1
|
Li P, Zhou X, Luo N, Shen R, Zhu X, Zhong M, Huang S, He N, Lyu H, Huang Y, Yin Q, Zhou L, Lu Y, Tan Y, Liu J. Distinct patterns of electrophysiologic-neuroimaging correlations between Parkinson's disease and multiple system atrophy. Neuroimage 2024; 297:120701. [PMID: 38914210 DOI: 10.1016/j.neuroimage.2024.120701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024] Open
Abstract
Due to a high degree of symptom overlap in the early stages, with movement disorders predominating, Parkinson's disease (PD) and multiple system atrophy (MSA) may exhibit a similar decline in motor areas, yet they differ in their spread throughout the brain, ultimately resulting in two distinct diseases. Drawing upon neuroimaging analyses and altered motor cortex excitability, potential diffusion mechanisms were delved into, and comparisons of correlations across distinct disease groups were conducted in a bid to uncover significant pathological disparities. We recruited thirty-five PD, thirty-seven MSA, and twenty-eight matched controls to conduct clinical assessments, electromyographic recording, and magnetic resonance imaging scanning during the "on medication" state. Patients with neurodegeneration displayed a widespread decrease in electrophysiology in bilateral M1. Brain function in early PD was still in the self-compensatory phase and there was no significant change. MSA patients demonstrated an increase in intra-hemispheric function coupled with a decrease in diffusivity, indicating a reduction in the spread of neural signals. The level of resting motor threshold in healthy aged showed broad correlations with both clinical manifestations and brain circuits related to left M1, which was absent in disease states. Besides, ICF exhibited distinct correlations with functional connections between right M1 and left middle temporal gyrus in all groups. The present study identified subtle differences in the functioning of PD and MSA related to bilateral M1. By combining clinical information, cortical excitability, and neuroimaging intuitively, we attempt to bring light on the potential mechanisms that may underlie the development of neurodegenerative disease.
Collapse
Affiliation(s)
- Puyu Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinyi Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ningdi Luo
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ruinan Shen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xue Zhu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Min Zhong
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Sijia Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Naying He
- Radiology Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haiying Lyu
- Radiology Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yufei Huang
- Radiology Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qianyi Yin
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liche Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yong Lu
- Radiology Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuyan Tan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
2
|
Zhu M, Huang S, Chen W, Pan G, Zhou Y. The effect of transcranial magnetic stimulation on cognitive function in post-stroke patients: a systematic review and meta-analysis. BMC Neurol 2024; 24:234. [PMID: 38969994 PMCID: PMC11225150 DOI: 10.1186/s12883-024-03726-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 06/12/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Transcranial magnetic stimulation (TMS) is considered as a promising treatment option for post-stroke cognitive impairment (PSCI).Some meta-analyses have indicated that TMS can be effective in treating cognitive decline in stroke patients, but the quality of the studies included and the methodologies employed were less than satisfactory. Thus, this meta-analysis aimed to evaluate the efficacy and safety of TMS for treating post-stroke cognitive impairment. METHODS We searched online databases like PubMed, Embase, Cochrane Library, and Web of Science to retrieve randomized controlled trials (RCTs) of TMS for the treatment of patients with PSCI. Two independent reviewers identified relevant literature, extracted purpose-specific data, and the Cochrane Risk of Bias Assessment Scale was utilized to assess the potential for bias in the literature included in this study. Stata 17.0 software was used for data analysis. RESULTS A total of 10 studies involving 414 patients were included. The results of the meta-analysis showed that TMS was significantly superior to the control group for improving the overall cognitive function of stroke patients (SMD = 1.17, 95% CI [0.59, 1.75], I2 = 86.1%, P < 0.001). Subgroup analyses revealed that high-frequency rTMS (HF-rTMS), low-frequency rTMS (LF-rTMS), and intermittent theta burst stimulation (iTBS) all have a beneficial effect on the overall cognitive function of stroke patients. However, another subgroup analysis failed to demonstrate any significant advantage of TMS over the control group in terms of enhancing scores on the Loewenstein Occupational Therapy Cognitive Assessment (LOTCA) and Rivermead Behavioral Memory Test (RBMT) scales. Nonetheless, TMS demonstrated the potential to enhance the recovery of activities of daily living in stroke patients, as indicated by the Modified Barthel Index (MBI) (SMD = 0.76; 95% CI [0.22, 1.30], I2 = 52.6%, P = 0.121). CONCLUSION This meta-analysis presents evidence supporting the safety and efficacy of TMS as a non-invasive neural modulation tool for improving global cognitive abilities and activities of daily living in stroke patients. However, given the limited number of included studies, further validation of these findings is warranted through large-scale, multi-center, double-blind, high-quality randomized controlled trials. PROSPERO REGISTRATION NUMBER CRD42022381034.
Collapse
Affiliation(s)
- Mingjin Zhu
- Department of Rehabilitation Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Siyu Huang
- Graduate School, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenjun Chen
- Department of Pharmacy, Xixi Hospital of Hangzhou, Hangzhou, 310023, China
| | - Guoyuan Pan
- Department of Rehabilitation Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yibo Zhou
- Department of Rehabilitation Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
3
|
Frey VN, Langthaler PB, Renz N, Zimmermann G, Höhn C, Schwenker K, Thomschewski A, Kunz AB, Höller Y, Nardone R, Trinka E. Influence of sports on cortical excitability in patients with spinal cord injury: a TMS study. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1297552. [PMID: 38812566 PMCID: PMC11133579 DOI: 10.3389/fmedt.2024.1297552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/19/2024] [Indexed: 05/31/2024] Open
Abstract
Background Patients with spinal cord injury (SCI) show abnormal cortical excitability that might be caused by deafferentation. We hypothesize a reduced short-interval intracortical inhibition preceding movement in patients with SCI compared with healthy participants. In addition, we expect that neuroplasticity induced by different types of sports can modulate intracortical inhibition during movement preparation in patients with SCI. Methods We used a reaction test and paired-pulse transcranial magnetic stimulation to record cortical excitability, assessed by measuring amplitudes of motor-evoked potentials in preparation of movement. The participants were grouped as patients with SCI practicing wheelchair dancing (n = 7), other sports (n = 6), no sports (n = 9), and healthy controls (n = 24). Results There were neither significant differences between healthy participants and the patients nor between the different patient groups. A non-significant trend (p = .238), showed that patients engaged in sports have a stronger increase in cortical excitability compared with patients of the non-sportive group, while the patients in the other sports group expressed the highest increase in cortical excitability. Conclusion The small sample sizes limit the statistical power of the study, but the trending effect warrants further investigation of different sports on the neuroplasticity in patients with SCI. It is not clear how neuroplastic changes impact the sensorimotor output of the affected extremities in a patient. This needs to be followed up in further studies with a greater sample size.
Collapse
Affiliation(s)
- Vanessa N. Frey
- Department of Neurology, Neurointensive Care and Neurorehabilitation, Member of the European Reference Network EpiCARE, Christian Doppler University Hospital, Centre for Cognitive Neuroscience, Paracelsus Medical University Salzburg, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| | - Patrick B. Langthaler
- Department of Neurology, Neurointensive Care and Neurorehabilitation, Member of the European Reference Network EpiCARE, Christian Doppler University Hospital, Centre for Cognitive Neuroscience, Paracelsus Medical University Salzburg, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
- Department of Mathematics, Paris Lodron University, Salzburg, Austria
| | - Nora Renz
- Department of Neurology, Neurointensive Care and Neurorehabilitation, Member of the European Reference Network EpiCARE, Christian Doppler University Hospital, Centre for Cognitive Neuroscience, Paracelsus Medical University Salzburg, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| | - Georg Zimmermann
- Department of Neurology, Neurointensive Care and Neurorehabilitation, Member of the European Reference Network EpiCARE, Christian Doppler University Hospital, Centre for Cognitive Neuroscience, Paracelsus Medical University Salzburg, Salzburg, Austria
- IDA Lab Salzburg, Team Biostatistics and Big Medical Data, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Christopher Höhn
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Kerstin Schwenker
- Department of Neurology, Neurointensive Care and Neurorehabilitation, Member of the European Reference Network EpiCARE, Christian Doppler University Hospital, Centre for Cognitive Neuroscience, Paracelsus Medical University Salzburg, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
- Karl Landsteiner Institute for Neurorehabilitation and Space Neurology Salzburg, Salzburg, Austria
| | - Aljoscha Thomschewski
- Department of Neurology, Neurointensive Care and Neurorehabilitation, Member of the European Reference Network EpiCARE, Christian Doppler University Hospital, Centre for Cognitive Neuroscience, Paracelsus Medical University Salzburg, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| | - Alexander B. Kunz
- Department of Neurology, Neurointensive Care and Neurorehabilitation, Member of the European Reference Network EpiCARE, Christian Doppler University Hospital, Centre for Cognitive Neuroscience, Paracelsus Medical University Salzburg, Salzburg, Austria
- Karl Landsteiner Institute for Neurorehabilitation and Space Neurology Salzburg, Salzburg, Austria
| | - Yvonne Höller
- Department of Neurology, Neurointensive Care and Neurorehabilitation, Member of the European Reference Network EpiCARE, Christian Doppler University Hospital, Centre for Cognitive Neuroscience, Paracelsus Medical University Salzburg, Salzburg, Austria
- Faculty of Psychology, University of Akureyri, Akureyri, Iceland
| | - Raffaele Nardone
- Department of Neurology, Neurointensive Care and Neurorehabilitation, Member of the European Reference Network EpiCARE, Christian Doppler University Hospital, Centre for Cognitive Neuroscience, Paracelsus Medical University Salzburg, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
- Karl Landsteiner Institute for Neurorehabilitation and Space Neurology Salzburg, Salzburg, Austria
- Department of Neurology, Tappeiner Hospital, Meran, Italy
| | - Eugen Trinka
- Department of Neurology, Neurointensive Care and Neurorehabilitation, Member of the European Reference Network EpiCARE, Christian Doppler University Hospital, Centre for Cognitive Neuroscience, Paracelsus Medical University Salzburg, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
- Karl Landsteiner Institute for Neurorehabilitation and Space Neurology Salzburg, Salzburg, Austria
| |
Collapse
|
4
|
Cai M, Zhang JL, Wang XJ, Cai KR, Li SY, Du XL, Wang LY, Yang RY, Han J, Hu JY, Lyu J. Clinical application of repetitive transcranial magnetic stimulation in improving functional impairments post-stroke: review of the current evidence and potential challenges. Neurol Sci 2024; 45:1419-1428. [PMID: 38102519 DOI: 10.1007/s10072-023-07217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023]
Abstract
In recent years, the stroke incidence has been increasing year by year, and the related sequelae after stroke, such as cognitive impairment, motor dysfunction, and post-stroke depression, seriously affect the patient's rehabilitation and daily activities. Repetitive transcranial magnetic stimulation (rTMS), as a safe, non-invasive, and effective new rehabilitation method, has been widely recognized in clinical practice. This article reviews the application and research progress of rTMS in treating different functional impairments (cognitive impairment, motor dysfunction, unilateral spatial neglect, depression) after stroke in recent years, and preliminary summarized the possible mechanisms. It has been found that the key parameters that determine the effectiveness of rTMS in improving post-stroke functional impairments include pulse number, stimulated brain areas, stimulation intensity and frequency, as well as duration. Generally, high-frequency stimulation is used to excite the ipsilateral cerebral cortex, while low-frequency stimulation is used to inhibit the contralateral cerebral cortex, thus achieving a balance of excitability between the two hemispheres. However, the specific mechanisms and the optimal stimulation mode for different functional impairments have not yet reached a consistent conclusion, and more research is needed to explore and clarify the best way to use rTMS. Furthermore, we will identify the issues and challenges in the current research, explore possible mechanisms to deepen understanding of rTMS, propose future research directions, and offer insightful insights for better clinical applications.
Collapse
Affiliation(s)
- Ming Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jia-Ling Zhang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xiao-Jun Wang
- Medical Research and Education Department, Shanghai Health Rehabilitation Hospital, Shanghai, 201615, China
| | - Ke-Ren Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Shu-Yao Li
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xin-Lin Du
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Li-Yan Wang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Ruo-Yu Yang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jia Han
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jing-Yun Hu
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China.
| | - Jie Lyu
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
5
|
Karatum O, Han M, Erdogan ET, Karamursel S, Nizamoglu S. Physical mechanisms of emerging neuromodulation modalities. J Neural Eng 2023; 20:031001. [PMID: 37224804 DOI: 10.1088/1741-2552/acd870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/24/2023] [Indexed: 05/26/2023]
Abstract
One of the ultimate goals of neurostimulation field is to design materials, devices and systems that can simultaneously achieve safe, effective and tether-free operation. For that, understanding the working mechanisms and potential applicability of neurostimulation techniques is important to develop noninvasive, enhanced, and multi-modal control of neural activity. Here, we review direct and transduction-based neurostimulation techniques by discussing their interaction mechanisms with neurons via electrical, mechanical, and thermal means. We show how each technique targets modulation of specific ion channels (e.g. voltage-gated, mechanosensitive, heat-sensitive) by exploiting fundamental wave properties (e.g. interference) or engineering nanomaterial-based systems for efficient energy transduction. Overall, our review provides a detailed mechanistic understanding of neurostimulation techniques together with their applications toin vitro, in vivo, and translational studies to guide the researchers toward developing more advanced systems in terms of noninvasiveness, spatiotemporal resolution, and clinical applicability.
Collapse
Affiliation(s)
- Onuralp Karatum
- Department of Electrical and Electronics Engineering, Koc University, Istanbul 34450, Turkey
| | - Mertcan Han
- Department of Electrical and Electronics Engineering, Koc University, Istanbul 34450, Turkey
| | - Ezgi Tuna Erdogan
- Department of Physiology, Koc University School of Medicine, Istanbul 34450, Turkey
| | - Sacit Karamursel
- Department of Physiology, Koc University School of Medicine, Istanbul 34450, Turkey
| | - Sedat Nizamoglu
- Department of Electrical and Electronics Engineering, Koc University, Istanbul 34450, Turkey
- Department of Biomedical Science and Engineering, Koc University, Istanbul 34450, Turkey
| |
Collapse
|
6
|
Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V, Rossini PM, Benussi A, Berardelli A, Currà A, Krieg SM, Lefaucheur JP, Long Lo Y, Macdonell RA, Massimini M, Rosanova M, Picht T, Stinear CM, Paulus W, Ugawa Y, Ziemann U, Chen R. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol 2023; 150:131-175. [PMID: 37068329 PMCID: PMC10192339 DOI: 10.1016/j.clinph.2023.03.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
The review provides a comprehensive update (previous report: Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008;119(3):504-32) on clinical diagnostic utility of transcranial magnetic stimulation (TMS) in neurological diseases. Most TMS measures rely on stimulation of motor cortex and recording of motor evoked potentials. Paired-pulse TMS techniques, incorporating conventional amplitude-based and threshold tracking, have established clinical utility in neurodegenerative, movement, episodic (epilepsy, migraines), chronic pain and functional diseases. Cortical hyperexcitability has emerged as a diagnostic aid in amyotrophic lateral sclerosis. Single-pulse TMS measures are of utility in stroke, and myelopathy even in the absence of radiological changes. Short-latency afferent inhibition, related to central cholinergic transmission, is reduced in Alzheimer's disease. The triple stimulation technique (TST) may enhance diagnostic utility of conventional TMS measures to detect upper motor neuron involvement. The recording of motor evoked potentials can be used to perform functional mapping of the motor cortex or in preoperative assessment of eloquent brain regions before surgical resection of brain tumors. TMS exhibits utility in assessing lumbosacral/cervical nerve root function, especially in demyelinating neuropathies, and may be of utility in localizing the site of facial nerve palsies. TMS measures also have high sensitivity in detecting subclinical corticospinal lesions in multiple sclerosis. Abnormalities in central motor conduction time or TST correlate with motor impairment and disability in MS. Cerebellar stimulation may detect lesions in the cerebellum or cerebello-dentato-thalamo-motor cortical pathways. Combining TMS with electroencephalography, provides a novel method to measure parameters altered in neurological disorders, including cortical excitability, effective connectivity, and response complexity.
Collapse
Affiliation(s)
- Steve Vucic
- Brain, Nerve Research Center, The University of Sydney, Sydney, Australia.
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney; and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States
| | - David H Benninger
- Department of Neurology, University Hospital of Lausanne (CHUV), Switzerland
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo M Rossini
- Department of Neurosci & Neurorehab IRCCS San Raffaele-Rome, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Currà
- Department of Medico-Surgical Sciences and Biotechnologies, Alfredo Fiorini Hospital, Sapienza University of Rome, Terracina, LT, Italy
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, and Duke-NUS Medical School, Singapore
| | | | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences University of Milan, Milan, Italy
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin Simulation and Training Center (BeST), Charité-Universitätsmedizin Berlin, Germany
| | - Cathy M Stinear
- Department of Medicine Waipapa Taumata Rau, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Japan
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard Karls University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital-UHN, Division of Neurology-University of Toronto, Toronto Canada
| |
Collapse
|
7
|
Split-elbow sign in the PRO-ACT and Southern Italy ALS cohorts: a potential marker of disease severity and lower motor neuron involvement? J Neurol 2023; 270:3204-3212. [PMID: 36917342 DOI: 10.1007/s00415-023-11660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023]
Abstract
INTRODUCTION Split phenomena in ALS refers to the preferential dysfunction of some groups of muscles over others. The split-elbow sign (SE) is characterized by the predominant weakness of the biceps compared to the triceps, but available results are conflicting. OBJECTIVES To evaluate the prevalence of the SE in two independent cohorts: the randomized controlled trial-based PRO-ACT cohort (n = 500) and a monocentric cohort of patients with ALS from Southern Italy (n = 144); to investigate the demographic and clinical variables associated with the SE sign. METHODS Wilcoxon signed-rank test was used to compare biceps with triceps power in the same limb measured by hand-held dynamometry in the PRO-ACT cohort and Medical Research Council (MRC) in our cohort. Each limb was considered independently and not paired within the same individual. The arm where the triceps was stronger than the biceps was defined SE + , whereas the arm where the biceps was stronger than the triceps was considered SE-. A backward stepwise multivariate logistic regression was used to analyze the relationship between clinical and demographic variables and SE. PENN Upper Motor Neuron and Devine scales were used to evaluate the different upper (UMN) and lower (LMN) motor neuron impairments between the SE + and SE- arms. RESULTS In both cohorts, the biceps were on average stronger than the triceps, and the SE sign was present in 41% of the PRO-ACT cohort and just 30% of the Southern Italy cohort. The multivariate logistic regression revealed that older age (OR: 1.45; p = 0.01), male gender (OR: 1.55; p = 0.002), spinal onset (OR: 1.59; p = 0.007), and higher disease severity (OR: 1.70; p = 0.001) were significant predictors of the SE sign in the PRO-ACT cohort. Conversely, in Southern Italy patients, only a lower ALSFRS-R score was a significant determinant of the SE (OR: 8.47; p = 0.008). Finally, SE + arms exhibited a significantly higher median Devine sub-score compared to SE- [1 vs 0, p = < 0.05], while arms SE- showed a significantly higher median PUMNS sub-score [2 vs 0; p = < 0.05)]. CONCLUSION In our study, most patients with ALS do not show SE. Patients with SE are more likely older, males, with spinal onset, a higher degree of disease severity, and predominant and wider LMN impairment.
Collapse
|
8
|
Hemiparkinsonism-hemiatrophy syndrome: a long-term clinical, neurophysiological, and neuroimaging follow-up study. Neurol Sci 2023; 44:731-734. [PMID: 36222906 DOI: 10.1007/s10072-022-06448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/07/2022] [Indexed: 01/17/2023]
|
9
|
Lanza G, Cosentino FII, Lanuzza B, Tripodi M, Aricò D, Figorilli M, Puligheddu M, Fisicaro F, Bella R, Ferri R, Pennisi M. Reduced Intracortical Facilitation to TMS in Both Isolated REM Sleep Behavior Disorder (RBD) and Early Parkinson's Disease with RBD. J Clin Med 2022; 11:jcm11092291. [PMID: 35566417 PMCID: PMC9104430 DOI: 10.3390/jcm11092291] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND a reduced intracortical facilitation (ICF), a transcranial magnetic stimulation (TMS) measure largely mediated by glutamatergic neurotransmission, was observed in subjects affected by isolated REM sleep behavior disorder (iRBD). However, direct comparison between iRBD and Parkinson's disease (PD) with RBD is currently lacking. METHODS resting motor threshold, contralateral cortical silent period, amplitude and latency of motor evoked potentials, short-interval intracortical inhibition, and intracortical facilitation (ICF) were recorded from 15 drug-naïve iRBD patients, 15 drug-naïve PD with RBD patients, and 15 healthy participants from the right First Dorsal Interosseous muscle. REM sleep atonia index (RAI), Mini Mental State Examination (MMSE), Geriatric Depression Scale (GDS), and Epworth Sleepiness Scale (ESS) were assessed. RESULTS Groups were similar for sex, age, education, and patients for RBD duration and RAI. Neurological examination, MMSE, ESS, and GDS were normal in iRBD patients and controls; ESS scored worse in PD patients, but with no difference between groups at post hoc analysis. Compared to controls, both patient groups exhibited a significantly decreased ICF, without difference between them. CONCLUSIONS iRBD and PD with RBD shared a reduced ICF, thus suggesting the involvement of glutamatergic transmission both in subjects at risk for degeneration and in those with an overt α-synucleinopathy.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute—IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy;
- Correspondence: ; Tel.: +39-095-3782448
| | - Filomena Irene Ilaria Cosentino
- Department of Neurology IC and Sleep Research Center, Oasi Research Institute—IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy; (F.I.I.C.); (B.L.); (M.T.); (D.A.)
| | - Bartolo Lanuzza
- Department of Neurology IC and Sleep Research Center, Oasi Research Institute—IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy; (F.I.I.C.); (B.L.); (M.T.); (D.A.)
| | - Mariangela Tripodi
- Department of Neurology IC and Sleep Research Center, Oasi Research Institute—IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy; (F.I.I.C.); (B.L.); (M.T.); (D.A.)
| | - Debora Aricò
- Department of Neurology IC and Sleep Research Center, Oasi Research Institute—IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy; (F.I.I.C.); (B.L.); (M.T.); (D.A.)
| | - Michela Figorilli
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy; (M.F.); (M.P.)
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Monica Puligheddu
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy; (M.F.); (M.P.)
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (F.F.); (M.P.)
| | - Rita Bella
- Department of Medical and Surgical Science and Advanced Technologies, University of Catania, Via Santa Sofia 78, 95125 Catania, Italy;
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute—IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy;
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (F.F.); (M.P.)
| |
Collapse
|
10
|
Bashir S, Uzair M, Abualait T, Arshad M, Khallaf RA, Niaz A, Thani Z, Yoo WK, Túnez I, Demirtas-Tatlidede A, Meo SA. Effects of transcranial magnetic stimulation on neurobiological changes in Alzheimer's disease (Review). Mol Med Rep 2022; 25:109. [PMID: 35119081 PMCID: PMC8845030 DOI: 10.3892/mmr.2022.12625] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/15/2021] [Indexed: 11/05/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and brain neuronal loss. A pioneering field of research in AD is brain stimulation via electromagnetic fields (EMFs), which may produce clinical benefits. Noninvasive brain stimulation techniques, such as transcranial magnetic stimulation (TMS), have been developed to treat neurological and psychiatric disorders. The purpose of the present review is to identify neurobiological changes, including inflammatory, neurodegenerative, apoptotic, neuroprotective and genetic changes, which are associated with repetitive TMS (rTMS) treatment in patients with AD. Furthermore, it aims to evaluate the effect of TMS treatment in patients with AD and to identify the associated mechanisms. The present review highlights the changes in inflammatory and apoptotic mechanisms, mitochondrial enzymatic activities, and modulation of gene expression (microRNA expression profiles) associated with rTMS or sham procedures. At the molecular level, it has been suggested that EMFs generated by TMS may affect the cell redox status and amyloidogenic processes. TMS may also modulate gene expression by acting on both transcriptional and post‑transcriptional regulatory mechanisms. TMS may increase brain cortical excitability, induce specific potentiation phenomena, and promote synaptic plasticity and recovery of impaired functions; thus, it may re‑establish cognitive performance in patients with AD.
Collapse
Affiliation(s)
- Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Eastern Province 32253, Saudi Arabia
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University Islamabad, Islamabad 44000, Pakistan
| | - Turki Abualait
- College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province 34212, Saudi Arabia
| | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University Islamabad, Islamabad 44000, Pakistan
| | - Roaa A. Khallaf
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Eastern Province 32253, Saudi Arabia
| | - Asim Niaz
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Eastern Province 32253, Saudi Arabia
| | - Ziyad Thani
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Eastern Province 32253, Saudi Arabia
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University College of Medicine, Anyang, Gyeonggi-do 24252, Republic of Korea
| | - Isaac Túnez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing/ Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Cordoba, Cordoba 14071, Spain
- Cooperative Research Thematic Excellent Network on Brain Stimulation (REDESTIM), Ministry for Economy, Industry and Competitiveness, 28046 Madrid, Spain
| | | | - Sultan Ayoub Meo
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
Uzair M, Abualait T, Arshad M, Yoo WK, Mir A, Bunyan RF, Bashir S. Transcranial magnetic stimulation in animal models of neurodegeneration. Neural Regen Res 2022; 17:251-265. [PMID: 34269184 PMCID: PMC8464007 DOI: 10.4103/1673-5374.317962] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/08/2020] [Accepted: 12/24/2020] [Indexed: 11/13/2022] Open
Abstract
Brain stimulation techniques offer powerful means of modulating the physiology of specific neural structures. In recent years, non-invasive brain stimulation techniques, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation, have emerged as therapeutic tools for neurology and neuroscience. However, the possible repercussions of these techniques remain unclear, and there are few reports on the incisive recovery mechanisms through brain stimulation. Although several studies have recommended the use of non-invasive brain stimulation in clinical neuroscience, with a special emphasis on TMS, the suggested mechanisms of action have not been confirmed directly at the neural level. Insights into the neural mechanisms of non-invasive brain stimulation would unveil the strategies necessary to enhance the safety and efficacy of this progressive approach. Therefore, animal studies investigating the mechanisms of TMS-induced recovery at the neural level are crucial for the elaboration of non-invasive brain stimulation. Translational research done using animal models has several advantages and is able to investigate knowledge gaps by directly targeting neuronal levels. In this review, we have discussed the role of TMS in different animal models, the impact of animal studies on various disease states, and the findings regarding brain function of animal models after TMS in pharmacology research.
Collapse
Affiliation(s)
- Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Turki Abualait
- College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University College of Medicine, Anyang, South Korea
- Hallym Institute for Translational Genomics & Bioinformatics, Hallym University College of Medicine, Anyang, South Korea
| | - Ali Mir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Reem Fahd Bunyan
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| |
Collapse
|
12
|
Duan YJ, Hua XY, Zheng MX, Wu JJ, Xing XX, Li YL, Xu JG. Corticocortical paired associative stimulation for treating motor dysfunction after stroke: study protocol for a randomised sham-controlled double-blind clinical trial. BMJ Open 2022; 12:e053991. [PMID: 35027421 PMCID: PMC8762140 DOI: 10.1136/bmjopen-2021-053991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION Stroke survivors can have a high disability rate with low quality of daily life, resulting in a heavy burden on family and society. Transcranial magnetic stimulation has been widely applied to brain injury repair, neurological disease treatment, cognition and emotion regulation and so on. However, there is still much to be desired in the theories of using these neuromodulation techniques to treat stroke-caused hemiplegia. It is generally recognised that synaptic plasticity is an important basis for functional repair after brain injury. This study protocol aims to examine the corticocortical paired associative stimulation (ccPAS) for inducing synaptic plasticity to rescue the paralysed after stroke. METHODS AND ANALYSIS The current study is designed as a 14-week double-blind randomised sham-controlled clinical trial, composed of 2-week intervention and 12-week follow-up. For the study, 42 patients who had a stroke aged 40-70 will be recruited, who are randomly assigned either to the ccPAS intervention group, or to the control group at a 1:1 ratio, hence an equal number each. In the intervention group, ccPAS is practised in conjunction with the conventional rehabilitation treatment, and in the control group, the conventional rehabilitation treatment is administered with sham stimulation. A total of 10 interventions will be made, 5 times a week for 2 weeks. The same assessors are supposed to evaluate the participants' motor function at four time points of the baseline (before 10 interventions), treatment ending (after 10 interventions), and two intervals of follow-up (1 and 3 months later, respectively). The Fugl-Meyer Assessment Upper Extremity is used for the primary outcomes. The secondary outcomes include changes in the assessment of Action Research Arm Test (ARAT), Modified Barthel Index (MBI), electroencephalogram (EEG) and functional MRI data. The adverse events are to be recorded throughout the study. ETHICS AND DISSEMINATION This study was approved by the Medical Ethics Committee of Yueyang Hospital. All ethical work was performed in accordance with the Helsinki declaration. Written informed consent was obtained from all individual participants included in the study. Study findings will be disseminated in the printed media. TRIAL REGISTRATION NUMBER Chinese Clinical Trial Registry: ChiCTR2000036685.
Collapse
Affiliation(s)
- Yu-Jie Duan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Xin Xing
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Lin Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Neurophysiological Aspects of REM Sleep Behavior Disorder (RBD): A Narrative Review. Brain Sci 2021. [PMID: 34942893 DOI: 10.3390/brainsci11121588.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
REM sleep without atonia (RSWA) is the polysomnographic (PSG) hallmark of rapid eye movement (REM) sleep behavior disorder (RBD), a feature essential for the diagnosis of this condition. Several additional neurophysiological aspects of this complex disorder have also recently been investigated in depth, which constitute the focus of this narrative review, together with RSWA. First, we describe the complex neural network underlying REM sleep and its muscle atonia, focusing on the disordered mechanisms leading to RSWA. RSWA is then described in terms of its polysomnographic features, and the methods (visual and automatic) currently available for its scoring and quantification are exposed and discussed. Subsequently, more recent and advanced neurophysiological features of RBD are described, such as electroencephalography during wakefulness and sleep, transcranial magnetic stimulation, and vestibular evoked myogenic potentials. The role of the assessment of neurophysiological features in the study of RBD is then carefully discussed, highlighting their usefulness and sensitivity in detecting neurodegeneration in the early or prodromal stages of RBD, as well as their relationship with other proposed biomarkers for the diagnosis, prognosis, and monitoring of this condition. Finally, a future research agenda is proposed to help clarify the many still unclear aspects of RBD.
Collapse
|
14
|
Figorilli M, Lanza G, Congiu P, Lecca R, Casaglia E, Mogavero MP, Puligheddu M, Ferri R. Neurophysiological Aspects of REM Sleep Behavior Disorder (RBD): A Narrative Review. Brain Sci 2021; 11:brainsci11121588. [PMID: 34942893 PMCID: PMC8699681 DOI: 10.3390/brainsci11121588] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023] Open
Abstract
REM sleep without atonia (RSWA) is the polysomnographic (PSG) hallmark of rapid eye movement (REM) sleep behavior disorder (RBD), a feature essential for the diagnosis of this condition. Several additional neurophysiological aspects of this complex disorder have also recently been investigated in depth, which constitute the focus of this narrative review, together with RSWA. First, we describe the complex neural network underlying REM sleep and its muscle atonia, focusing on the disordered mechanisms leading to RSWA. RSWA is then described in terms of its polysomnographic features, and the methods (visual and automatic) currently available for its scoring and quantification are exposed and discussed. Subsequently, more recent and advanced neurophysiological features of RBD are described, such as electroencephalography during wakefulness and sleep, transcranial magnetic stimulation, and vestibular evoked myogenic potentials. The role of the assessment of neurophysiological features in the study of RBD is then carefully discussed, highlighting their usefulness and sensitivity in detecting neurodegeneration in the early or prodromal stages of RBD, as well as their relationship with other proposed biomarkers for the diagnosis, prognosis, and monitoring of this condition. Finally, a future research agenda is proposed to help clarify the many still unclear aspects of RBD.
Collapse
Affiliation(s)
- Michela Figorilli
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Monserrato, 09042 Cagliari, Italy; (M.F.); (P.C.); (R.L.); (E.C.); (M.P.)
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Giuseppe Lanza
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy;
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy
| | - Patrizia Congiu
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Monserrato, 09042 Cagliari, Italy; (M.F.); (P.C.); (R.L.); (E.C.); (M.P.)
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Rosamaria Lecca
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Monserrato, 09042 Cagliari, Italy; (M.F.); (P.C.); (R.L.); (E.C.); (M.P.)
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Elisa Casaglia
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Monserrato, 09042 Cagliari, Italy; (M.F.); (P.C.); (R.L.); (E.C.); (M.P.)
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Maria P. Mogavero
- Istituti Clinici Scientifici Maugeri, IRCCS, Scientific Institute of Pavia, 27100 Pavia, Italy;
| | - Monica Puligheddu
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Monserrato, 09042 Cagliari, Italy; (M.F.); (P.C.); (R.L.); (E.C.); (M.P.)
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy;
- Correspondence: ; Tel.: +39-0935-936111
| |
Collapse
|
15
|
Guder S, Frey BM, Backhaus W, Braass H, Timmermann JE, Gerloff C, Schulz R. The Influence of Cortico-Cerebellar Structural Connectivity on Cortical Excitability in Chronic Stroke. Cereb Cortex 2021; 30:1330-1344. [PMID: 31647536 DOI: 10.1093/cercor/bhz169] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/17/2019] [Accepted: 06/22/2019] [Indexed: 12/11/2022] Open
Abstract
Brain imaging has recently evidenced that the structural state of distinct reciprocal cortico-cerebellar fiber tracts, the dentato-thalamo-cortical tract (DTCT), and the cortico-ponto-cerebellar tract (CPCeT), significantly influences residual motor output in chronic stroke patients, independent from the level of damage to the corticospinal tract (CST). Whether such structural information might also directly relate to measures of cortical excitability is an open question. Eighteen chronic stroke patients with supratentorial ischemic lesions and 17 healthy controls underwent transcranial magnetic stimulation to assess recruitment curves of motor evoked potentials of both hemispheres. Diffusion-weighted imaging and probabilistic tractography were applied to reconstruct reciprocal cortico-cerebellar motor tracts between the primary motor cortex and the cerebellum. Tract-related microstructure was estimated by means of fractional anisotropy, and linear regression modeling was used to relate it to cortical excitability. The main finding was a significant association between cortical excitability and the structural integrity of the DTCT, the main cerebellar outflow tract, independent from the level of damage to the CST. A comparable relationship was neither detectable for the CPCeT nor for the healthy controls. This finding contributes to a mechanistic understanding of the putative supportive role of the cerebellum for residual motor output by facilitating cortical excitability after stroke.
Collapse
Affiliation(s)
- Stephanie Guder
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Benedikt M Frey
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Winifried Backhaus
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Hanna Braass
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Jan E Timmermann
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Robert Schulz
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
16
|
Nguyen C, Caga J, Mahoney CJ, Kiernan MC, Huynh W. Behavioural changes predict poorer survival in amyotrophic lateral sclerosis. Brain Cogn 2021; 150:105710. [PMID: 33725515 DOI: 10.1016/j.bandc.2021.105710] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 01/24/2023]
Abstract
OBJECTIVE The Motor Neuron Disease Behavioural Scale (MiND-B) is a clinically validated tool that was developed to detect behavioural dysfunction in patients with amyotrophic lateral sclerosis (ALS). The current study aimed to evaluate behavioural impairment using MiND-B, as well as cognitive dysfunction in ALS patients, and to determine their prognostic implications. METHOD Patients with a clinical diagnosis of ALS were prospectively recruited from a specialised multidisciplinary ALS clinic. Patients underwent behavioural assessment with the Motor Neuron Disease Behavioural Scale (MiND-B) and cognitive evaluation using the Addenbrooke's Cognitive Examination (ACE). Primary outcome measure was selected as survival time, defined by time from assessment to time of death or censor date. Univariate assessment of survival effect was carried out using Kaplan-Meier survival analysis followed by cox regression analysis to assess the effect of MiND-B and ACE scores on survival time. RESULTS A total of 134 patients were included in the study. MiND-B testing determined that 59% were classified as having behavioural dysfunction, with deficits associated with a significantly shorter survival time (HR 2.53, p = 0.003, 95% CI 1.3-4.6). Furthermore, regression analysis demonstrated that for every 1-point reduction in the MiND-B score, risk of death increased by 3%. ACE testing established that 33% of the cohort had evidence of cognitive dysfunction. Patients with cognitive dysfunction on ACE testing had a significantly shorter survival time than patients without cognitive impairment (HR 2.0, p = 0.042, 95% CI 1.04-3.3). CONCLUSION The presence of behavioural and cognitive impairments in ALS patients was associated with poor survival. The MiND-B and ACE inventories are simple and efficient clinical tools that can be administered in the multidisciplinary ALS clinic, that aid in the prognostication of this patient population.
Collapse
Affiliation(s)
- Chilan Nguyen
- School of Medicine, University of Notre Dame, NSW, Australia
| | - Jashelle Caga
- Brain and Mind Centre, University of Sydney, NSW, Australia
| | | | | | - William Huynh
- Brain and Mind Centre, University of Sydney, NSW, Australia; Prince of Wales Clinical School, University of New South Wales, NSW, Australia.
| |
Collapse
|
17
|
Agarwal S, Highton-Williamson E, Caga J, Howells J, Dharmadasa T, Matamala JM, Ma Y, Shibuya K, Hodges JR, Ahmed RM, Vucic S, Kiernan MC. Motor cortical excitability predicts cognitive phenotypes in amyotrophic lateral sclerosis. Sci Rep 2021; 11:2172. [PMID: 33500476 PMCID: PMC7838179 DOI: 10.1038/s41598-021-81612-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 12/30/2020] [Indexed: 12/31/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are well-recognised as an extended disease spectrum. This study hypothesised that cortical hyperexcitability, an early pathophysiological abnormality in ALS, would distinguish cognitive phenotypes, as a surrogate marker of pathological disease burden. 61 patients with ALS, matched for disease duration (pure motor ALS, n = 39; ALS with coexistent FTD, ALS-FTD, n = 12; ALS with cognitive/behavioural abnormalities not meeting FTD criteria, ALS-Cog, n = 10) and 30 age-matched healthy controls. Cognitive function on the Addenbrooke's cognitive examination (ACE) scale, behavioural function on the motor neuron disease behavior scale (MiND-B) and cortical excitability using transcranial magnetic stimulation (TMS) were documented. Cortical resting motor threshold (RMT), lower threshold indicating hyperexcitability, was lower in ALS-FTD (50.2 ± 6.9) compared to controls (64.3 ± 12.6, p < 0.005), while ALS-Cog (63.3 ± 12.7) and ALS (60.8 ± 13.9, not significant) were similar to controls. Short interval intracortical inhibition (SICI) was reduced across all ALS groups compared to controls, indicating hyperexcitability. On receiver operating characteristic curve analysis, RMT differentiated ALS-FTD from ALS (area under the curve AUC = 0.745, p = 0.011). The present study has identified a distinct pattern of cortical excitability across cognitive phenotypes in ALS. As such, assessment of cortical physiology may provide more precise clinical prognostication in ALS.
Collapse
Affiliation(s)
- Smriti Agarwal
- Brain and Mind Centre and Sydney Medical School, University of Sydney, Sydney, Australia. .,Neurology Unit, A5, Box 165, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
| | | | - Jashelle Caga
- Brain and Mind Centre and Sydney Medical School, University of Sydney, Sydney, Australia
| | - James Howells
- Brain and Mind Centre and Sydney Medical School, University of Sydney, Sydney, Australia
| | - Thanuja Dharmadasa
- Brain and Mind Centre and Sydney Medical School, University of Sydney, Sydney, Australia
| | - José M Matamala
- Brain and Mind Centre and Sydney Medical School, University of Sydney, Sydney, Australia
| | - Yan Ma
- Brain and Mind Centre and Sydney Medical School, University of Sydney, Sydney, Australia
| | - Kazumoto Shibuya
- Brain and Mind Centre and Sydney Medical School, University of Sydney, Sydney, Australia
| | - John R Hodges
- Brain and Mind Centre and Sydney Medical School, University of Sydney, Sydney, Australia
| | - Rebekah M Ahmed
- Brain and Mind Centre and Sydney Medical School, University of Sydney, Sydney, Australia.,Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Steve Vucic
- Brain and Mind Centre and Sydney Medical School, University of Sydney, Sydney, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre and Sydney Medical School, University of Sydney, Sydney, Australia.,Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
18
|
Matsumoto H, Uchio N, Hao A, Haga M, Abe C, Sakamoto Y, Ugawa Y. Prominent Prolongation of Cortical Silent Period Induced by Transcranial Magnetic Stimulation in Creutzfeldt-Jakob Disease. Case Rep Neurol 2020; 12:447-451. [PMID: 33362525 PMCID: PMC7747086 DOI: 10.1159/000510395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022] Open
Abstract
The cortical silent period (CSP) induced by transcranial magnetic stimulation (TMS) has been reported to be prolonged in 2 Creutzfeldt-Jakob disease (CJD) patients who presented with periodic myoclonus. Herein, we will show a prominent prolongation of TMS-induced CSP in a patient with CJD who did not have periodic myoclonus. The patient was a 66-year-old woman who developed rapidly progressive dementia. No myoclonic jerks were observed. Brain magnetic resonance imaging showed high-intensity lesions in the cerebral cortex, basal ganglia, and thalamus on diffusion-weighted images. Electroencephalography (EEG) showed diffuse and continuous slow waves, but no periodic synchronous discharges (PSDs). A TMS study revealed that the duration of CSP was prominently prolonged: the duration of CSP (370 ms) equaled that of the mean + 6.5 SD of the normal value. One month after admission, the patient exhibited akinetic mutism and developed periodic myoclonus in her limbs. The clinical course was compatible with CJD. To date, CSP has been measured in only 2 CJD patients. The common findings in both cases were marked prolongation of CSP, periodic myoclonus, and PSD on EEG. In short, we demonstrated that TMS-induced CSP was prominently prolonged even at the early stage of CJD without periodic myoclonus or PSD. In other disorders, the CSP has not been reported to be comparably prolonged to that of CJD patients. Therefore, we conclude that TMS-induced CSP could be prominently prolonged even in the early stage of CJD. The marked prolongation of the CSP might be an early biomarker of CJD.
Collapse
Affiliation(s)
| | - Naohiro Uchio
- Department of Neurology, Mitsui Memorial Hospital, Tokyo, Japan
| | - Akihito Hao
- Department of Neurology, Mitsui Memorial Hospital, Tokyo, Japan
| | - Mari Haga
- Department of Clinical Laboratory, Mitsui Memorial Hospital, Tokyo, Japan
| | - Chiaki Abe
- Department of Clinical Laboratory, Mitsui Memorial Hospital, Tokyo, Japan
| | - Yuuri Sakamoto
- Department of Clinical Laboratory, Mitsui Memorial Hospital, Tokyo, Japan
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
19
|
The Effect of Sub-Concussive Impacts during a Rugby Tackling Drill on Brain Function. Brain Sci 2020; 10:brainsci10120960. [PMID: 33321843 PMCID: PMC7764819 DOI: 10.3390/brainsci10120960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/17/2022] Open
Abstract
Concussion is known to detrimentally affect brain health. Rugby tackles commonly occur with high collision force between tackler and ball carrier, and low impact head contact is not uncommon. Cognitive deficits following a bout of soccer ball heading has been attributed to the impact and termed sub-concussion. Although soccer ball heading studies provide evidence for acute effects of sub-concussion, it is unknown whether this phenomenon occurs following rugby tackles. This study investigates the acute effects of rugby tackles on brain function and balance in rugby players. Twenty-six volunteers were assigned to either the ball carrier (9), tackler (9) or control (8) group. Controls performed running without the tackle. Outcome measures included corticomotor function using transcranial magnetic brain stimulation (TMS) and balance was assessed by a series of tasks performed on a NeuroCom Balance Master before and immediately after a tackle training drill. Following the tackling bout, the cortical silent period (cSP) increased for the tacklers with no change for ball carrier and control groups, and no differences between groups for balance measures were observed. Lengthening of cSP observed in the tacklers following the bout has been reported in studies of concussion and may indicate long term detrimental effects.
Collapse
|
20
|
Ozdinler PH, Gautam M, Gozutok O, Konrad C, Manfredi G, Gomez EA, Mitsumoto H, Erb ML, Tian Z, Haase G. Better understanding the neurobiology of primary lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:35-46. [PMID: 33602014 PMCID: PMC8016556 DOI: 10.1080/21678421.2020.1837175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/10/2020] [Accepted: 08/23/2020] [Indexed: 12/19/2022]
Abstract
Primary lateral sclerosis (PLS) is a rare neurodegenerative disease characterized by progressive degeneration of upper motor neurons (UMNs). Recent studies shed new light onto the cellular events that are particularly important for UMN maintenance including intracellular trafficking, mitochondrial energy homeostasis and lipid metabolism. This review summarizes these advances including the role of Alsin as a gene linked to atypical forms of juvenile PLS, and discusses wider aspects of cellular pathology that have been observed in adult forms of PLS. The review further discusses the prospects of new transgenic upper motor neuron reporter mice, human stem cell-derived UMN cultures, cerebral organoids and non-human primates as future model systems to better understand and ultimately treat PLS.
Collapse
Affiliation(s)
- P. Hande Ozdinler
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Mukesh Gautam
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Oge Gozutok
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY USA
| | - Csaba Konrad
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY USA
| | - Giovanni Manfredi
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY USA
| | - Estela Area Gomez
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Hiroshi Mitsumoto
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Eleanor and Lou Gehrig ALS Center, Columbia University Medical Center, New York, NY, USA
| | - Marcella L. Erb
- School of Medicine Light Microscopy Core, University of California San Diego, La Jolla, CA, USA
| | - Zheng Tian
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Georg Haase
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
- Institute of Systems Neuroscience, Marseille, France
| |
Collapse
|
21
|
Weaver KE, Caldwell DJ, Cronin JA, Kuo CH, Kogan M, Houston B, Sanchez V, Martinez V, Ojemann JG, Rane S, Ko AL. Concurrent Deep Brain Stimulation Reduces the Direct Cortical Stimulation Necessary for Motor Output. Mov Disord 2020; 35:2348-2353. [PMID: 32914888 DOI: 10.1002/mds.28255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Converging literatures suggest that deep brain stimulation (DBS) in Parkinson's disease affects multiple circuit mechanisms. One proposed mechanism is the normalization of primary motor cortex (M1) pathophysiology via effects on the hyperdirect pathway. OBJECTIVES We hypothesized that DBS would reduce the current intensity necessary to modulate motor-evoked potentials from focally applied direct cortical stimulation (DCS). METHODS Intraoperative subthalamic DBS, DCS, and preoperative diffusion tensor imaging data were acquired in 8 patients with Parkinson's disease. RESULTS In 7 of 8 patients, DBS significantly reduced the M1 DCS current intensity required to elicit motor-evoked potentials. This neuromodulation was specific to select DBS bipolar configurations. In addition, the volume of activated tissue models of these configurations were significantly associated with overlap of the hyperdirect pathway. CONCLUSIONS DBS reduces the current necessary to elicit a motor-evoked potential using DCS. This supports a circuit mechanism of DBS effectiveness, potentially involving the hyperdirect pathway that speculatively may underlie reductions in hypokinetic abnormalities in Parkinson's disease. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kurt E Weaver
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington, USA.,Graduate Program in Neuroscience, University of Washington School of Medicine, Seattle, Washington, USA.,Center for NeuroTechnologies, University of Washington School of Medicine, Seattle, Washington, USA
| | - David J Caldwell
- Graduate Program in Neuroscience, University of Washington School of Medicine, Seattle, Washington, USA.,Department of BioEngineering, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jeneva A Cronin
- Graduate Program in Neuroscience, University of Washington School of Medicine, Seattle, Washington, USA.,Department of BioEngineering, University of Washington School of Medicine, Seattle, Washington, USA
| | - Chao-Hung Kuo
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Michael Kogan
- Department of Neurosurgery, University of Buffalo, Buffalo, New York, USA
| | - Brady Houston
- Dept of Electrical Engineering, University of Washington School of Medicine, Seattle, Washington, USA
| | - Victor Sanchez
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Vicente Martinez
- Department of Rehabilitative Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jeffrey G Ojemann
- Graduate Program in Neuroscience, University of Washington School of Medicine, Seattle, Washington, USA.,Center for NeuroTechnologies, University of Washington School of Medicine, Seattle, Washington, USA.,Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| | - Swati Rane
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Andrew L Ko
- Graduate Program in Neuroscience, University of Washington School of Medicine, Seattle, Washington, USA.,Center for NeuroTechnologies, University of Washington School of Medicine, Seattle, Washington, USA.,Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
22
|
Blumenstock S, Dudanova I. Cortical and Striatal Circuits in Huntington's Disease. Front Neurosci 2020; 14:82. [PMID: 32116525 PMCID: PMC7025546 DOI: 10.3389/fnins.2020.00082] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/21/2020] [Indexed: 12/28/2022] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder that typically manifests in midlife with motor, cognitive, and/or psychiatric symptoms. The disease is caused by a CAG triplet expansion in exon 1 of the huntingtin gene and leads to a severe neurodegeneration in the striatum and cortex. Classical electrophysiological studies in genetic HD mouse models provided important insights into the disbalance of excitatory, inhibitory and neuromodulatory inputs, as well as progressive disconnection between the cortex and striatum. However, the involvement of local cortical and striatal microcircuits still remains largely unexplored. Here we review the progress in understanding HD-related impairments in the cortical and basal ganglia circuits, and outline new opportunities that have opened with the development of modern circuit analysis methods. In particular, in vivo imaging studies in mouse HD models have demonstrated early structural and functional disturbances within the cortical network, and optogenetic manipulations of striatal cell types have started uncovering the causal roles of certain neuronal populations in disease pathogenesis. In addition, the important contribution of astrocytes to HD-related circuit defects has recently been recognized. In parallel, unbiased systems biology studies are providing insights into the possible molecular underpinnings of these functional defects at the level of synaptic signaling and neurotransmitter metabolism. With these approaches, we can now reach a deeper understanding of circuit-based HD mechanisms, which will be crucial for the development of effective and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Sonja Blumenstock
- Department of Molecules – Signaling – Development, Max Planck Institute of Neurobiology, Martinsried, Germany
- Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Irina Dudanova
- Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| |
Collapse
|
23
|
Metformin Protects against Oxidative Stress Injury Induced by Ischemia/Reperfusion via Regulation of the lncRNA-H19/miR-148a-3p/Rock2 Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8768327. [PMID: 31934270 PMCID: PMC6942897 DOI: 10.1155/2019/8768327] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022]
Abstract
Previous studies have shown that metformin not only is a hypoglycemic agent but also has neuroprotective effects. However, the mechanism of action of metformin in ischemic stroke is unclear. Oxidative stress is an important factor in the pathogenesis of cerebral ischemia-reperfusion injury. It has been reported that metformin is associated with stroke risk in the clinical population. This study is aimed at investigating the effect and mechanism of metformin in an experimental model of oxidative stress induced by ischemia/reperfusion (I/R) in vivo and oxygen glucose deprivation/reperfusion (OGD/R) in vitro. Metformin (100, 200, and 300 mg/kg) was administered intraperitoneally immediately after induction of cerebral ischemia. The indicators of oxidative stress selected were antioxidant enzyme activities of catalase, malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), and glutathione peroxidation enzyme (GSHPx). First, we demonstrated that metformin can significantly alleviate acute and chronic cerebral I/R injury and it has a strong regulatory effect on stroke-induced oxidative stress. It can reduce the elevated activities of MDA and NO and increase the levels of GSHPx and SOD in the cerebrum of mice and N2a cells exposed to I/R. Furthermore, real-time PCR and western blot were used to detect the expression of long noncoding RNA H19 (lncRNA-H19), microRNA-148a-3p (miR-148a-3p), and Rho-associated protein kinase 2 (Rock2). The direct interaction of lncRNA-H19, miR-148a-3p, and Rock2 was tested using a dual luciferase reporter assay. lncRNA-H19 altered OGD/R-induced oxidative stress by modulating miR-148a-3p to increase Rock2 expression. The expression of lncRNA-H19 and Rock2 could be downregulated with metformin in vivo and in vitro. In conclusion, our study confirmed that metformin exerts neuroprotective effects by regulating ischemic stroke-induced oxidative stress injury via the lncRNA-H19/miR-148a-3p/Rock2 axis. These results provide new evidence that metformin may represent a potential treatment for stroke-related brain injury.
Collapse
|
24
|
Cepeda C, Oikonomou KD, Cummings D, Barry J, Yazon VW, Chen DT, Asai J, Williams CK, Vinters HV. Developmental origins of cortical hyperexcitability in Huntington's disease: Review and new observations. J Neurosci Res 2019; 97:1624-1635. [PMID: 31353533 PMCID: PMC6801077 DOI: 10.1002/jnr.24503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022]
Abstract
Huntington's disease (HD), an inherited neurodegenerative disorder that principally affects striatum and cerebral cortex, is generally thought to have an adult onset. However, a small percentage of cases develop symptoms before 20 years of age. This juvenile variant suggests that brain development may be altered in HD. Indeed, recent evidence supports an important role of normal huntingtin during embryonic brain development and mutations in this protein cause cortical abnormalities. Functional studies also demonstrated that the cerebral cortex becomes hyperexcitable with disease progression. In this review, we examine clinical and experimental evidence that cortical development is altered in HD. We also provide preliminary evidence that cortical pyramidal neurons from R6/2 mice, a model of juvenile HD, are hyperexcitable and display dysmorphic processes as early as postnatal day 7. Further, some symptomatic mice present with anatomical abnormalities reminiscent of human focal cortical dysplasia, which could explain the occurrence of epileptic seizures in this genetic mouse model and in children with juvenile HD. Finally, we discuss recent treatments aimed at correcting abnormal brain development.
Collapse
Affiliation(s)
- Carlos Cepeda
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Katerina D. Oikonomou
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Damian Cummings
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Joshua Barry
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Vannah-Wila Yazon
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Dickson T. Chen
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Janelle Asai
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher K. Williams
- Section of Neuropathology, Department of Pathology and Laboratory Medicine and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Harry V. Vinters
- Section of Neuropathology, Department of Pathology and Laboratory Medicine and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
25
|
McMackin R, Muthuraman M, Groppa S, Babiloni C, Taylor JP, Kiernan MC, Nasseroleslami B, Hardiman O. Measuring network disruption in neurodegenerative diseases: New approaches using signal analysis. J Neurol Neurosurg Psychiatry 2019; 90:1011-1020. [PMID: 30760643 PMCID: PMC6820156 DOI: 10.1136/jnnp-2018-319581] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/12/2022]
Abstract
Advanced neuroimaging has increased understanding of the pathogenesis and spread of disease, and offered new therapeutic targets. MRI and positron emission tomography have shown that neurodegenerative diseases including Alzheimer's disease (AD), Lewy body dementia (LBD), Parkinson's disease (PD), frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) are associated with changes in brain networks. However, the underlying neurophysiological pathways driving pathological processes are poorly defined. The gap between what imaging can discern and underlying pathophysiology can now be addressed by advanced techniques that explore the cortical neural synchronisation, excitability and functional connectivity that underpin cognitive, motor, sensory and other functions. Transcranial magnetic stimulation can show changes in focal excitability in cortical and transcortical motor circuits, while electroencephalography and magnetoencephalography can now record cortical neural synchronisation and connectivity with good temporal and spatial resolution.Here we reflect on the most promising new approaches to measuring network disruption in AD, LBD, PD, FTD, MS, and ALS. We consider the most groundbreaking and clinically promising studies in this field. We outline the limitations of these techniques and how they can be tackled and discuss how these novel approaches can assist in clinical trials by predicting and monitoring progression of neurophysiological changes underpinning clinical symptomatology.
Collapse
Affiliation(s)
- Roisin McMackin
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin, Ireland
| | - Muthuraman Muthuraman
- Department of Neurology, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Sergiu Groppa
- Department of Neurology, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Claudio Babiloni
- Dipartimento di Fisiologia e Farmacologia "Vittorio Erspamer", Università degli Studi di Roma "La Sapienza", Roma, Italy
- Istituto di Ricovero e Cura San Raffaele Cassino, Cassino, Italy
| | - John-Paul Taylor
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew C Kiernan
- Brain & Mind Centre, University of Sydney, Sydney, Sydney, Australia
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, Sydney, Australia
| | - Bahman Nasseroleslami
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin, Ireland
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin, Ireland
- Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
26
|
Ferini-Strambi L, Fasiello E, Sforza M, Salsone M, Galbiati A. Neuropsychological, electrophysiological, and neuroimaging biomarkers for REM behavior disorder. Expert Rev Neurother 2019; 19:1069-1087. [PMID: 31277555 DOI: 10.1080/14737175.2019.1640603] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Introduction: Rapid eye movement (REM) sleep behavior disorder (RBD) is a REM sleep parasomnia characterized by dream enacting behaviors allowed by the loss of physiological atonia during REM sleep. This disorder is recognized as a prodromal stage of neurodegenerative disease, in particular Parkinson's Disease (PD) and Dementia with Lewy Bodies (DLB). Therefore, a timely identification of biomarkers able to predict an early conversion into neurodegeneration is of utmost importance. Areas covered: In this review, the authors provide updated evidence regarding the presence of neuropsychological, electrophysiological and neuroimaging markers in isolated RBD (iRBD) patients when the neurodegeneration is yet to come. Expert opinion: Cognitive profile of iRBD patients is characterized by the presence of impairment in visuospatial abilities and executive function that is observed in α-synucleinopathies. However, longitudinal studies showed that impaired executive functions, rather than visuospatial abilities, augmented conversion risk. Cortical slowdown during wake and REM sleep suggest the presence of an ongoing neurodegenerative process paralleled by cognitive decline. Neuroimaging findings showed that impairment nigrostriatal dopaminergic system might be a good marker to identify those patients at higher risk of short-term conversion. Although a growing body of evidence the identification of biomarkers still represents a critical issue in iRBD.
Collapse
Affiliation(s)
- Luigi Ferini-Strambi
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute , Milan , Italy.,Faculty of Psychology, "Vita-Salute" San Raffaele University , Milan , Italy
| | - Elisabetta Fasiello
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute , Milan , Italy.,Faculty of Psychology, "Vita-Salute" San Raffaele University , Milan , Italy
| | - Marco Sforza
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute , Milan , Italy.,Faculty of Psychology, "Vita-Salute" San Raffaele University , Milan , Italy
| | - Maria Salsone
- Institute of Molecular Bioimaging and Physiology, National Research Council , Catanzaro , Italy
| | - Andrea Galbiati
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute , Milan , Italy.,Faculty of Psychology, "Vita-Salute" San Raffaele University , Milan , Italy
| |
Collapse
|
27
|
Vucic S. Split elbow sign: more evidence for the importance of cortical dysfunction in ALS. J Neurol Neurosurg Psychiatry 2019; 90:729. [PMID: 30910859 DOI: 10.1136/jnnp-2019-320534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/21/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Steve Vucic
- Department of Neurology, Westmead Hospital, Sydney, NSW 2145, Australia
| |
Collapse
|
28
|
Ward NS, Brander F, Kelly K. Intensive upper limb neurorehabilitation in chronic stroke: outcomes from the Queen Square programme. J Neurol Neurosurg Psychiatry 2019; 90:498-506. [PMID: 30770457 DOI: 10.1136/jnnp-2018-319954] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/21/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Persistent difficulty in using the upper limb remains a major contributor to physical disability post-stroke. There is a nihilistic view about what clinically relevant changes are possible after the early post-stroke phase. The Queen Square Upper Limb Neurorehabilitation programme delivers high-quality, high-dose, high-intensity upper limb neurorehabilitation during a 3-week (90 hours) programme. Here, we report clinical changes made by the chronic stroke patients treated on the programme, factors that might predict responsiveness to therapy and the relationship between changes in impairment and activity. METHODS Upper limb impairment and activity were assessed on admission, discharge, 6 weeks and 6 months after treatment, with modified upper limb Fugl-Meyer (FM-UL, max-54), Action Research Arm Test (ARAT, max-57) and Chedoke Arm and Hand Activity Inventory (CAHAI, max-91). Patient-reported outcome measures were recorded with the Arm Activity Measure (ArmA) parts A (0-32) and B (0-52), where lower scores are better. RESULTS 224 patients (median time post-stroke 18 months) completed the 6-month programme. Median scores on admission were as follows: FM-UL = 26 (IQR 16-37), ARAT=18 (IQR 7-33), CAHAI=40 (28-55), ArmA-A=8 (IQR 4.5-12) and ArmA-B=38 (IQR 24-46). The median scores 6 months after the programme were as follows: FM-UL=37 (IQR 24-48), ARAT=27 (IQR 12-45), CAHAI=52 (IQR 35-77), ArmA-A=3 (IQR 1-6.5) and ArmA-B=19 (IQR 8.5-32). We found no predictors of treatment response beyond admission scores. CONCLUSION With intensive upper limb rehabilitation, chronic stroke patients can change by clinically important differences in measures of impairment and activity. Crucially, clinical gains continued during the 6-month follow-up period.
Collapse
Affiliation(s)
- Nick S Ward
- Department of Clinical and Motor Neuroscience, UCL Institute of Neurology, London, UK .,The National Hospital for Neurology and Neurosurgery, London, UK.,UCLP Centre for Neurorehabilitation, London, UK
| | - Fran Brander
- The National Hospital for Neurology and Neurosurgery, London, UK.,UCLP Centre for Neurorehabilitation, London, UK
| | - Kate Kelly
- The National Hospital for Neurology and Neurosurgery, London, UK.,UCLP Centre for Neurorehabilitation, London, UK
| |
Collapse
|
29
|
Finegan E, Chipika RH, Shing SLH, Hardiman O, Bede P. Primary lateral sclerosis: a distinct entity or part of the ALS spectrum? Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:133-145. [PMID: 30654671 DOI: 10.1080/21678421.2018.1550518] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Primary lateral sclerosis (PLS) has been traditionally viewed as a distinct upper motor neuron condition (UMN) but is increasingly regarded as a sub-phenotype within the amyotrophic lateral sclerosis (ALS) spectrum. Despite established diagnostic criteria, formal diagnosis can be challenging and the protracted diagnostic journey and uncertainty about longer-term prognosis cause considerable distress to patients and caregivers. PLS patients are invariably excluded from ALS clinical trials, while PLS pharmacological trials are lacking. There remains an unmet need for diagnostic biomarkers for upper motor neuron predominant conditions and prognostic indicators regarding prognosis, survival, and risk of conversion to ALS. Validated biomarkers will not only have implications for individualized patient care but also serve as outcome measures in pharmaceutical trials. Given the paucity of post-mortem studies in PLS, novel pathological insights are generally inferred from state-of-the-art imaging studies. Computational neuroimaging has already contributed significantly to the characterization of PLS-associated pathology in vivo and has underscored the role of neuro-inflammation, the presence of extra-motor changes, and confirmed pathological patterns similar to ALS. This systematic review assesses the current state of PLS research across clinical, neuroimaging and neuropathological domains from a combined clinical and academic perspective. We discuss patterns of pathological overlap with other ALS phenotypes, examine if the biological processes of PLS warrant therapeutic strategies distinct from ALS, and evaluate the evidence that classes PLS as a distinct clinico-pathological entity.
Collapse
Affiliation(s)
- Eoin Finegan
- a Computational Neuroimaging Group, Academic Unit of Neurology , Biomedical Sciences Institute, Trinity College , Dublin , Ireland
| | - Rangariroyashe H Chipika
- a Computational Neuroimaging Group, Academic Unit of Neurology , Biomedical Sciences Institute, Trinity College , Dublin , Ireland
| | - Stacey Li Hi Shing
- a Computational Neuroimaging Group, Academic Unit of Neurology , Biomedical Sciences Institute, Trinity College , Dublin , Ireland
| | - Orla Hardiman
- a Computational Neuroimaging Group, Academic Unit of Neurology , Biomedical Sciences Institute, Trinity College , Dublin , Ireland
| | - Peter Bede
- a Computational Neuroimaging Group, Academic Unit of Neurology , Biomedical Sciences Institute, Trinity College , Dublin , Ireland
| |
Collapse
|