSEN1) and risk-modifying variant (APOE, TREM2 and MS4A) carriers. Within individual cell types, we capture genes commonly dysregulated across variant groups. However, specific transcriptional states are more prevalent within variant carriers. TREM2 oligodendrocytes show a dysregulated autophagy-lysosomal pathway, MS4A microglia have dysregulated complement cascade genes, and APOEε4 inhibitory neurons display signs of ferroptosis. All cell types have enriched states in autosomal dominant carriers. We leverage differential expression and single-nucleus ATAC-seq to map GWAS signals to effector cell types including the NCK2 signal to neurons in addition to the initially proposed microglia. Overall, our results provide insights into the transcriptional diversity resulting from AD genetic architecture and cellular heterogeneity. The data can be explored on the online browser ( http://web.hararilab.org/SNARE/ ).
Collapse
Affiliation(s)
- Logan Brase
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Shih-Feng You
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Ricardo D'Oliveira Albanus
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | | | - Yaoyi Dai
- Baylor College of Medicine, Houston, TX, USA
| | - Brenna C Novotny
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Carolina Soriano-Tarraga
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Taitea Dykstra
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Maria Victoria Fernandez
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - John P Budde
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Kristy Bergmann
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - John C Morris
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Randall J Bateman
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Richard J Perrin
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Eric McDade
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Chengjie Xiong
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martin Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Greg T Sutherland
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Bruno A Benitez
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Oscar Harari
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
3
|
Al-Mamari W, Idris AB, Al-Thihli K, Abdulrahim R, Jalees S, Al-Jabri M, Gabr A, Al Murshedi F, Al Kindy A, Al-Hadabi I, Bruwer Z, Islam MM, Alsayegh A. Applying whole exome sequencing in a consanguineous population with autism spectrum disorder. INTERNATIONAL JOURNAL OF DEVELOPMENTAL DISABILITIES 2023; 69:190-200. [PMID: 37025335 PMCID: PMC10071987 DOI: 10.1080/20473869.2021.1937000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This study aimed to systematically assess the impact of clinical and demographic variables on the diagnostic yield of Whole Exome Sequencing (WES) when applied to children with Autism Spectrum Disorder (ASD) from a consanguineous population. Ninety-seven children were included in the analysis, 63% were male and 37% were females. 77.3% had a suspected syndromic aetiology of which 68% had co-existent central nervous system (CNS) clinical features, while 69% had other systems involved. The diagnostic yield of WES in our cohort with ASD was 34%. Children with seizures were more likely to have positive WES results (46% vs. 31%, p = 0.042). Probands with suspected syndromic ASD aetiology showed no significant differential impact on the diagnostic yield of WES.
Collapse
Affiliation(s)
- Watfa Al-Mamari
- Developmental Pediatric Unit, Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman
- Correspondence to: Watfa Al-Mamari, Developmental Pediatric Unit, Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman.
| | - Ahmed B. Idris
- Developmental Pediatric Unit, Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Khalid Al-Thihli
- Genetic Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Reem Abdulrahim
- Genetic Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Saquib Jalees
- Developmental Pediatric Unit, Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Muna Al-Jabri
- Department of Nursing, Sultan Qaboos University Hospital, Muscat, Oman
| | - Ahlam Gabr
- Developmental Pediatric Unit, Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman
| | | | - Adila Al Kindy
- Genetic Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Intisar Al-Hadabi
- Department of Nursing, Sultan Qaboos University Hospital, Muscat, Oman
| | - Zandrè Bruwer
- Genetic Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - M. Mazharul Islam
- Department of Statistics, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Abeer Alsayegh
- Genetic Department, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
4
|
Tellman TV, Dede M, Aggarwal VA, Salmon D, Naba A, Farach-Carson MC. Systematic Analysis of Actively Transcribed Core Matrisome Genes Across Tissues and Cell Phenotypes. Matrix Biol 2022; 111:95-107. [PMID: 35714875 DOI: 10.1016/j.matbio.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/20/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
The extracellular matrix (ECM) is a highly dynamic, well-organized acellular network of tissue-specific biomolecules, that can be divided into structural or core ECM proteins and ECM-associated proteins. The ECM serves as a blueprint for organ development and function and, when structurally altered through mutation, altered expression, or degradation, can lead to debilitating syndromes that often affect one tissue more than another. Cross-referencing the FANTOM5 SSTAR (Semantic catalog of Samples, Transcription initiation And Regulators) and the defined catalog of core matrisome ECM (glyco)proteins, we conducted a comprehensive analysis of 511 different human samples to annotate the context-specific transcription of the individual components of the defined matrisome. Relative log expression normalized SSTAR cap analysis gene expression peak data files were downloaded from the FANTOM5 online database and filtered to exclude all cell lines and diseased tissues. Promoter-level expression values were categorized further into eight core tissue systems and three major ECM categories: proteoglycans, glycoproteins, and collagens. Hierarchical clustering and correlation analyses were conducted to identify complex relationships in promoter-driven gene expression activity. Integration of the core matrisome and curated FANTOM5 SSTAR data creates a unique tool that provides insight into the promoter-level expression of ECM-encoding genes in a tissue- and cell-specific manner. Unbiased clustering of cap analysis gene expression peak data reveals unique ECM signatures within defined tissue systems. Correlation analysis among tissue systems exposes both positive and negative correlation of ECM promoters with varying levels of significance. This tool can be used to provide new insight into the relationships between ECM components and tissues and can inform future research on the ECM in human disease and development. We invite the matrix biology community to continue to explore and discuss this dataset as part of a larger and continuing conversation about the human ECM. An interactive web tool can be found at matrixpromoterome.github.io along with additional resources that can be found at dx.doi.org/10.6084/m9.figshare.19794481 (figures) and https://figshare.com/s/e18ecbc3ae5aaf919b78 (python notebook).
Collapse
Affiliation(s)
- Tristen V Tellman
- Department of Diagnostic & Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, 1941 East Road, BBS-4220, Houston, TX 77054, USA
| | - Merve Dede
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, P.O. Box 301402 Houston, TX 77230, USA
| | - Vikram A Aggarwal
- Departments of BioSciences and Bioengineering, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - Duncan Salmon
- Department of Diagnostic & Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, 1941 East Road, BBS-4220, Houston, TX 77054, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott, Rm E202 (MC901), Chicago, IL 60612, USA
| | - Mary C Farach-Carson
- Department of Diagnostic & Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, 1941 East Road, BBS-4220, Houston, TX 77054, USA.; Departments of BioSciences and Bioengineering, Rice University, 6100 Main St., Houston, TX 77005, USA.; Center for Theoretical Biological Physics, Rice University, 6100 Main St., Houston, TX 77005, USA..
| |
Collapse
|
5
|
Narendiran S, Debnath M, Shivaram S, Kannan R, Sharma S, Christopher R, Seshagiri DV, Jain S, Purushottam M, Mangalore S, Bharath RD, Bindu PS, Sinha S, Taly AB, Nagappa M. Novel insights into the genetic profile of hereditary spastic paraplegia in India. J Neurogenet 2022; 36:21-31. [DOI: 10.1080/01677063.2022.2064463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sundarapandian Narendiran
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Monojit Debnath
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sumanth Shivaram
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Ramakrishnan Kannan
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Shivani Sharma
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Rita Christopher
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Doniparthi V. Seshagiri
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sanjeev Jain
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Meera Purushottam
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sandhya Mangalore
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Rose Dawn Bharath
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | - Sanjib Sinha
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Arun B. Taly
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Madhu Nagappa
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
6
|
Dragašević-Mišković N, Stanković I, Milovanović A, Kostić VS. Autosomal recessive adult onset ataxia. J Neurol 2021; 269:504-533. [PMID: 34499204 DOI: 10.1007/s00415-021-10763-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 11/24/2022]
Abstract
Autosomal recessive ataxias (ARCA) represent a complex group of diseases ranging from primary ataxias to rare and complex metabolic disorders in which ataxia is a part of the clinical picture. Small number of ARCA manifest exclusively in adulthood, while majority of typical childhood onset ARCA may also start later with atypical clinical presentation. We have systematically searched the literature for ARCA with adult onset, both in the group of primary ataxias including those that are less frequently described in isolated or in a small number of families, and also in the group of complex and metabolic diseases in which ataxia is only part of the clinical picture. We propose an algorithm that could be used when encountering a patient with adult onset sporadic or recessive ataxia in whom the acquired causes are excluded. ARCA are frequently neglected in the differential diagnosis of adult-onset ataxias. Rising awareness of their clinical significance is important, not only because some of these disorders may be potentially treatable, but also for prognostic implications and inclusion of patients to future clinical trials with disease modifying agents.
Collapse
Affiliation(s)
- Nataša Dragašević-Mišković
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia.
| | - Iva Stanković
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia
| | - Andona Milovanović
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia
| | - Vladimir S Kostić
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia
| |
Collapse
|
7
|
De novo variants in CAMTA1 cause a syndrome variably associated with spasticity, ataxia, and intellectual disability. Eur J Hum Genet 2020; 28:763-769. [PMID: 32157189 DOI: 10.1038/s41431-020-0600-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 02/06/2020] [Accepted: 02/25/2020] [Indexed: 12/20/2022] Open
Abstract
Previously, intragenic CAMTA1 copy number variants (CNVs) have been shown to cause non-progressive, congenital ataxia with or without intellectual disability (OMIM#614756). However, ataxia, intellectual disability, and dysmorphic features were all incompletely penetrant, even within families. Here, we describe four patients with de novo nonsense, frameshift or missense CAMTA1 variants. All four patients predominantly manifested features of ataxia and/or spasticity. Borderline intellectual disability and dysmorphic features were both present in one patient only, and other neurological and behavioural symptoms were variably present. Neurodevelopmental delay was found to be mild. Our findings indicate that also nonsense, frameshift and missense variants in CAMTA1 can cause a spastic ataxia syndrome as the main phenotype.
Collapse
|
8
|
Grunin M, Beykin G, Rahmani E, Schweiger R, Barel G, Hagbi-Levi S, Elbaz-Hayoun S, Rinsky B, Ganiel M, Carmi S, Halperin E, Chowers I. Association of a Variant in VWA3A with Response to Anti-Vascular Endothelial Growth Factor Treatment in Neovascular AMD. Invest Ophthalmol Vis Sci 2020; 61:48. [PMID: 32106291 PMCID: PMC7329947 DOI: 10.1167/iovs.61.2.48] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose Anti-vascular endothelial growth factor (VEGF) therapy for neovascular AMD (nvAMD) obtains a variable outcome. We performed a genome-wide association study for anti-VEGF treatment response in nvAMD to identify variants potentially underlying such a variable outcome. Methods Israeli patients with nvAMD who underwent anti-VEGF treatment (n = 187) were genotyped on a whole exome chip containing approximately 500,000 variants. Genotyping was correlated with delta visual acuity (deltaVA) between baseline and after three injections of anti-VEGF. Top principal components, age, and baseline VA were included in the analysis. Two lead associated variants were genotyped in an independent validation set of patients with nvAMD (n = 108). Results Linear regression analysis on 5,353,842 variants revealed five exonic variants with an association P value of less than 6 × 10-5. The top variant in the gene VWA3A (P = 1.77 × 10-6) was tested in the validation cohort. The minor allele of the VWA3A variant was associated with worse response to treatment (P = 0.02). The average deltaVA of discovery plus validation was -0.214 logMAR (≈ a gain of 10.7 Early Treatment Diabetic Retinopathy Study letters) for homozygote for the major allele, 0.172 logMAR for heterozygotes (≈ a loss of 8.6 Early Treatment Diabetic Retinopathy Study letters), and 0.21 logMAR for homozygote for the minor allele (≈ a loss of 10.5 Early Treatment Diabetic Retinopathy Study letters). Minor allele carriers had a higher frequency of macular hemorrhage at baseline. Conclusions An VWA3A gene variant was associated with worse response to anti-VEGF treatment in Israeli patients with nvAMD. The VWA3A protein is a precursor of the multimeric von Willebrand factor which is involved in blood coagulation, a system previously associated with nvAMD.
Collapse
Affiliation(s)
- Michelle Grunin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Gala Beykin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Elior Rahmani
- Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Regev Schweiger
- Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Gal Barel
- Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Shira Hagbi-Levi
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Sarah Elbaz-Hayoun
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Batya Rinsky
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Michal Ganiel
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Shai Carmi
- Braun School of Public Health and Community Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eran Halperin
- Department of Computer Science, University of California, Los Angeles, Los Angeles, California, United States
| | - Itay Chowers
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
9
|
Zhang S, Pan X, Zeng T, Guo W, Gan Z, Zhang YH, Chen L, Zhang Y, Huang T, Cai YD. Copy Number Variation Pattern for Discriminating MACROD2 States of Colorectal Cancer Subtypes. Front Bioeng Biotechnol 2019; 7:407. [PMID: 31921812 PMCID: PMC6930883 DOI: 10.3389/fbioe.2019.00407] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022] Open
Abstract
Copy number variation (CNV) is a common structural variation pattern of DNA, and it features a higher mutation rate than single-nucleotide polymorphisms (SNPs) and affects a larger fragment of genomes. CNV is related with the genesis of complex diseases and can thus be used as a strategy to identify novel cancer-predisposing markers or mechanisms. In particular, the frequent deletions of mono-ADP-ribosylhydrolase 2 (MACROD2) locus in human colorectal cancer (CRC) alters DNA repair and the sensitivity to DNA damage and results in chromosomal instability. The relationship between CNV and cancer has not been explained. In this study, on the basis of the genome variation profiling by the SNP array from 651 CRC primary tumors, we computationally analyzed the CNV data to select crucial SNP sites with the most relevance to three different states of MACROD2 (heterozygous deletion, homozygous deletion, and normal state), suggesting that these CNVs may play functional roles in CRC tumorigenesis. Our study can shed new insights into the genesis of cancer based on CNV, providing reference for clinical diagnosis, and treatment prognosis of CRC.
Collapse
Affiliation(s)
- ShiQi Zhang
- School of Life Sciences, Shanghai University, Shanghai, China.,Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - XiaoYong Pan
- Key Laboratory of System Control and Information Processing, Institute of Image Processing and Pattern Recognition, Ministry of Education of China, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Zeng
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Wei Guo
- Institute of Health Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Shanghai, China
| | - Zijun Gan
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Hang Zhang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China.,Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai, China
| | - YunHua Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
10
|
Zhang D, Dai L, Zhou Z, Hu J, Bai Y, Guo H. Homozygosity mapping and whole exome sequencing reveal a novel ERCC8 mutation in a Chinese consanguineous family with unique cerebellar ataxia. Clin Chim Acta 2019; 494:64-70. [PMID: 30871974 DOI: 10.1016/j.cca.2019.03.1609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/06/2019] [Accepted: 03/10/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND A consanguineous Chinese family was affected by an apparently novel autosomal recessive disorder characterized by cerebellar ataxia, cutaneous photosensitivity, and mild intellectual disability. METHODS The family was evaluated by homozygosity mapping, haplotype analysis, whole exome sequencing, and candidate gene mutation screening to identify the disease-associated gene and mutation. Bioinformatics methods were used to predict the functional significance of the mutated gene product. ERCC8 mutations and phenotypes were examined. RESULTS All three patients presented cerebellar ataxia, cutaneous photosensitivity, and mild intellectual disability. Whole genome and candidate region linkage analysis in the consanguineous family revealed a maximum logarithm of the odds score at 5q12.1. This homozygous region was confirmed by homozygosity mapping. The pathogenic missense mutation p.Gly257Arg affecting an evolutionary highly conserved amino acid was identified in ERCC8 at 5q12.1. Integrated application of whole exome sequencing and homozygosity mapping is an efficient approach for gene mapping and mutation identification in consanguineous families. CONCLUSIONS We identified a novel ERCC8 mutation and new unique disease phenotype. These results also confirmed the genotype-phenotype relationship between mutations in ERCC8 and clinical findings.
Collapse
Affiliation(s)
- Danyan Zhang
- Department of Medical Genetics, College of Basic Medicine, Army Medical University (Third Military Medical University), 30#, Gaotanyan St., Shapingba District, Chongqing 400038, PR China; Key Laboratory of Birth Defects and Reproductive Health of National Health and Family Planning Commission (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, 18#, Honghuang Road, Jiangbei District, Chongqing 400020, PR China
| | - Limeng Dai
- Department of Medical Genetics, College of Basic Medicine, Army Medical University (Third Military Medical University), 30#, Gaotanyan St., Shapingba District, Chongqing 400038, PR China
| | - Zhenhua Zhou
- Department of Neurology, Southwest Hospital, Army Medical University (Third Military Medical University), 30#, Gaotanyan St., Shapingba District, Chongqing 400038, PR China
| | - Jun Hu
- Department of Neurology, Southwest Hospital, Army Medical University (Third Military Medical University), 30#, Gaotanyan St., Shapingba District, Chongqing 400038, PR China
| | - Yun Bai
- Department of Medical Genetics, College of Basic Medicine, Army Medical University (Third Military Medical University), 30#, Gaotanyan St., Shapingba District, Chongqing 400038, PR China.
| | - Hong Guo
- Department of Medical Genetics, College of Basic Medicine, Army Medical University (Third Military Medical University), 30#, Gaotanyan St., Shapingba District, Chongqing 400038, PR China.
| |
Collapse
|
11
|
Abstract
The autosomal-recessive cerebellar ataxias comprise more than half of the known genetic forms of ataxia and represent an extensive group of clinically heterogeneous disorders that can occur at any age but whose onset is typically prior to adulthood. In addition to ataxia, patients often present with polyneuropathy and clinical symptoms outside the nervous system. The most common of these diseases is Friedreich ataxia, caused by mutation of the frataxin gene, but recent advances in genetic analysis have greatly broadened the ever-expanding number of causative genes to over 50. In this review, the clinical neurogenetics of the recessive cerebellar ataxias will be discussed, including updates on recently identified novel ataxia genes, advancements in unraveling disease-specific molecular pathogenesis leading to ataxia, potential treatments under development, technologic improvements in diagnostic testing such as clinical exome sequencing, and what the future holds for clinicians and geneticists.
Collapse
Affiliation(s)
- Brent L Fogel
- Program in Neurogenetics, Departments of Neurology and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
| |
Collapse
|
12
|
Kawarai T, Montecchiani C, Miyamoto R, Gaudiello F, Caltagirone C, Izumi Y, Kaji R, Orlacchio A. Spastic paraplegia type 4: A novel SPAST splice site donor mutation and expansion of the phenotype variability. J Neurol Sci 2017; 380:92-97. [PMID: 28870597 DOI: 10.1016/j.jns.2017.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/29/2017] [Accepted: 07/06/2017] [Indexed: 01/30/2023]
Abstract
Mutations in SPG4/SPAST are the most frequent molecular aetiology in the autosomal dominant form of hereditary spastic paraplegia (HSP). Loss-of-function and haploinsufficiency in SPAST have been demonstrated and the pure form of spastic paraplegia is a main clinical manifestation. This study is to explore the novel SPAST splice site donor variant, c.1004+3A>C, in seven patients from two families, one from Italy and the other from Japan. Exon 6 is skipped out by the variant, leading to a premature termination of translation, p.Gly290Trpfs*5. Measurement of SPAST transcripts in lymphocytes demonstrated a reduction through nonsense-mediated mRNA decay (NMD). Intra- and inter-familial phenotypic variations were observed, including age-at-onset, severity of spasticity, and scoliosis. Our study demonstrated further evidence of allelic heterogeneity in SPG4, dosage effects through NMD, and broad clinical features of the SPAST mutation.
Collapse
Affiliation(s)
- Toshitaka Kawarai
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-0042, Japan.
| | - Celeste Montecchiani
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy; Dipartimento di Scienze Chirurgiche e Biomediche, Università di Perugia, Perugia, Italy
| | - Ryosuke Miyamoto
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-0042, Japan
| | - Fabrizio Gaudiello
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy
| | - Carlo Caltagirone
- Laboratorio di Neurologia Clinica e Comportamentale, IRCCS Santa Lucia, Rome, Italy; Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy
| | - Yuishin Izumi
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-0042, Japan
| | - Ryuji Kaji
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-0042, Japan
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy; Dipartimento di Scienze Chirurgiche e Biomediche, Università di Perugia, Perugia, Italy.
| |
Collapse
|
13
|
Synofzik M, Schüle R. Overcoming the divide between ataxias and spastic paraplegias: Shared phenotypes, genes, and pathways. Mov Disord 2017; 32:332-345. [PMID: 28195350 PMCID: PMC6287914 DOI: 10.1002/mds.26944] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/07/2017] [Accepted: 01/15/2017] [Indexed: 12/11/2022] Open
Abstract
Autosomal-dominant spinocerebellar ataxias, autosomal-recessive spinocerebellar ataxias, and hereditary spastic paraplegias have traditionally been designated in separate clinicogenetic disease classifications. This classification system still largely frames clinical thinking and genetic workup in clinical practice. Yet, with the advent of next-generation sequencing, phenotypically unbiased studies have revealed the limitations of this classification system. Various genes (eg, SPG7, SYNE1, PNPLA6) traditionally rooted in either the ataxia or hereditary spastic paraplegia classification system have now been shown to cause ataxia on the one end of the disease continuum and hereditary spastic paraplegia on the other. Other genes such as GBA2 and KIF1C were almost simultaneously published as both a hereditary spastic paraplegia and an ataxia gene. The variability and fluidity of observed phenotypes along the ataxia-spasticity spectrum warrants a rethinking of the traditional classification system. We propose to replace this divisive diagnosis-driven ataxia and hereditary spastic paraplegia classification system by a descriptive, unbiased approach of modular phenotyping. This approach is also open to expansion of the phenotype beyond ataxia and spasticity, which often occur as part of broader multisystem neuronal dysfunction. The concept of a continuous ataxia-spasticity disease spectrum is further supported by ataxias and hereditary spastic paraplegias sharing not only overlapping phenotypes and underlying genes, but also common cellular pathways and disease mechanisms. This suggests a shared vulnerability of cerebellar and corticospinal neurons for common pathophysiological processes. It might be this mechanistic overlap that drives their clinical overlap. A mechanistically inspired classification system will help to pave the way for mechanism-based strategies for drug development. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Matthis Synofzik
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Rebecca Schüle
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| |
Collapse
|
14
|
Beaudin M, Klein CJ, Rouleau GA, Dupré N. Systematic review of autosomal recessive ataxias and proposal for a classification. CEREBELLUM & ATAXIAS 2017; 4:3. [PMID: 28250961 PMCID: PMC5324265 DOI: 10.1186/s40673-017-0061-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/17/2017] [Indexed: 01/26/2023]
Abstract
Background The classification of autosomal recessive ataxias represents a significant challenge because of high genetic heterogeneity and complex phenotypes. We conducted a comprehensive systematic review of the literature to examine all recessive ataxias in order to propose a new classification and properly circumscribe this field as new technologies are emerging for comprehensive targeted gene testing. Methods We searched Pubmed and Embase to identify original articles on recessive forms of ataxia in humans for which a causative gene had been identified. Reference lists and public databases, including OMIM and GeneReviews, were also reviewed. We evaluated the clinical descriptions to determine if ataxia was a core feature of the phenotype and assessed the available evidence on the genotype-phenotype association. Included disorders were classified as primary recessive ataxias, as other complex movement or multisystem disorders with prominent ataxia, or as disorders that may occasionally present with ataxia. Results After removal of duplicates, 2354 references were reviewed and assessed for inclusion. A total of 130 articles were completely reviewed and included in this qualitative analysis. The proposed new list of autosomal recessive ataxias includes 45 gene-defined disorders for which ataxia is a core presenting feature. We propose a clinical algorithm based on the associated symptoms. Conclusion We present a new classification for autosomal recessive ataxias that brings awareness to their complex phenotypes while providing a unified categorization of this group of disorders. This review should assist in the development of a consensus nomenclature useful in both clinical and research applications. Electronic supplementary material The online version of this article (doi:10.1186/s40673-017-0061-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie Beaudin
- Faculty of Medicine, Université Laval, Quebec city, QC G1V 0A6 Canada
| | | | - Guy A Rouleau
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A4 Canada
| | - Nicolas Dupré
- Faculty of Medicine, Université Laval, Quebec city, QC G1V 0A6 Canada.,Department of Neurological Sciences, CHU de Quebec - Université Laval, 1401 18th street, Québec City, QC G1J 1Z4 Canada
| |
Collapse
|
15
|
Banzrai C, Nodera H, Kawarai T, Higashi S, Okada R, Mori A, Shimatani Y, Osaki Y, Kaji R. Impaired Axonal Na(+) Current by Hindlimb Unloading: Implication for Disuse Neuromuscular Atrophy. Front Physiol 2016; 7:36. [PMID: 26909041 PMCID: PMC4754663 DOI: 10.3389/fphys.2016.00036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/26/2016] [Indexed: 12/12/2022] Open
Abstract
This study aimed to characterize the excitability changes in peripheral motor axons caused by hindlimb unloading (HLU), which is a model of disuse neuromuscular atrophy. HLU was performed in normal 8-week-old male mice by fixing the proximal tail by a clip connected to the top of the animal's cage for 3 weeks. Axonal excitability studies were performed by stimulating the sciatic nerve at the ankle and recording the compound muscle action potential (CMAP) from the foot. The amplitudes of the motor responses of the unloading group were 51% of the control amplitudes [2.2 ± 1.3 mV (HLU) vs. 4.3 ± 1.2 mV (Control), P = 0.03]. Multiple axonal excitability analysis showed that the unloading group had a smaller strength-duration time constant (SDTC) and late subexcitability (recovery cycle) than the controls [0.075 ± 0.01 (HLU) vs. 0.12 ± 0.01 (Control), P < 0.01; 5.4 ± 1.0 (HLU) vs. 10.0 ± 1.3 % (Control), P = 0.01, respectively]. Three weeks after releasing from HLU, the SDTC became comparable to the control range. Using a modeling study, the observed differences in the waveforms could be explained by reduced persistent Na+ currents along with parameters related to current leakage. Quantification of RNA of a SCA1A gene coding a voltage-gated Na+ channel tended to be decreased in the sciatic nerve in HLU. The present study suggested that axonal ion currents are altered in vivo by HLU. It is still undetermined whether the dysfunctional axonal ion currents have any pathogenicity on neuromuscular atrophy or are the results of neural plasticity by atrophy.
Collapse
Affiliation(s)
| | - Hiroyuki Nodera
- Department of Neurology, Tokushima University Tokushima, Japan
| | | | - Saki Higashi
- Department of Neurology, Tokushima University Tokushima, Japan
| | - Ryo Okada
- Department of Neurology, Tokushima University Tokushima, Japan
| | - Atsuko Mori
- Department of Neurology, Tokushima University Tokushima, Japan
| | | | - Yusuke Osaki
- Department of Neurology, Tokushima University Tokushima, Japan
| | - Ryuji Kaji
- Department of Neurology, Tokushima University Tokushima, Japan
| |
Collapse
|