1
|
Hao QP, Zheng WT, Zhang ZH, Ding H, Qin GB, Liu YZ, Tan Y, Liu Z, Liu RE. Deep brain stimulation and pallidotomy in primary Meige syndrome: a prospective cohort study. Neurol Sci 2024:10.1007/s10072-024-07752-w. [PMID: 39266808 DOI: 10.1007/s10072-024-07752-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Primary Meige syndrome (PMS) is a rare form of dystonia, and comparative analysis of globus pallidus internal deep brain stimulation (GPi-DBS), subthalamic nucleus deep brain stimulation (STN-DBS), and pallidotomy has been lacking. This study aims to compare the efficacy, safety, and psychiatric features of GPi-DBS, STN-DBS, and pallidotomy in patients with PMS. METHODS This prospective cohort study was divided into three groups: GPi-DBS, STN-DBS, and pallidotomy. Clinical assessments, including motor and non-motor domains, were evaluated at baseline and at 1 year and 3 years after neurostimulation/surgery. RESULTS Ninety-eight patients were recruited: 46 patients received GPi-DBS, 34 received STN-DBS, and 18 underwent pallidotomy. In the GPi-DBS group, the movement score of the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) improved from a mean (SE) of 13.8 (1.0) before surgery to 5.0 (0.7) (95% CI, -10.5 to -7.1; P < 0.001) at 3 years. Similarly, in the STN-DBS group, the mean (SE) score improved from 13.2 (0.8) to 3.5 (0.5) (95% CI, -10.3 to -8.1; P < 0.001) at 3 years, and in the pallidotomy group, it improved from 14.9 (1.3) to 6.0 (1.1) (95% CI, -11.3 to -6.5; P < 0.001) at 3 years. They were comparable therapeutic approaches for PMS that can improve motor function and quality of life without non-motor side effects. CONCLUSIONS DBS and pallidotomy are safe and effective treatments for PMS, and an in-depth exploration of non-motor symptoms may be a new entry point for gaining a comprehensive understanding of the pathophysiology.
Collapse
Affiliation(s)
- Qing-Pei Hao
- Department of Neurosurgery, Peking University People's Hospital, Xizhimen South Street, Xicheng DistrictBeijing, 100044, China
| | - Wen-Tao Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Zi-Hao Zhang
- Department of Neurosurgery, Peking University People's Hospital, Xizhimen South Street, Xicheng DistrictBeijing, 100044, China
| | - Hu Ding
- Department of Neurosurgery, Peking University People's Hospital, Xizhimen South Street, Xicheng DistrictBeijing, 100044, China
| | - Guang-Biao Qin
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Ye-Zu Liu
- Department of Psychology, Peking University People's Hospital, Beijing, China
| | - Yao Tan
- Clinical Research Institute, Peking University, Beijing, China
| | - Zhi Liu
- Department of Neurosurgery, Peking University People's Hospital, Xizhimen South Street, Xicheng DistrictBeijing, 100044, China.
- Functional Neurosurgery Research Center, Peking University Health Science Center, Haidian District, Xueyuan Road, BeijingBeijing, 100191, No. 38, China.
| | - Ru-En Liu
- Department of Neurosurgery, Peking University People's Hospital, Xizhimen South Street, Xicheng DistrictBeijing, 100044, China.
- Functional Neurosurgery Research Center, Peking University Health Science Center, Haidian District, Xueyuan Road, BeijingBeijing, 100191, No. 38, China.
| |
Collapse
|
2
|
Arantes AP, Zalasky NA, Ribeiro Borges L, Sondergaard RE, Martino D, Kiss ZHT. Effects of GPi DBS on Sensorimotor Integration in Dystonia: A Pilot ON/OFF Study. Mov Disord 2024; 39:916-918. [PMID: 38469892 DOI: 10.1002/mds.29747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/13/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Affiliation(s)
- Ana Paula Arantes
- Department of Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nicole A Zalasky
- Department of Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ludymila Ribeiro Borges
- Assistive Technology Laboratory (NTA), Faculty of Electrical Engineering, Federal University of Uberlandia, Uberlandia, Brazil
| | - Rachel E Sondergaard
- Department of Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Davide Martino
- Department of Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Zelma H T Kiss
- Department of Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Zhao M, Chen H, Yan X, Li J, Lu C, Cui B, Huo W, Cao S, Guo H, Liu S, Yang C, Liu Y, Yin F. Subthalamic deep brain stimulation for primary dystonia: defining an optimal location using the medial subthalamic nucleus border as anatomical reference. Front Aging Neurosci 2023; 15:1187167. [PMID: 37547744 PMCID: PMC10400903 DOI: 10.3389/fnagi.2023.1187167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Although the subthalamic nucleus (STN) has proven to be a safe and effective target for deep brain stimulation (DBS) in the treatment of primary dystonia, the rates of individual improvement vary considerably. On the premise of selecting appropriate patients, the location of the stimulation contacts in the dorsolateral sensorimotor area of the STN may be an important factor affecting therapeutic effects, but the optimal location remains unclear. This study aimed to define an optimal location using the medial subthalamic nucleus border as an anatomical reference and to explore the influence of the location of active contacts on outcomes and programming strategies in a series of patients with primary dystonia. Methods Data from 18 patients who underwent bilateral STN-DBS were retrospectively acquired and analyzed. Patients were assessed preoperatively and postoperatively (1 month, 3 months, 6 months, 1 year, 2 years, and last follow-up after neurostimulator initiation) using the Toronto Western Spasmodic Torticollis Rating Scale (for cervical dystonia) and the Burke-Fahn-Marsden Dystonia Rating Scale (for other types). Optimal parameters and active contact locations were determined during clinical follow-up. The position of the active contacts relative to the medial STN border was determined using postoperative stereotactic MRI. Results The clinical improvement showed a significant negative correlation with the y-axis position (anterior-posterior; A+, P-). The more posterior the electrode contacts were positioned in the dorsolateral sensorimotor area of the STN, the better the therapeutic effects. Cluster analysis of the improvement rates delineated optimal and sub-optimal groups. The optimal contact coordinates from the optimal group were 2.56 mm lateral, 0.15 mm anterior, and 1.34 mm superior relative to the medial STN border. Conclusion STN-DBS was effective for primary dystonia, but outcomes were dependent on the active contact location. Bilateral stimulation contacts located behind or adjacent to Bejjani's line were most likely to produce ideal therapeutic effects. These findings may help guide STN-DBS preoperative planning, stimulation programming, and prognosis for optimal therapeutic efficacy in primary dystonia.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Hui Chen
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Xin Yan
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Jianguang Li
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Chao Lu
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Bin Cui
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| | - Wenjun Huo
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Shouming Cao
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Hui Guo
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Shuang Liu
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Chunjuan Yang
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Ying Liu
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Feng Yin
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
4
|
D’Onofrio V, Manzo N, Guerra A, Landi A, Baro V, Määttä S, Weis L, Porcaro C, Corbetta M, Antonini A, Ferreri F. Combining Transcranial Magnetic Stimulation and Deep Brain Stimulation: Current Knowledge, Relevance and Future Perspectives. Brain Sci 2023; 13:brainsci13020349. [PMID: 36831892 PMCID: PMC9954740 DOI: 10.3390/brainsci13020349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Deep brain stimulation (DBS) has emerged as an invasive neuromodulation technique for the treatment of several neurological disorders, but the mechanisms underlying its effects remain partially elusive. In this context, the application of Transcranial Magnetic Stimulation (TMS) in patients treated with DBS represents an intriguing approach to investigate the neurophysiology of cortico-basal networks. Experimental studies combining TMS and DBS that have been performed so far have mainly aimed to evaluate the effects of DBS on the cerebral cortex and thus to provide insights into DBS's mechanisms of action. The modulation of cortical excitability and plasticity by DBS is emerging as a potential contributor to its therapeutic effects. Moreover, pairing DBS and TMS stimuli could represent a method to induce cortical synaptic plasticity, the therapeutic potential of which is still unexplored. Furthermore, the advent of new DBS technologies and novel treatment targets will present new research opportunities and prospects to investigate brain networks. However, the application of the combined TMS-DBS approach is currently limited by safety concerns. In this review, we sought to present an overview of studies performed by combining TMS and DBS in neurological disorders, as well as available evidence and recommendations on the safety of their combination. Additionally, we outline perspectives for future research by highlighting knowledge gaps and possible novel applications of this approach.
Collapse
Affiliation(s)
| | - Nicoletta Manzo
- IRCCS San Camillo Hospital, Via Alberoni 70, 0126 Venice, Italy
| | - Andrea Guerra
- IRCCS Neuromed, 86077 Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Andrea Landi
- Academic Neurosurgery, Department of Neurosciences, University of Padova, 35128 Padova, Italy
| | - Valentina Baro
- Academic Neurosurgery, Department of Neurosciences, University of Padova, 35128 Padova, Italy
| | - Sara Määttä
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, 70211 Kuopio, Finland
| | - Luca Weis
- Parkinson’s Disease and Movement Disorders Unit, Department of Neuroscience, Centre for Rare Neurological Diseases (ERN-RND), University of Padova, 35128 Padova, Italy
| | - Camillo Porcaro
- Padova Neuroscience Center (PNC), University of Padova, 35129 Padova, Italy
- Department of Neuroscience, University of Padova, 35128 Padova, Italy
- Institute of Cognitive Sciences, and Technologies (ISTC)-National Research Council (CNR), 00185 Rome, Italy
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Maurizio Corbetta
- Padova Neuroscience Center (PNC), University of Padova, 35129 Padova, Italy
- Unit of Neurology, Unit of Clinical Neurophysiology, Study Center of Neurodegeneration (CESNE), Department of Neuroscience, University of Padova, 35128 Padova, Italy
- Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - Angelo Antonini
- Parkinson’s Disease and Movement Disorders Unit, Department of Neuroscience, Centre for Rare Neurological Diseases (ERN-RND), University of Padova, 35128 Padova, Italy
- Unit of Neurology, Unit of Clinical Neurophysiology, Study Center of Neurodegeneration (CESNE), Department of Neuroscience, University of Padova, 35128 Padova, Italy
- Department of Neurology, Washington University, St. Louis, MO 63108, USA
- Department of Neuroscience, Washington University, St. Louis, MO 63108, USA
- Correspondence: (A.A.); (F.F.)
| | - Florinda Ferreri
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, 70211 Kuopio, Finland
- Unit of Neurology, Unit of Clinical Neurophysiology, Study Center of Neurodegeneration (CESNE), Department of Neuroscience, University of Padova, 35128 Padova, Italy
- Correspondence: (A.A.); (F.F.)
| |
Collapse
|
5
|
Frey J, Ramirez-Zamora A, Wagle Shukla A. Applications of Transcranial Magnetic Stimulation for Understanding and Treating Dystonia. ADVANCES IN NEUROBIOLOGY 2023; 31:119-139. [PMID: 37338699 DOI: 10.1007/978-3-031-26220-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Transcranial magnetic stimulation (TMS)-based studies have led to an advanced understanding of the pathophysiology of dystonia. This narrative review summarizes the TMS data contributed to the literature so far. Many studies have shown that increased motor cortex excitability, excessive sensorimotor plasticity, and abnormal sensorimotor integration are the core pathophysiological substrates for dystonia. However, an increasing body of evidence supports a more widespread network dysfunction involving many other brain regions. Repetitive TMS pulses (rTMS) in dystonia have therapeutic potential as they can induce local and network-wide effects through modulation of excitability and plasticity. The bulk of rTMS studies has targeted the premotor cortex with some promising results in focal hand dystonia. Some studies have targeted the cerebellum for cervical dystonia and the anterior cingulate cortex for blepharospasm. We believe that therapeutic potential could be leveraged better when rTMS is implemented in conjunction with standard-of-care pharmacological treatments. However, due to several limitations in the studies conducted to date, including small samples, heterogeneous populations, variability in the target sites, and inconsistencies in the study design and control arm, it is hard to draw a definite conclusion. Further studies are warranted to determine optimal targets and protocols yielding the most beneficial outcomes that will translate into meaningful clinical changes.
Collapse
Affiliation(s)
- Jessica Frey
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Aparna Wagle Shukla
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
6
|
Lin S, Wang L, Shu Y, Guo S, Wang T, Li H, Zhang C, Sun B, Li D, Wu Y. Rescue procedure for isolated dystonia after the secondary failure of globus pallidus internus deep brain stimulation. Front Neurosci 2022; 16:924617. [PMID: 36061614 PMCID: PMC9434021 DOI: 10.3389/fnins.2022.924617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionGlobus pallidus internus (GPi) deep brain stimulation (DBS) is widely used in patients with dystonia. However, 10–20% of patients receive insufficient benefits. The objectives of this study are to evaluate the effectiveness of bilateral subthalamic nucleus (STN) DBS along with unilateral posteroventral pallidotomy (PVP) in patients with dystonia who experienced unsatisfactory GPi-DBS and to address the reported rescue procedures after suboptimal DBS or lesion surgery in dystonia patients.MethodsSix patients with isolated dystonia who had previously undergone bilateral GPi-DBS with suboptimal improvement were included. Standardized assessments of dystonia using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) and quality of life using SF-36 were evaluated before surgery and 1, 6 months, and last follow-up (LFU) after surgery. STN bilateral OFF (bi-OFF), unilateral ON (uni-ON), and bilateral ON (bi-ON) states were recorded at LFU. Specific items were used to find publications published before 10 April 2022 regarding rescue procedures after suboptimal DBS or lesion surgery in patients with dystonia for reference. Eleven original studies including case reports/series were identified for discussion.ResultsSubstantial clinical benefits were achieved in all six patients. Significant amelioration was achieved during the 1-month (6.5 ± 7.45; p = 0.0049), 6-month (5.67 ± 6.3; p = 0.0056) follow-ups, and at LFU (4.67 ± 4.72; p = 0.0094) when compared with the baseline (LFU of GPi DBS with on status) (17.33 ± 11.79) assessed by BFMDRS. The percentage of improvement reached 70.6, 74.67, and 77.05%, respectively. At LFU, significant differences were found between the stimulation bi-OFF and uni-ON (11.08 ± 8.38 vs. 9 ± 8.52, p = 0.0191), and between the stimulation bi-OFF and bi-ON (11.08 ± 8.38 vs. 4.67 ± 4.72, p = 0.0164). Trends depicting a better improvement in stimulation bi-ON compared with uni-ON (4.67 ± 4.72 vs. 9 ± 8.52, p = 0.0538) were observed.ConclusionOur results suggest that bilateral STN-DBS plus unilateral PVP may be an effective rescue procedure for patients with isolated dystonia who experienced suboptimal movement improvement following GPi-DBS. However, given the heterogeneity of patients and the small sample size, these findings should be interpreted with caution.
Collapse
Affiliation(s)
- Suzhen Lin
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Affiliated With Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingbing Wang
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Affiliated With Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimei Shu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Affiliated With Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunyu Guo
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Affiliated With Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxia Li
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Affiliated With Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Affiliated With Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Affiliated With Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Affiliated With Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Dianyou Li,
| | - Yiwen Wu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Affiliated With Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yiwen Wu,
| |
Collapse
|
7
|
Korsun O, Renvall H, Nurminen J, Mäkelä JP, Pekkonen E. Modulation of sensory cortical activity by deep brain stimulation in advanced Parkinson's Disease. Eur J Neurosci 2022; 56:3979-3990. [PMID: 35560964 PMCID: PMC9544049 DOI: 10.1111/ejn.15692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
Abstract
Despite optimal oral drug treatment, about 90% of patients with Parkinson's disease develop motor fluctuation and dyskinesia within 5-10 years from the diagnosis. Moreover, the patients show non-motor symptoms in different sensory domains. Bilateral deep brain stimulation applied to the subthalamic nucleus is considered the most effective treatment in advanced Parkinson's disease and it has been suggested to affect sensorimotor modulation and relate to motor improvement in patients. However, observations on the relationship between sensorimotor activity and clinical improvement have remained sparse. Here we studied the somatosensory evoked magnetic fields in thirteen right-handed patients with advanced Parkinson's disease before and 7 months after stimulator implantation. Somatosensory processing was addressed with magnetoencephalography during alternated median nerve stimulation at both wrists. The strengths and the latencies of the ~60-ms responses at the contralateral primary somatosensory cortices were highly variable but detectable and reliably localized in all patients. The response strengths did not differ between preoperative and postoperative DBSON measurements. The change in the response strength between pre- and postoperative condition in the dominant left hemisphere of our right-handed patients correlated with the alleviation of their motor symptoms (p = 0.04). However, the result did not survive correction for multiple comparisons. Magnetoencephalography appears an effective tool to explore non-motor effects in patients with Parkinson's disease, and it may help in understanding the neurophysiological basis of deep brain stimulation. However, the high interindividual variability in the somatosensory responses and poor tolerability of DBSOFF condition warrants larger patient groups and measurements also in non-medicated patients.
Collapse
Affiliation(s)
- Olesia Korsun
- Biomag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University, and Aalto University School of Science, Helsinki, Finland.,Department of Neuroscience and Biomedical Engineering, Aalto University, School of Science, Espoo, Finland
| | - Hanna Renvall
- Biomag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University, and Aalto University School of Science, Helsinki, Finland.,Department of Neuroscience and Biomedical Engineering, Aalto University, School of Science, Espoo, Finland
| | - Jussi Nurminen
- Biomag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University, and Aalto University School of Science, Helsinki, Finland.,Motion Analysis Laboratory, Children's Hospital, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Jyrki P Mäkelä
- Biomag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University, and Aalto University School of Science, Helsinki, Finland
| | - Eero Pekkonen
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Morigaki R, Miyamoto R, Matsuda T, Miyake K, Yamamoto N, Takagi Y. Dystonia and Cerebellum: From Bench to Bedside. Life (Basel) 2021; 11:776. [PMID: 34440520 PMCID: PMC8401781 DOI: 10.3390/life11080776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 07/29/2021] [Indexed: 12/31/2022] Open
Abstract
Dystonia pathogenesis remains unclear; however, findings from basic and clinical research suggest the importance of the interaction between the basal ganglia and cerebellum. After the discovery of disynaptic pathways between the two, much attention has been paid to the cerebellum. Basic research using various dystonia rodent models and clinical studies in dystonia patients continues to provide new pieces of knowledge regarding the role of the cerebellum in dystonia genesis. Herein, we review basic and clinical articles related to dystonia focusing on the cerebellum, and clarify the current understanding of the role of the cerebellum in dystonia pathogenesis. Given the recent evidence providing new hypotheses regarding dystonia pathogenesis, we discuss how the current evidence answers the unsolved clinical questions.
Collapse
Affiliation(s)
- Ryoma Morigaki
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (N.Y.); (Y.T.)
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| | - Ryosuke Miyamoto
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan;
| | - Taku Matsuda
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| | - Kazuhisa Miyake
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| | - Nobuaki Yamamoto
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (N.Y.); (Y.T.)
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan;
| | - Yasushi Takagi
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (N.Y.); (Y.T.)
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| |
Collapse
|
9
|
Hess CW, Gatto B, Chung JW, Ho RLM, Wang WE, Wagle Shukla A, Vaillancourt DE. Cortical Oscillations in Cervical Dystonia and Dystonic Tremor. Cereb Cortex Commun 2020; 1:tgaa048. [PMID: 32984818 PMCID: PMC7503385 DOI: 10.1093/texcom/tgaa048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 11/14/2022] Open
Abstract
Dystonia involves sustained or repetitive muscle contractions, affects different skeletal muscles, and may be associated with tremor. Few studies have investigated if cortical pathophysiology is impaired even when dystonic muscles are not directly engaged and during the presence of dystonic tremor (DT). Here, we recorded high-density electroencephalography and time-locked behavioral data in 2 cohorts of patients and controls during the performance of head movements, upper limb movements, and grip force. Patients with cervical dystonia had reduced movement-related desynchronization in the alpha and beta bands in the bilateral sensorimotor cortex during head turning movements, produced by dystonic muscles. Reduced desynchronization in the upper beta band in the ipsilateral motor and bilateral sensorimotor cortex was found during upper limb planar movements, produced by non-dystonic muscles. In a precision grip task, patients with DT had reduced movement-related desynchronization in the alpha and beta bands in the bilateral sensorimotor cortex. We observed a general pattern of abnormal sensorimotor cortical desynchronization that was present across the head and upper limb motor tasks, in patients with and without DT when compared with controls. Our findings suggest that abnormal cortical desynchronization is a general feature of dystonia that should be a target of pharmacological and other therapeutic interventions.
Collapse
Affiliation(s)
- Christopher W Hess
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL 32611, USA
| | - Bryan Gatto
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA.,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Jae Woo Chung
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rachel L M Ho
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Wei-En Wang
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Aparna Wagle Shukla
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL 32611, USA
| | - David E Vaillancourt
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL 32611, USA.,Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA.,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
10
|
Macerollo A, Sajin V, Bonello M, Barghava D, Alusi SH, Eldridge PR, Osman-Farah J. Deep brain stimulation in dystonia: State of art and future directions. J Neurosci Methods 2020; 340:108750. [DOI: 10.1016/j.jneumeth.2020.108750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 01/03/2023]
|
11
|
Abstract
The dystonias are a large and heterogenous group of disorders characterized by excessive muscle contractions leading to abnormal postures and/or repetitive movements. Their clinical manifestations vary widely, and there are many potential causes. Despite the heterogeneity, helpful treatments are available for the vast majority of patients. Symptom-based therapies include oral medications, botulinum toxins, and surgical interventions. For some subtypes of dystonia, specific mechanism-based treatments are available. Advances in understanding the biological basis for many types of dystonia have led to numerous recent clinical trials, so additional treatments are likely to become available in the very near future.
Collapse
|