1
|
Theme 2 Genetics and Genomics. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:105-121. [PMID: 39508667 DOI: 10.1080/21678421.2024.2403299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
|
2
|
Wang Y, Ju R, Jiang J, Mao L, Li X, Deng M. Concomitant presence of a novel ARPP21 variant and CNVs in Chinese familial amyotrophic lateral sclerosis-frontotemporal dementia patients. Neurol Sci 2024:10.1007/s10072-024-07759-3. [PMID: 39271636 DOI: 10.1007/s10072-024-07759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder marked by the degeneration of motor neurons and progressive muscle weakness. Heredity plays an important part in the pathogenesis of ALS. Recently, with the emergence of the oligogenic pathogenic mechanism in ALS and the ongoing discovery of new mutated genes and genomic variants, there is an emerging need for larger-scale and more comprehensive genetic screenings in higher resolution. In this study, we performed whole-genome sequencing (WGS) on 34 familial ALS probands lacking the most common disease-causing mutations to explore the genetic landscape of Chinese ALS patients further. Among them, we identified a novel ARPP21 c.1231G > A (p.Glu411Lys) variant and two copy number variations (CNVs) affecting the PFN1 and RBCK1 genes in a patient with ALS-frontotemporal dementia (FTD). This marks the first report of an ARPP21 variant in Chinese ALS-FTD patients, providing fresh evidence for the association between ARPP21 and ALS. Our findings also underscore the potential role of CNVs in ALS-FTD, suggesting that the cumulative effect of multiple rare variants may contribute to disease onset. Furthermore, compared to the averages in our cohort and the reported Chinese ALS population, this patient displayed a shorter survival time and more rapid disease progression, suggesting the possibility of an oligogenic mechanism in disease pathogenesis. Further research will contribute to a deeper understanding of the rare mutations and their interactions, thus advancing our understanding of the genetic mechanisms underlying ALS and ALS-FTD.
Collapse
Affiliation(s)
- Yiying Wang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Runqing Ju
- The Affiliated High School of Peking University Dalton Academy, Beijing, 100190, China
| | - Jingsi Jiang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Le Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaogang Li
- Department of Neurology, Peking University Third Hospital, Beijing, 100191, China
| | - Min Deng
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
3
|
Naruse H, Ishiura H, Esaki K, Mitsui J, Satake W, Greimel P, Shingai N, Machino Y, Kokubo Y, Hamaguchi H, Oda T, Ikkaku T, Yokota I, Takahashi Y, Suzuki Y, Matsukawa T, Goto J, Koh K, Takiyama Y, Morishita S, Yoshikawa T, Tsuji S, Toda T. SPTLC2 variants are associated with early-onset ALS and FTD due to aberrant sphingolipid synthesis. Ann Clin Transl Neurol 2024; 11:946-957. [PMID: 38316966 PMCID: PMC11021611 DOI: 10.1002/acn3.52013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/02/2024] [Accepted: 01/20/2024] [Indexed: 02/07/2024] Open
Abstract
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is a devastating, incurable neurodegenerative disease. A subset of ALS patients manifests with early-onset and complex clinical phenotypes. We aimed to elucidate the genetic basis of these cases to enhance our understanding of disease etiology and facilitate the development of targeted therapies. METHODS Our research commenced with an in-depth genetic and biochemical investigation of two specific families, each with a member diagnosed with early-onset ALS (onset age of <40 years). This involved whole-exome sequencing, trio analysis, protein structure analysis, and sphingolipid measurements. Subsequently, we expanded our analysis to 62 probands with early-onset ALS and further included 440 patients with adult-onset ALS and 1163 healthy controls to assess the prevalence of identified genetic variants. RESULTS We identified heterozygous variants in the serine palmitoyltransferase long chain base subunit 2 (SPTLC2) gene in patients with early-onset ALS. These variants, located in a region closely adjacent to ORMDL3, bear similarities to SPTLC1 variants previously implicated in early-onset ALS. Patients with ALS carrying these SPTLC2 variants displayed elevated plasma ceramide levels, indicative of increased serine palmitoyltransferase (SPT) activity leading to sphingolipid overproduction. INTERPRETATION Our study revealed novel SPTLC2 variants in patients with early-onset ALS exhibiting frontotemporal dementia. The combination of genetic evidence and the observed elevation in plasma ceramide levels establishes a crucial link between dysregulated sphingolipid metabolism and ALS pathogenesis. These findings expand our understanding of ALS's genetic diversity and highlight the distinct roles of gene defects within SPT subunits in its development.
Collapse
Affiliation(s)
- Hiroya Naruse
- Department of Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Precision Medicine Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of NeurologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Kayoko Esaki
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life SciencesSojo UniversityKumamotoJapan
| | - Jun Mitsui
- Department of Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Precision Medicine Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Wataru Satake
- Department of Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Peter Greimel
- Laboratory for Cell Function Dynamics, RIKEN Centre for Brain SciencesWakoSaitamaJapan
| | - Nanoka Shingai
- Division of Applied Life Science, Graduate School of EngineeringSojo UniversityKumamotoJapan
| | - Yuka Machino
- Department of NeurologyNational Hospital Organization Mie National HospitalTsuMieJapan
| | - Yasumasa Kokubo
- Kii ALS/PDC Research Center, Graduate School of Regional Innovation StudiesMie UniversityTsuMieJapan
| | | | - Tetsuya Oda
- Department of NeurologyKita‐Harima Medical CenterOnoHyogoJapan
| | - Tomoko Ikkaku
- Division of NeurologyKobe University Graduate School of MedicineKobeHyogoJapan
- Department of NeurologyHyogo Prefectural Rehabilitation Central HospitalKobeHyogoJapan
| | - Ichiro Yokota
- Division of NeurologyKobe University Graduate School of MedicineKobeHyogoJapan
- Department of NeurologyNational Hospital Organization Hyogo‐Chuo National HospitalSandaHyogoJapan
| | - Yuji Takahashi
- Department of NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Yuta Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoChibaJapan
| | - Takashi Matsukawa
- Department of Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Jun Goto
- Department of NeurologyInternational University of Health and Welfare Ichikawa HospitalChibaJapan
| | - Kishin Koh
- Department of Neurology, Graduate School of Medical SciencesUniversity of YamanashiYamanashiJapan
- Department of NeurologyYumura Onsen HospitalYamanashiJapan
| | - Yoshihisa Takiyama
- Department of Neurology, Graduate School of Medical SciencesUniversity of YamanashiYamanashiJapan
- Department of NeurologyFuefuki Central HospitalYamanashiJapan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoChibaJapan
| | - Takeo Yoshikawa
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain ScienceWakoSaitamaJapan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Institute of Medical GenomicsInternational University of Health and WelfareChibaJapan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
4
|
Li C, Lin J, Jiang Q, Yang T, Xiao Y, Huang J, Hou Y, Wei Q, Cui Y, Wang S, Zheng X, Ou R, Liu K, Chen X, Song W, Zhao B, Shang H. Genetic Modifiers of Age at Onset for Amyotrophic Lateral Sclerosis: A Genome-Wide Association Study. Ann Neurol 2023; 94:933-941. [PMID: 37528491 DOI: 10.1002/ana.26752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVE Age at onset (AAO) is an essential clinical feature associated with disease progression and mortality in amyotrophic lateral sclerosis (ALS). Identification of genetic variants and environmental risk factors influencing AAO of ALS could help better understand the disease's biological mechanism and provide clinical guidance. However, most genetic studies focused on the risk of ALS, while the genetic background of AAO is less explored. This study aimed to identify genetic and environmental determinants for AAO of ALS. METHODS We performed a genome-wide association analysis using a Cox proportional hazards model on AAO of ALS in 10,068 patients. We further conducted colocalization analysis and in-vitro functional exploration for the target variants, as well as Mendelian randomization analysis to identify risk factors influencing AAO of ALS. RESULTS The total heritability of AAO of ALS was ~0.16 (standard error [SE] = 0.03). One novel locus rs2046243 (CTIF) was significantly associated with earlier AAO by ~1.29 years (p = 1.68E-08, beta = 0.10, SE = 0.02). Functional exploration suggested this variant was associated with increased expression of CTIF in multiple tissues including the brain. Colocalization analysis detected a colocalization signal at the locus between AAO of ALS and expression of CTIF. Causal inference indicated higher education level was associated with later AAO. INTERPRETATION These findings improve the current knowledge of the genetic and environmental etiology of AAO of ALS, and provide a novel target CTIF for further research on ALS pathogenesis and potential therapeutic options to delay the disease onset. ANN NEUROL 2023;94:933-941.
Collapse
Affiliation(s)
- Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Qirui Jiang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Tianmi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Xiao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Jingxuan Huang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Yanbing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Yiyuan Cui
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Shichan Wang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoting Zheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Kuncheng Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Xueping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Song
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Bi Zhao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Li C, Wei Q, Hou Y, Lin J, Ou R, Zhang L, Jiang Q, Xiao Y, Liu K, Chen X, Yang T, Song W, Zhao B, Wu Y, Shang H. Genome-wide analyses identify NEAT1 as genetic modifier of age at onset of amyotrophic lateral sclerosis. Mol Neurodegener 2023; 18:77. [PMID: 37872557 PMCID: PMC10594666 DOI: 10.1186/s13024-023-00669-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Patients with amyotrophic lateral sclerosis (ALS) demonstrate great heterogeneity in the age at onset (AAO), which is closely related to the course of disease. However, most genetic studies focused on the risk of ALS, while the genetic background underlying AAO of ALS is still unknown. METHODS To identify genetic determinants influencing AAO of ALS, we performed genome-wide association analysis using a Cox proportional hazards model in 2,841 patients with ALS (Ndiscovery = 2,272, Nreplication = 569) in the Chinese population. We further conducted colocalization analysis using public cis-eQTL dataset, and Mendelian randomization analysis to identify risk factors for AAO of ALS. Finally, functional experiments including dual-luciferase reporter assay and RT-qPCR were performed to explore the regulatory effect of the target variant. RESULTS The total heritability of AAO of ALS was ~ 0.24. One novel locus rs10128627 (FRMD8) was significantly associated with earlier AAO by ~ 3.15 years (P = 1.54E-08, beta = 0.31, SE = 0.05). This locus was cis-eQTL of NEAT1 in multiple brain tissues and blood. Colocalization analysis detected association signals at this locus between AAO of ALS and expression of NEAT1. Furthermore, functional exploration supported the variant rs10128627 was associated with upregulated expression of NEAT1 in cell models and patients with ALS. Causal inference suggested higher total cholesterol, low-density lipoprotein, and eosinophil were nominally associated with earlier AAO of ALS, while monocyte might delay the AAO. CONCLUSIONS Collective evidence from genetic, bioinformatic, and functional results suggested NEAT1 as a key player in the disease progression of ALS. These findings improve the current understanding of the genetic role in AAO of ALS, and provide a novel target for further research on the pathogenesis and therapeutic options to delay the disease onset.
Collapse
Affiliation(s)
- Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, National Clinical Research Center for Geriatric, Sichuan University, Chengdu, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, National Clinical Research Center for Geriatric, Sichuan University, Chengdu, China
| | - Yanbing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, National Clinical Research Center for Geriatric, Sichuan University, Chengdu, China
| | - Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, National Clinical Research Center for Geriatric, Sichuan University, Chengdu, China
| | - Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, National Clinical Research Center for Geriatric, Sichuan University, Chengdu, China
| | - Lingyu Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, National Clinical Research Center for Geriatric, Sichuan University, Chengdu, China
| | - Qirui Jiang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, National Clinical Research Center for Geriatric, Sichuan University, Chengdu, China
| | - Yi Xiao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, National Clinical Research Center for Geriatric, Sichuan University, Chengdu, China
| | - Kuncheng Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, National Clinical Research Center for Geriatric, Sichuan University, Chengdu, China
| | - Xueping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, National Clinical Research Center for Geriatric, Sichuan University, Chengdu, China
| | - TianMi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, National Clinical Research Center for Geriatric, Sichuan University, Chengdu, China
| | - Wei Song
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, National Clinical Research Center for Geriatric, Sichuan University, Chengdu, China
| | - Bi Zhao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, National Clinical Research Center for Geriatric, Sichuan University, Chengdu, China
| | - Ying Wu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, National Clinical Research Center for Geriatric, Sichuan University, Chengdu, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, National Clinical Research Center for Geriatric, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Kawamoto N, Hamada Y, Kobayashi S, Naruse H, Ishiura H, Matsukawa T, Mitsui J, Tsuji S, Sonoo M, Toda T. Noncanonical splice-site variant in peripheral myelin protein 22 gene (PMP22) in a patient with hereditary neuropathy with liability to pressure palsies. J Peripher Nerv Syst 2023; 28:513-517. [PMID: 37170477 DOI: 10.1111/jns.12558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
AIM Hereditary neuropathy with liability to pressure palsies (HNPP) is a peripheral neuropathy with autosomal dominant inheritance. Diagnosis can be made from the characteristic abnormalities determined by nerve conduction studies (NCS), including subclinical deficits at physiological compression sites. Heterozygous deletion of the chromosome 17p11.2-p12 region including the peripheral myelin protein 22 gene (PMP22) is the cause in the majority of cases. However, the loss of function of PMP22 due to frameshift-causing insertion/deletion, missense, nonsense, or splice-site disrupting variants cause HNPP in some patients. We report a case of a patient diagnosed with HNPP on the basis of clinical features and the results of NCS. No deletions of PMP22 were detected by fluorescence in situ hybridization. METHODS We performed direct nucleotide sequence analysis and identified a heterozygous variant, c.78 + 3G > T, in PMP22. Since this variant is located outside the canonical splice site at the exon 2-intron 2 junction, we investigated whether the variant causes aberrant splicing and leads to the skipping of exon 2 of PMP22 by in vitro minigene splicing assay. RESULTS We demonstrated that the c.78 + 3G > T variant causes the skipping of exon 2 and leads to loss of function of the mutant allele. CONCLUSION Searching for sequence variants located outside the canonical splice sites should also be considered even when deletion of PMP22 is not found in a patient with a clinical diagnosis suggesting HNPP.
Collapse
Affiliation(s)
- Norifumi Kawamoto
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuichi Hamada
- Department of Neurology, Teikyo University School of Medicine, Tokyo, Japan
| | - Shunsuke Kobayashi
- Department of Neurology, Teikyo University School of Medicine, Tokyo, Japan
| | - Hiroya Naruse
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takashi Matsukawa
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoji Tsuji
- Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| | - Masahiro Sonoo
- Department of Neurology, Teikyo University School of Medicine, Tokyo, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Naruse H, Okubo S, Sudo A, Mitsui J, Mikata T, Ishiura H, Morishita S, Tsuji S, Toda T. Clinical features of a family with late-onset distal hereditary motor neuropathy harboring p.Pro39Leu variant of HSPB1. J Peripher Nerv Syst 2023; 28:518-521. [PMID: 37249095 DOI: 10.1111/jns.12567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND AND AIMS Pathogenic variants of HSPB1, the gene encoding the small heat shock protein 27, have been reported to cause autosomal dominant distal hereditary motor neuropathy (dHMN) type II and autosomal dominant Charcot-Marie-Tooth (CMT) disease with minimal sensory involvement (CMT2F). This study aimed to describe the clinical features of patients in a family with late-onset dHMN carrying the Pro39Leu variant of HSPB1. METHODS Whole-exome sequence analysis identified a heterozygous pathogenic variant (Pro39Leu) of HSPB1 in the proband. The presence of the HSPB1 Pro39Leu variant in two affected individuals was confirmed using direct nucleotide sequence analysis. RESULTS Both patients exhibited distal muscle weakness with lower extremity predominance and no obvious sensory deficits, leading to a clinical diagnosis of late-onset dHMN. Nerve conduction studies (NCSs) revealed a subclinical complication of sensory disturbance in one of the patients. The clinical and electrophysiological findings of patients with the HSPB1 Pro39Leu variant in this study and previous reports are summarized. INTERPRETATION This study suggests that the clinical spectrum of patients carrying HSPB1 Pro39Leu variants, especially the disease onset, might be broader than expected, and HSPB1 variants should be considered in patients diagnosed with late-onset dHMN. Furthermore, patients with dHMN may have concomitant sensory deficits that should be evaluated using NCSs.
Collapse
Affiliation(s)
- Hiroya Naruse
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - So Okubo
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsushi Sudo
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Mikata
- Department of Neurology, National Hospital Organization Shimoshizu National Hospital, Yotsukaido, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Shoji Tsuji
- Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Li D, Johmura Y, Morimoto S, Doi M, Nakanishi K, Ozawa M, Tsunekawa Y, Inoue-Yamauchi A, Naruse H, Matsukawa T, Takeshita Y, Suzuki N, Aoki M, Nishiyama A, Zeng X, Konishi C, Suzuki N, Nishiyama A, Harris AS, Morita M, Yamaguchi K, Furukawa Y, Nakai K, Tsuji S, Yamazaki S, Yamanashi Y, Shimada S, Okada T, Okano H, Toda T, Nakanishi M. LONRF2 is a protein quality control ubiquitin ligase whose deficiency causes late-onset neurological deficits. NATURE AGING 2023; 3:1001-1019. [PMID: 37474791 DOI: 10.1038/s43587-023-00464-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 06/29/2023] [Indexed: 07/22/2023]
Abstract
Protein misfolding is a major factor of neurodegenerative diseases. Post-mitotic neurons are highly susceptible to protein aggregates that are not diluted by mitosis. Therefore, post-mitotic cells may have a specific protein quality control system. Here, we show that LONRF2 is a bona fide protein quality control ubiquitin ligase induced in post-mitotic senescent cells. Under unperturbed conditions, LONRF2 is predominantly expressed in neurons. LONRF2 binds and ubiquitylates abnormally structured TDP-43 and hnRNP M1 and artificially misfolded proteins. Lonrf2-/- mice exhibit age-dependent TDP-43-mediated motor neuron (MN) degeneration and cerebellar ataxia. Mouse induced pluripotent stem cell-derived MNs lacking LONRF2 showed reduced survival, shortening of neurites and accumulation of pTDP-43 and G3BP1 after long-term culture. The shortening of neurites in MNs from patients with amyotrophic lateral sclerosis is rescued by ectopic expression of LONRF2. Our findings reveal that LONRF2 is a protein quality control ligase whose loss may contribute to MN degeneration and motor deficits.
Collapse
Affiliation(s)
- Dan Li
- Division of Cancer Cell Biology, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Johmura
- Division of Cancer Cell Biology, The University of Tokyo, Tokyo, Japan.
- Division of Cancer and Senescence Biology, Cancer Research Institute, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan.
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Miyuki Doi
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiko Nakanishi
- Department of Pediatrics, Central Hospital, and Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Manabu Ozawa
- Laboratory of Reproductive Systems Biology, The University of Tokyo, Tokyo, Japan
| | - Yuji Tsunekawa
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The University of Tokyo, Tokyo, Japan
| | | | - Hiroya Naruse
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Matsukawa
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukio Takeshita
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ayumi Nishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Xin Zeng
- Laboratory of Functional Analysis in silico, Human Genome Center, The University of Tokyo, Tokyo, Japan
| | - Chieko Konishi
- Division of Cancer Cell Biology, The University of Tokyo, Tokyo, Japan
| | - Narumi Suzuki
- Division of Cancer Cell Biology, The University of Tokyo, Tokyo, Japan
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, The University of Tokyo, Tokyo, Japan
| | | | - Mariko Morita
- Division of Clinical Genome Research, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, The University of Tokyo, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, The University of Tokyo, Tokyo, Japan
| | - Kenta Nakai
- Laboratory of Functional Analysis in silico, Human Genome Center, The University of Tokyo, Tokyo, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Yamazaki
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuji Yamanashi
- Division of Genetics, The University of Tokyo, Tokyo, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The University of Tokyo, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
9
|
Dong S, Yin X, Wang K, Yang W, Li J, Wang Y, Zhou Y, Liu X, Wang J, Chen X. Presence of Rare Variants is Associated with Poorer Survival in Chinese Patients with Amyotrophic Lateral Sclerosis. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:167-181. [PMID: 37197644 PMCID: PMC10110782 DOI: 10.1007/s43657-022-00093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 05/19/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with phenotypic and genetic heterogeneity. Recent studies have suggested an oligogenic basis of ALS, in which the co-occurrence of two or more genetic variants has additive or synergistic deleterious effects. To assess the contribution of possible oligogenic inheritance, we profiled a panel of 43 relevant genes in 57 sporadic ALS (sALS) patients and eight familial ALS (fALS) patients from five pedigrees in east China. We filtered rare variants using the combination of the Exome Aggregation Consortium, the 1000 Genomes and the HuaBiao Project. We analyzed patients with multiple rare variants in 43 known ALS causative genes and the genotype-phenotype correlation. Overall, we detected 30 rare variants in 16 different genes and found that 16 of the sALS patients and all the fALS patients examined harbored at least one variant in the investigated genes, among which two sALS and four fALS patients harbored two or more variants. Of note, the sALS patients with one or more variants in ALS genes had worse survival than the patients with no variants. Typically, in one fALS pedigree with three variants, the family member with three variants (Superoxide dismutase 1 (SOD1) p.V48A, Optineurin (OPTN) p.A433V and TANK binding kinase 1 (TBK1) p.R573H) exhibited much more severe disease phenotype than the member carrying one variant (TBK1 p.R573H). Our findings suggest that rare variants could exert a negative prognostic effect, thereby supporting the oligogenic inheritance of ALS.
Collapse
Affiliation(s)
- Siqi Dong
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, 200040 China
- National Center for Neurological Disorders, Shanghai, 200040 China
| | - Xianhong Yin
- Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Human Phenome Institute, Fudan University, Shanghai, 200433 China
| | - Kun Wang
- Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Wenbo Yang
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, 200040 China
- National Center for Neurological Disorders, Shanghai, 200040 China
| | - Jiatong Li
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, 200040 China
- National Center for Neurological Disorders, Shanghai, 200040 China
| | - Yi Wang
- Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Human Phenome Institute, Fudan University, Shanghai, 200433 China
| | - Yanni Zhou
- Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Xiaoni Liu
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, 200040 China
- National Center for Neurological Disorders, Shanghai, 200040 China
| | - Jiucun Wang
- Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Human Phenome Institute, Fudan University, Shanghai, 200433 China
| | - Xiangjun Chen
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, 200040 China
- National Center for Neurological Disorders, Shanghai, 200040 China
- Human Phenome Institute, Fudan University, Shanghai, 200433 China
| |
Collapse
|
10
|
Suzuki N, Nishiyama A, Warita H, Aoki M. Genetics of amyotrophic lateral sclerosis: seeking therapeutic targets in the era of gene therapy. J Hum Genet 2023; 68:131-152. [PMID: 35691950 PMCID: PMC9968660 DOI: 10.1038/s10038-022-01055-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an intractable disease that causes respiratory failure leading to mortality. The main locus of ALS is motor neurons. The success of antisense oligonucleotide (ASO) therapy in spinal muscular atrophy (SMA), a motor neuron disease, has triggered a paradigm shift in developing ALS therapies. The causative genes of ALS and disease-modifying genes, including those of sporadic ALS, have been identified one after another. Thus, the freedom of target choice for gene therapy has expanded by ASO strategy, leading to new avenues for therapeutic development. Tofersen for superoxide dismutase 1 (SOD1) was a pioneer in developing ASO for ALS. Improving protocols and devising early interventions for the disease are vital. In this review, we updated the knowledge of causative genes in ALS. We summarized the genetic mutations identified in familial ALS and their clinical features, focusing on SOD1, fused in sarcoma (FUS), and transacting response DNA-binding protein. The frequency of the C9ORF72 mutation is low in Japan, unlike in Europe and the United States, while SOD1 and FUS are more common, indicating that the target mutations for gene therapy vary by ethnicity. A genome-wide association study has revealed disease-modifying genes, which could be the novel target of gene therapy. The current status and prospects of gene therapy development were discussed, including ethical issues. Furthermore, we discussed the potential of axonal pathology as new therapeutic targets of ALS from the perspective of early intervention, including intra-axonal transcription factors, neuromuscular junction disconnection, dysregulated local translation, abnormal protein degradation, mitochondrial pathology, impaired axonal transport, aberrant cytoskeleton, and axon branching. We simultaneously discuss important pathological states of cell bodies: persistent stress granules, disrupted nucleocytoplasmic transport, and cryptic splicing. The development of gene therapy based on the elucidation of disease-modifying genes and early intervention in molecular pathology is expected to become an important therapeutic strategy in ALS.
Collapse
Affiliation(s)
- Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan.
| | - Ayumi Nishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan.
| |
Collapse
|
11
|
Tang X, Yuan Y, Liu Z, Bu Y, Tang L, Zhao Q, Jiao B, Guo J, Shen L, Jiang H, Tang B, Wang J. Genetic and clinical analysis of TP73 gene in amyotrophic lateral sclerosis patients from Chinese mainland. Front Aging Neurosci 2023; 15:1114022. [PMID: 36845660 PMCID: PMC9947132 DOI: 10.3389/fnagi.2023.1114022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction TP73 was recently identified as a novel causative gene for amyotrophic lateral sclerosis (ALS). We aimed to determine the contribution of variations in TP73 in the Chinese ALS population and to further explore the genotype-phenotype correlations. Methods We screened rare, putative pathogenic TP73 mutations in a large Chinese ALS cohort and performed association analysis of both rare and common TP73 variations between cases and controls. Results Of the 985 ALS patients studied, six rare, heterozygous putative pathogenic variants in TP73 were identified among six unrelated sALS patients. Exon 14 of TP73 might be a mutant hotspot in our cohort. Patients with ALS with only rare, putative pathogenic TP73 mutations exhibited a characteristic clinical profile. Patients harboring multiple mutations in TP73 and other ALS-related genes displayed a significantly earlier onset of ALS. Association analysis revealed that rare TP73 variants in the untranslated regions (UTRs) were enriched among ALS patients; meanwhile, two common variants in the exon-intron boundary were discovered to be associated with ALS. Discussion We demonstrate that TP73 variations also have contributed to ALS in the Asian population and broaden the genotypic and phenotypic spectrum of TP73 variants in the ALS-frontotemporal dementia (FTD) spectrum. Furthermore, our findings first suggest that TP73 is not only a causative gene, but also exerts a disease-modifying effect. These results may contribute to a better understanding of the molecular mechanism of ALS.
Collapse
Affiliation(s)
- Xuxiong Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanchun Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhen Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yue Bu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Linxin Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianqian Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China,School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China,*Correspondence: Junling Wang, ✉
| |
Collapse
|
12
|
Vázquez-Costa JF, Borrego-Hernández D, Paradas C, Gómez-Caravaca MT, Rojas-Garcia R, Varona L, Povedano M, García-Sobrino T, Jericó Pascual I, Gutiérrez A, Riancho J, Turon-Sans J, Assialioui A, Pérez-Tur J, Sevilla T, Esteban Pérez J, García-Redondo A. Characterizing SOD1 mutations in Spain. The impact of genotype, age, and sex in the natural history of the disease. Eur J Neurol 2022; 30:861-871. [PMID: 36484631 DOI: 10.1111/ene.15661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/16/2022] [Accepted: 11/04/2022] [Indexed: 02/17/2024]
Abstract
INTRODUCTION The aim of this study is to describe the frequency and distribution of SOD1 mutations in Spain, and to explore those factors contributing to their phenotype and prognosis. METHODS Seventeen centres shared data on amyotrophic lateral sclerosis (ALS) patients carrying pathogenic or likely pathogenic SOD1 variants. Multivariable models were used to explore prognostic modifiers. RESULTS In 144 patients (from 88 families), 29 mutations (26 missense, 2 deletion/insertion and 1 frameshift) were found in all 5 exons of SOD1, including 7 novel mutations. 2.6% of ALS patients (including 17.7% familial and 1.3% sporadic) were estimated to carry SOD1 mutations. Its frequency varied considerably between regions, due to founder events. The most frequent mutation was p.Gly38Arg (n = 58), followed by p.Glu22Gly (n = 11), p.Asn140His (n = 10), and the novel p.Leu120Val (n = 10). Most mutations were characterized by a protracted course, and some of them by atypical phenotypes. Older age of onset was independently associated with faster disease progression (exp(Estimate) = 1.03 [0.01, 0.05], p = 0.001) and poorer survival (HR = 1.05 [1.01, 1.08], p = 0.007), regardless of the underlying mutation. Female sex was independently associated to faster disease progression (exp(Estimate) = 2.1 [1.23, 3.65], p = 0.012) in patients carrying the p.Gly38Arg mutation, resulting in shorter survival compared with male carriers (236 vs 301 months). CONCLUSIONS These data may help to evaluate the efficacy of SOD1 targeted treatments, and to expand the number of patients that might benefit from these treatments.
Collapse
Affiliation(s)
- Juan F Vázquez-Costa
- Neuromuscular Unit, Hospital Universitario y Politécnico la Fe, IIS La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
- Department of Medicine, Universitat de València, Valencia, Spain
| | - Daniel Borrego-Hernández
- Neurology Department, Hospital Universitario 12 de Octubre and Instituto de Investigación Biomédica Hospital 12 de Octubre, Madrid, Spain
| | - Carmen Paradas
- Hospital Universitario Virgen del Rocío and Instituto Biomedicina de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Spain
| | | | - Ricardo Rojas-Garcia
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
- Motor Neuron Diseases Clinic, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luis Varona
- Department of Neurology, Hospital Universitario de Basurto, Bilbao, Spain
| | - Mónica Povedano
- Department of Neurology, Hospital de Bellvitge and Idibell, Barcelona, Spain
| | - Tania García-Sobrino
- Department of Neurology, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela (A Coruña), Spain
| | | | - Antonio Gutiérrez
- Complejo Hospitalario Universitario Insular-Materno-Infantil de Gran Canaria, Gran Canaria, Spain
| | - Javier Riancho
- Hospital Sierrallana-IDIVAL. Departamento de Medicina y Psiquiatría. Universidad Cantabria. Cantabria, Spain
| | - Janina Turon-Sans
- Motor Neuron Diseases Clinic, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Jordi Pérez-Tur
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Spain
- Institut de Biomedicina de València-CSIC. CIBERNED. Unidad Mixta de Neurología y Genética. IIS La Fe. Valencia, Spain
| | - Teresa Sevilla
- Neuromuscular Unit, Hospital Universitario y Politécnico la Fe, IIS La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
- Department of Medicine, Universitat de València, Valencia, Spain
| | - Jesús Esteban Pérez
- Neurology Department, Hospital Universitario 12 de Octubre and Instituto de Investigación Biomédica Hospital 12 de Octubre, Madrid, Spain
| | - Alberto García-Redondo
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
- Neurology Department, Hospital Universitario 12 de Octubre and Instituto de Investigación Biomédica Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
13
|
Kobayashi R, Naruse H, Kawakatsu S, Iseki C, Suzuki Y, Koyama S, Morioka D, Ishiura H, Mitsui J, Ohta Y, Tsuji S, Toda T, Otani K. Valosin-containing protein Asp395Gly mutation in a patient with frontotemporal dementia: a case report. BMC Neurol 2022; 22:406. [PMID: 36329418 PMCID: PMC9632072 DOI: 10.1186/s12883-022-02951-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Background Variants in the valosin-containing protein (VCP) gene were identified as one of the causes for inclusion body myopathy associated with Paget disease of the bone and frontotemporal dementia (FTD). Previously identified pathogenic variants in VCP are associated with frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) pathologically, but p.Asp395Gly VCP was recently reported to cause familial FTD with tauopathy characterized by neurofibrillary tau tangles (NFT) and not FTLD-TDP. We describe the clinical and genetic findings of a patient with p.Asp395Gly valosin-containing protein (VCP), who was diagnosed with FTD without a family history and in the absence of muscle or bone disease comorbidity. Case presentation The patient was a 62-year-old man, who developed atypical depression at the age of 37 years. Subsequently, he presented with self-centered behavior at the age of 45 years. The self-centered behavior intensified from around the age of 50 years, which was accompanied by the development of executive dysfunction; therefore, he visited our hospital at 52 years of age. Magnetic resonance imaging revealed bilateral frontal lobe atrophy. Brain perfusion single-photon emission computed tomography revealed bilateral frontal lobe hypoperfusion. The patient fulfilled the diagnostic criteria for behavioral variant of FTD. Ten years after the diagnosis, computed tomography of the trunk and limbs, muscle biopsy, and bone scintigraphy revealed the absence of concomitant muscle and bone disease. The concentrations of cerebrospinal fluid (CSF) total tau and phosphorylated tau proteins were 389 pg/mL and 53.2 pg/mL (cut-off: 50 pg/mL), respectively. Genetic analyses were performed using the whole-exome and Sanger sequencing methods. We identified p.Asp395Gly VCP in this patient with pure FTD. Conclusions p.Asp395Gly VCP was identified in a patient with likely sporadic FTD without concomitant muscle and bone disease. The CSF analysis suggested that our patient may have FTD due to NFT accumulation similar to the familial FTD patients with p.Asp395Gly VCP recently reported. Our findings suggest that a genetic search for the pathogenic variants of VCP should be considered not only for familial FTD, but also for patients with sporadic FTD, even in the absence of comorbid muscle or bone disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-022-02951-4.
Collapse
Affiliation(s)
- Ryota Kobayashi
- Department of Psychiatry, Yamagata University School of Medicine, 2-2-2 Iidanishi, Yamagata, 990-9585, Japan.
| | - Hiroya Naruse
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinobu Kawakatsu
- Department of Neuropsychiatry, Aizu Medical Center, Fukushima Medical University, Aizuwakamatsu, Japan
| | - Chifumi Iseki
- Department of Neurology, Hematology, Metabolism, Endocrinology, and Diabetology, Yamagata University School of Medicine, Yamagata, Japan
| | - Yuya Suzuki
- Department of Neurology, Hematology, Metabolism, Endocrinology, and Diabetology, Yamagata University School of Medicine, Yamagata, Japan
| | - Shingo Koyama
- Department of Neurology, Hematology, Metabolism, Endocrinology, and Diabetology, Yamagata University School of Medicine, Yamagata, Japan
| | - Daichi Morioka
- Department of Psychiatry, Yamagata University School of Medicine, 2-2-2 Iidanishi, Yamagata, 990-9585, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Ohta
- Department of Neurology, Hematology, Metabolism, Endocrinology, and Diabetology, Yamagata University School of Medicine, Yamagata, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koichi Otani
- Department of Psychiatry, Yamagata University School of Medicine, 2-2-2 Iidanishi, Yamagata, 990-9585, Japan
| |
Collapse
|
14
|
Riva N, Pozzi L, Russo T, Pipitone GB, Schito P, Domi T, Agosta F, Quattrini A, Carrera P, Filippi M. NEK1 Variants in a Cohort of Italian Patients With Amyotrophic Lateral Sclerosis. Front Neurosci 2022; 16:833051. [PMID: 35495032 PMCID: PMC9048593 DOI: 10.3389/fnins.2022.833051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction In the last few years, different studies highlighted a significant enrichment of NEK1 loss of function (LoF) variants in amyotrophic lateral sclerosis (ALS), and an additional role for the p.Arg261His missense variant in the disease susceptibility. Several other missense variants have been described so far, whose pathogenic relevance remains however unclear since many of them have been reported in both patients and controls. This study aimed to investigate the presence of NEK1 variants and their correlation with phenotype in a cohort of Italian patients with ALS. Methods We sequenced a cohort of 350 unrelated Italian patients with ALS by next-generation sequencing (NGS) and then we analyzed the clinical features of NEK1 carriers. Results We detected 20 different NEK1 rare variants (four LoF and 16 missense) in 33 unrelated patients with sporadic ALS (sALS). The four LoF variants (two frameshift and two splice-site variants) were all novel. The p.Arg261His missense variant was enriched in the patients’ cohort (p < 0.001). Excluding this variant from counting, the difference in the frequency of NEK1 rare missense variants between patients and controls was not statistically significant. NEK1 carriers had a higher frequency of flail arm (FA) phenotype compared with the other patients of the cohort (29.2% vs. 6.4%). Nine NEK1 carriers (37.5%) also harbored variants in other ALS-related genes. Conclusion This study confirms that NEK1 LoF and p.Arg261. His missense variants are associated with ALS in an Italian ALS cohort and suggests a correlation between the presence of NEK1 variants and FA phenotype.
Collapse
Affiliation(s)
- Nilo Riva
- Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, San Raffaele Scientific Institute, Milan, Italy
- *Correspondence: Nilo Riva,
| | - Laura Pozzi
- Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy
| | - Tommaso Russo
- Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, San Raffaele Scientific Institute, Milan, Italy
| | | | - Paride Schito
- Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Teuta Domi
- Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Angelo Quattrini
- Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy
| | - Paola Carrera
- Unit of Genomics for Human Disease Diagnosis, San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neurology Unit, San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurophysiology Service, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
15
|
Feng SY, Lin H, Che CH, Huang HP, Liu CY, Zou ZY. Phenotype of VCP Mutations in Chinese Amyotrophic Lateral Sclerosis Patients. Front Neurol 2022; 13:790082. [PMID: 35197922 PMCID: PMC8858817 DOI: 10.3389/fneur.2022.790082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations in the valosin-containing protein (VCP) gene have been linked to amyotrophic lateral sclerosis (ALS) in the Caucasian populations. However, the phenotype of VCP mutations in Chinese patients with (ALS) remains unclear. Targeted next-generation sequencing covered 28 ALS-related genes including the VCP gene was undertaken to screen in a Chinese cohort of 275 sporadic ALS cases and 15 familial ALS pedigrees. An extensive literature review was performed to identify all patients with ALS carrying VCP mutations previously reported. The clinical characteristics and genetic features of ALS patients with VCP mutations were reviewed. One known p.R155C mutation in the VCP gene was detected in two siblings from a familial ALS pedigree and two sporadic individuals. In addition, the same VCP p.R155C mutation was detected in an additional patient with ALS referred in 2021. Three patients with VCP p.R155C mutation presented with muscular weakness starting from proximal extremities to distal extremities. The other patient developed a phenotype of Paget's disease of bone in addition to the progressive muscular atrophy. We reported the first VCP mutation carrier manifesting ALS with Paget's disease of bone in the Chinese population. Our findings expand the phenotypic spectrum of the VCP mutations in Chinese patients with ALS and suggest that ALS patients with VCP p.R155C mutations tend to present with relatively young onset, symmetrical involvement of proximal muscles weakness of arms or legs, and then progressed to distal muscles of limbs.
Collapse
Affiliation(s)
- Shu-Yan Feng
- Department of Neurophysiology, Henan Provincial People's Hospital, Zhengzhou, China
- Zhengzhou University People's Hospital, Zhengzhou, China
| | - Han Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chun-Hui Che
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hua-Pin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Chang-Yun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Zhang-Yu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
- *Correspondence: Zhang-Yu Zou
| |
Collapse
|
16
|
Endogenous human retrovirus-K is not increased in the affected tissues of Japanese ALS patients. Neurosci Res 2022; 178:78-82. [PMID: 35122916 DOI: 10.1016/j.neures.2022.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022]
Abstract
Activation of human endogenous retrovirus-K (HERV-K) is one of the proposed risk factors for amyotrophic lateral sclerosis (ALS). The HERV-K envelope protein has been reported to show neurotoxicity, and development of therapy with reverse transcriptase inhibitors is being investigated. On the other hand, some reports have failed to show HERV-K activation in ALS. In this study, we analyzed the expression of HERV-K mRNA in the motor cortex and spinal cord of 15 Japanese patients with sporadic ALS and 19 controls using reverse transcriptase droplet digital PCR. This revealed no significant increase of HERV-K expression in ALS-affected tissues, suggesting that the association between ALS and HERV-K remains questionable.
Collapse
|
17
|
Mansour H, Banaganapalli B, Nasser KK, Al-Aama JY, Shaik NA, Saadah OI, Elango R. Genome-Wide Association Study-Guided Exome Rare Variant Burden Analysis Identifies IL1R1 and CD3E as Potential Autoimmunity Risk Genes for Celiac Disease. Front Pediatr 2022; 10:837957. [PMID: 35237542 PMCID: PMC8882628 DOI: 10.3389/fped.2022.837957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
Celiac disease (CeD) is a multifactorial autoimmune enteropathy characterized by the overactivation of the immune system in response to dietary gluten. The molecular etiology of CeD is still not well-understood. Therefore, this study aims to identify potential candidate genes involved in CeD pathogenesis by applying multilayered system biology approaches. Initially, we identified rare coding variants shared between the affected siblings in two rare Arab CeD families by whole-exome sequencing (WES). Then we used the STRING database to construct a protein network of rare variants and genome-wide association study (GWAS) loci to explore their molecular interactions in CeD. Furthermore, the hub genes identified based on network topology parameters were subjected to a series of computational validation analyses like pathway enrichment, gene expression, knockout mouse model, and variant pathogenicity predictions. Our findings have shown the absence of rare variants showing classical Mendelian inheritance in both families. However, interactome analysis of rare WES variants and GWAS loci has identified a total of 11 hub genes. The multidimensional computational analysis of hub genes has prioritized IL1R1 for family A and CD3E for family B as potential genes. These genes were connected to CeD pathogenesis pathways of T-cell selection, cytokine signaling, and adaptive immune response. Future multi-omics studies may uncover the roles of IL1R1 and CD3E in gluten sensitivity. The present investigation lays forth a novel approach integrating next-generation sequencing (NGS) of familial cases, GWAS, and computational analysis for solving the complex genetic architecture of CeD.
Collapse
Affiliation(s)
- Haifa Mansour
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalidah Khalid Nasser
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Pediatric Gastroenterology Unit, Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jumana Yousuf Al-Aama
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor Ahmad Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Omar Ibrahim Saadah
- Pediatric Gastroenterology Unit, Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Centre of Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
18
|
Morello G, Salomone S, D’Agata V, Conforti FL, Cavallaro S. From Multi-Omics Approaches to Precision Medicine in Amyotrophic Lateral Sclerosis. Front Neurosci 2020; 14:577755. [PMID: 33192262 PMCID: PMC7661549 DOI: 10.3389/fnins.2020.577755] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating and fatal neurodegenerative disorder, caused by the degeneration of upper and lower motor neurons for which there is no truly effective cure. The lack of successful treatments can be well explained by the complex and heterogeneous nature of ALS, with patients displaying widely distinct clinical features and progression patterns, and distinct molecular mechanisms underlying the phenotypic heterogeneity. Thus, stratifying ALS patients into consistent and clinically relevant subgroups can be of great value for the development of new precision diagnostics and targeted therapeutics for ALS patients. In the last years, the use and integration of high-throughput "omics" approaches have dramatically changed our thinking about ALS, improving our understanding of the complex molecular architecture of ALS, distinguishing distinct patient subtypes and providing a rational foundation for the discovery of biomarkers and new individualized treatments. In this review, we discuss the most significant contributions of omics technologies in unraveling the biological heterogeneity of ALS, highlighting how these approaches are revealing diagnostic, prognostic and therapeutic targets for future personalized interventions.
Collapse
Affiliation(s)
- Giovanna Morello
- Institute for Research and Biomedical Innovation (IRIB), Italian National Research Council (CNR), Catania, Italy
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Velia D’Agata
- Human Anatomy and Histology, University of Catania, Catania, Italy
| | | | - Sebastiano Cavallaro
- Institute for Research and Biomedical Innovation (IRIB), Italian National Research Council (CNR), Catania, Italy
| |
Collapse
|
19
|
Zucchi E, Bonetto V, Sorarù G, Martinelli I, Parchi P, Liguori R, Mandrioli J. Neurofilaments in motor neuron disorders: towards promising diagnostic and prognostic biomarkers. Mol Neurodegener 2020; 15:58. [PMID: 33059698 PMCID: PMC7559190 DOI: 10.1186/s13024-020-00406-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Motor neuron diseases (MNDs) are etiologically and biologically heterogeneous diseases. The pathobiology of motor neuron degeneration is still largely unknown, and no effective therapy is available. Heterogeneity and lack of specific disease biomarkers have been appointed as leading reasons for past clinical trial failure, and biomarker discovery is pivotal in today's MND research agenda.In the last decade, neurofilaments (NFs) have emerged as promising biomarkers for the clinical assessment of neurodegeneration. NFs are scaffolding proteins with predominant structural functions contributing to the axonal cytoskeleton of myelinated axons. NFs are released in CSF and peripheral blood as a consequence of axonal degeneration, irrespective of the primary causal event. Due to the current availability of highly-sensitive automated technologies capable of precisely quantify proteins in biofluids in the femtomolar range, it is now possible to reliably measure NFs not only in CSF but also in blood.In this review, we will discuss how NFs are impacting research and clinical management in ALS and other MNDs. Besides contributing to the diagnosis at early stages by differentiating between MNDs with different clinical evolution and severity, NFs may provide a useful tool for the early enrolment of patients in clinical trials. Due to their stability across the disease, NFs convey prognostic information and, on a larger scale, help to stratify patients in homogenous groups. Shortcomings of NFs assessment in biofluids will also be discussed according to the available literature in the attempt to predict the most appropriate use of the biomarker in the MND clinic.
Collapse
Affiliation(s)
- Elisabetta Zucchi
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Bonetto
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Gianni Sorarù
- Neuromuscular Center, Department of Neurosciences, University of Padova, Padua, Italy.,Clinica Neurologica, Azienda Ospedaliera di Padova, Padua, Italy
| | - Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero Universitaria Modena, Modena, Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche, Ospedale Bellaria, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Jessica Mandrioli
- Department of Neurosciences, Azienda Ospedaliero Universitaria Modena, Modena, Italy.
| |
Collapse
|
20
|
Lowry JL, Ryan ÉB, Esengul YT, Siddique N, Siddique T. Intricacies of aetiology in intrafamilial degenerative disease. Brain Commun 2020; 2:fcaa120. [PMID: 33134917 PMCID: PMC7585693 DOI: 10.1093/braincomms/fcaa120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/23/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023] Open
Abstract
The genetic underpinnings of late-onset degenerative disease have typically been determined by screening families for the segregation of genetic variants with the disease trait in affected, but not unaffected, individuals. However, instances of intrafamilial etiological heterogeneity, where pathogenic variants in a culprit gene are not shared among all affected family members, continue to emerge and confound gene-discovery and genetic counselling efforts. Discordant intrafamilial cases lacking a mutation shared by other affected family members are described as disease phenocopies. This description often results in an over-simplified acceptance of an environmental cause of disease in the phenocopy cases, while the role of intrafamilial genetic heterogeneity, shared de novo mutations or epigenetic aberrations in such families is often ignored. On a related note, it is now evident that the same disease-associated variant can be present in individuals exhibiting clinically distinct phenotypes, thereby genetically uniting seemingly unrelated syndromes to form a spectrum of disease. Herein, we discuss the intricacies of determining complex degenerative disease aetiology and suggest alternative mechanisms of disease transmission that may account for the apparent missing heritability of disease.
Collapse
Affiliation(s)
- Jessica L Lowry
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Éanna B Ryan
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.,Northwestern University Interdepartmental Neuroscience Program, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Y Taylan Esengul
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nailah Siddique
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Teepu Siddique
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.,Northwestern University Interdepartmental Neuroscience Program, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.,Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.,Department of Pathology Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
21
|
Lattante S, Marangi G, Doronzio PN, Conte A, Bisogni G, Zollino M, Sabatelli M. High-Throughput Genetic Testing in ALS: The Challenging Path of Variant Classification Considering the ACMG Guidelines. Genes (Basel) 2020; 11:genes11101123. [PMID: 32987860 PMCID: PMC7600768 DOI: 10.3390/genes11101123] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
The development of high-throughput sequencing technologies and screening of big patient cohorts with familial and sporadic amyotrophic lateral sclerosis (ALS) led to the identification of a significant number of genetic variants, which are sometimes difficult to interpret. The American College of Medical Genetics and Genomics (ACMG) provided guidelines to help molecular geneticists and pathologists to interpret variants found in laboratory testing. We assessed the application of the ACMG criteria to ALS-related variants, combining data from literature with our experience. We analyzed a cohort of 498 ALS patients using massive parallel sequencing of ALS-associated genes and identified 280 variants with a minor allele frequency < 1%. Examining all variants using the ACMG criteria, thus considering the type of variant, inheritance, familial segregation, and possible functional studies, we classified 20 variants as “pathogenic”. In conclusion, ALS’s genetic complexity, such as oligogenic inheritance, presence of genes acting as risk factors, and reduced penetrance, needs to be considered when interpreting variants. The goal of this work is to provide helpful suggestions to geneticists and clinicians dealing with ALS.
Collapse
Affiliation(s)
- Serena Lattante
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Roma, Italy; (S.L.); (P.N.D.); (M.Z.)
- Complex Operational Unit of Medical Genetics, Department of Laboratory and Infectious Disease Sciences, A. Gemelli University Hospital Foundation IRCCS, 00168 Roma, Italy
| | - Giuseppe Marangi
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Roma, Italy; (S.L.); (P.N.D.); (M.Z.)
- Complex Operational Unit of Medical Genetics, Department of Laboratory and Infectious Disease Sciences, A. Gemelli University Hospital Foundation IRCCS, 00168 Roma, Italy
- Correspondence: ; Tel.: +39-0630154606
| | - Paolo Niccolò Doronzio
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Roma, Italy; (S.L.); (P.N.D.); (M.Z.)
- Complex Operational Unit of Medical Genetics, Department of Laboratory and Infectious Disease Sciences, A. Gemelli University Hospital Foundation IRCCS, 00168 Roma, Italy
| | - Amelia Conte
- Adult NEMO Clinical Center, Complex Operational Unit of Neurology, Department of Aging, Neurological, Orthopedic and Head-Neck Sciences, A. Gemelli University Hospital Foundation IRCCS, 00168 Roma, Italy; (A.C.); (G.B.); (M.S.)
| | - Giulia Bisogni
- Adult NEMO Clinical Center, Complex Operational Unit of Neurology, Department of Aging, Neurological, Orthopedic and Head-Neck Sciences, A. Gemelli University Hospital Foundation IRCCS, 00168 Roma, Italy; (A.C.); (G.B.); (M.S.)
| | - Marcella Zollino
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Roma, Italy; (S.L.); (P.N.D.); (M.Z.)
- Complex Operational Unit of Medical Genetics, Department of Laboratory and Infectious Disease Sciences, A. Gemelli University Hospital Foundation IRCCS, 00168 Roma, Italy
| | - Mario Sabatelli
- Adult NEMO Clinical Center, Complex Operational Unit of Neurology, Department of Aging, Neurological, Orthopedic and Head-Neck Sciences, A. Gemelli University Hospital Foundation IRCCS, 00168 Roma, Italy; (A.C.); (G.B.); (M.S.)
- Section of Neurology, Department of Neuroscience, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Roma, Italy
| |
Collapse
|
22
|
Loss-of-function variants in NEK1 are associated with an increased risk of sporadic ALS in the Japanese population. J Hum Genet 2020; 66:237-241. [PMID: 32920598 DOI: 10.1038/s10038-020-00830-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/04/2023]
Abstract
Loss-of-function (LoF) variants in NEK1 have recently been reported to be associated with amyotrophic lateral sclerosis (ALS). In this study, we investigated the association of NEK1 LoF variants with an increased risk of sporadic ALS (SALS) and the clinical characteristics of patients with SALS carrying LoF variants in a Japanese case series. Whole-exome sequencing analysis was performed for a series of 446 SALS patients in whom pathogenic variants in familial ALS-causative genes have not been identified and 1163 healthy control subjects in our Japanese series. We evaluated LoF variants, defined as nonsense, splice-site disrupting single-nucleotide variants (SNVs), or short insertion/deletion (indel) variants predicted to cause frameshifts in NEK1. We identified seven NEK1 LoF variants in patients with SALS (1.57%), whereas only one was identified in control subjects (0.086%) (P = 0.00073, Fisher's exact test). This finding is consistent with those in recent reports from other regions in the world. In conclusion, we demonstrated that NEK1 LoF variants are also associated with an increased risk of SALS in the Japanese population.
Collapse
|
23
|
Naruse H, Ishiura H, Mitsui J, Takahashi Y, Matsukawa T, Toda T, Tsuji S. Juvenile amyotrophic lateral sclerosis with complex phenotypes associated with novel SYNE1 mutations. Amyotroph Lateral Scler Frontotemporal Degener 2020; 22:576-578. [PMID: 32870032 DOI: 10.1080/21678421.2020.1813312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mutations in SYNE1 have been originally described to cause a slowly progressive, pure cerebellar ataxia (spinocerebellar ataxia, autosomal-recessive 8; SCAR8). Notably, recent studies revealed that affected patients with SYNE1-associated ataxia can present with complex phenotypes rather than pure cerebellar ataxia, including motor neuron and brainstem dysfunctions. We herein report a Japanese patient diagnosed with juvenile amyotrophic lateral sclerosis (ALS) with a complex phenotype, who carried compound heterozygous pathogenic variants in SYNE1. Of the variants, one was a novel frameshift variant and the other was a nonsense variant previously reported as pathogenic for SCAR8. The patient showed an early age at onset with a relatively slow but progressive course of ALS, accompanied by cognitive decline. Our findings suggest that the clinical spectrum of patients carrying pathogenic SYNE1 variants is broader than expected, and SYNE1 variants should be considered in patients diagnosed with juvenile ALS, even without prominent cerebellar ataxia.
Collapse
Affiliation(s)
- Hiroya Naruse
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan, and
| | - Takashi Matsukawa
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| |
Collapse
|
24
|
Naruse H, Ishiura H, Mitsui J, Takahashi Y, Matsukawa T, Sakuishi K, Nakamagoe K, Miyake Z, Tamaoka A, Goto J, Yoshimura J, Doi K, Morishita S, Toda T, Tsuji S. Splice-site mutations in KIF5A in the Japanese case series of amyotrophic lateral sclerosis. Neurogenetics 2020; 22:11-17. [PMID: 32815063 DOI: 10.1007/s10048-020-00626-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/12/2020] [Indexed: 11/29/2022]
Abstract
Our objective was to investigate the frequency of KIF5A variants in amyotrophic lateral sclerosis (ALS) and the clinical characteristics of familial ALS (FALS) associated with variants in KIF5A. Whole-exome sequence analysis was performed for a Japanese series of 43 families with FALS and 444 patients with sporadic ALS (SALS), in whom causative variants had not been identified. We compared the frequencies of rare variants (MAF < 0.01) in KIF5A, including missense and loss of function (LoF) variants, between ALS and control subjects (n = 1163). Clinical characteristics of patients with FALS carrying pathogenic variants in KIF5A were also described. LoF variants were identified only in the probands of two families with FALS, both of which were 3' splice-site variants leading to exon skipping and an altered C-terminal domain, located in the mutational hotspot causing FALS, and were considered to be pathogenic for FALS. Rare missense variants in KIF5A were identified in five patients with SALS (1.13%) and 11 control subjects (0.95%, carrier frequency), which were not significantly different. Consequently, the pathogenic LoF variants in KIF5A accounted for 2.1% of all FALS families in this study. These patients suffered from ALS characteristically associated with the predominant involvement of upper motor neuron. In conclusion, we identified two pathogenic splice-site variants in KIF5A in the probands in two Japanese families with FALS, which altered the C-terminal region of KIF5A. Our findings broaden the phenotype spectrum of ALS associated with variants in KIF5A in the Japanese series.
Collapse
Affiliation(s)
- Hiroya Naruse
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Matsukawa
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Kaori Sakuishi
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyotaka Nakamagoe
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Zenshi Miyake
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Akira Tamaoka
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Jun Goto
- Department of Neurology, International University of Health and Welfare Mita Hospital, Tokyo, Japan
| | - Jun Yoshimura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Koichiro Doi
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8655, Japan. .,Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan.
| |
Collapse
|
25
|
Zhang K, Lu Y, Chen J, Li J, Yadav KK, Yin J, Yang X. NEK1 and GRN mutations coexist in a sporadic Chinese Hui descent ALS patient. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:624-626. [PMID: 32772750 DOI: 10.1080/21678421.2020.1779301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We describe a sporadic amyotrophic lateral sclerosis (ALS) patient who presented rapid progress of muscle weakness and died of respiratory failure one and a half years after onset. Genetic analysis revealed a novel ALS-causing gene NEK1 nonsense mutation p.K1210* and a known pathogenic frontotemporal lobar degeneration (FTD)-causing gene GRN mutation p.C139R. It is rare for ALS patients to carry two different pathogenic mutations simultaneously. The individual only had typically motor neuron dysfunction without any related cognitive symptoms. GRN p.C139R mutation is linked to various clinical phenotypes that include FTD and Alzheimer's disease (AD). The case carrying two different gene mutations expands our understanding of ALS genetics.
Collapse
Affiliation(s)
- Kang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yan Lu
- Department of Intensive Care Unit, The First People's Hospital of Yinchuan City, Yinchuan, China
| | - Jianhong Chen
- Neuroscience Center, General Hospital of Ningxia Medical University, Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jian Li
- Neuroscience Center, General Hospital of Ningxia Medical University, Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Kamal Kishor Yadav
- Neuroscience Center, General Hospital of Ningxia Medical University, Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jiao Yin
- Neuroscience Center, General Hospital of Ningxia Medical University, Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Xiao Yang
- Neuroscience Center, General Hospital of Ningxia Medical University, Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Yinchuan, China
| |
Collapse
|
26
|
Yousefian-Jazi A, Sung MK, Lee T, Hong YH, Choi JK, Choi J. Functional fine-mapping of noncoding risk variants in amyotrophic lateral sclerosis utilizing convolutional neural network. Sci Rep 2020; 10:12872. [PMID: 32732921 PMCID: PMC7393092 DOI: 10.1038/s41598-020-69790-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Recent large-scale genome-wide association studies have identified common genetic variations that may contribute to the risk of amyotrophic lateral sclerosis (ALS). However, pinpointing the risk variants in noncoding regions and underlying biological mechanisms remains a major challenge. Here, we constructed a convolutional neural network model with a large-scale GWAS meta-analysis dataset to unravel functional noncoding variants associated with ALS based on their epigenetic features. After filtering and prioritizing of candidates, we fine-mapped two new risk variants, rs2370964 and rs3093720, on chromosome 3 and 17, respectively. Further analysis revealed that these polymorphisms are associated with the expression level of CX3CR1 and TNFAIP1, and affect the transcription factor binding sites for CTCF, NFATc1 and NR3C1. Our results may provide new insights for ALS pathogenesis, and the proposed research methodology can be applied for other complex diseases as well.
Collapse
Affiliation(s)
- Ali Yousefian-Jazi
- Interdisciplinary Program, Bioengineering Major, Graduate School, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Min Kyung Sung
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Taeyeop Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Yoon-Ho Hong
- Department of Neurology, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Neuroscience Research Institute, Seoul National University Medical Research Council, Seoul, Republic of Korea
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea.
| | - Jinwook Choi
- Department of Biomedical Engineering, College of Medicine, Seoul National University, Seoul, 110-744, Republic of Korea.
| |
Collapse
|
27
|
Malik R, Wiedau M. Therapeutic Approaches Targeting Protein Aggregation in Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2020; 13:98. [PMID: 32581709 PMCID: PMC7296057 DOI: 10.3389/fnmol.2020.00098] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a debilitating neurodegenerative disease that targets motor neurons (MNs) in the brain and spinal cord. It leads to gradual loss of motor signals to muscles leading to atrophy and weakness. Most patients do not survive for more than 3–5 years after disease onset. Current ALS treatments provide only a small delay of disease progression. Therefore, it is of utmost importance to explore new therapeutic approaches. One of the major hindrances in achieving this goal is poor understanding of causes of the disease. ALS has complex pathophysiological mechanisms in its genetic and sporadic forms. Protein aggregates are a common hallmark of ALS regardless of cause making protein pathways attractive therapeutic targets in ALS. Here, we provide an overview of compounds in different stages of pharmacological development and their protein pathway targets.
Collapse
Affiliation(s)
- Ravinder Malik
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Martina Wiedau
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
28
|
Burden of Rare Variants in ALS and Axonal Hereditary Neuropathy Genes Influence Survival in ALS: Insights from a Next Generation Sequencing Study of an Italian ALS Cohort. Int J Mol Sci 2020; 21:ijms21093346. [PMID: 32397312 PMCID: PMC7246633 DOI: 10.3390/ijms21093346] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 01/31/2023] Open
Abstract
Although the genetic architecture of amyotrophic lateral sclerosis (ALS) is incompletely understood, recent findings suggest a complex model of inheritance in ALS, which is consistent with a multistep pathogenetic process. Therefore, the aim of our work is to further explore the architecture of ALS using targeted next generation sequencing (NGS) analysis, enriched in motor neuron diseases (MND)-associated genes which are also implicated in axonal hereditary motor neuropathy (HMN), in order to investigate if disease expression, including the progression rate, could be influenced by the combination of multiple rare gene variants. We analyzed 29 genes in an Italian cohort of 83 patients with both familial and sporadic ALS. Overall, we detected 43 rare variants in 17 different genes and found that 43.4% of the ALS patients harbored a variant in at least one of the investigated genes. Of note, 27.9% of the variants were identified in other MND- and HMN-associated genes. Moreover, multiple gene variants were identified in 17% of the patients. The burden of rare variants is associated with reduced survival and with the time to reach King stage 4, i.e., the time to reach the need for percutaneous endoscopic gastrostomy (PEG) positioning or non-invasive mechanical ventilation (NIMV) initiation, independently of known negative prognostic factors. Our data contribute to a better understanding of the molecular basis of ALS supporting the hypothesis that rare variant burden could play a role in the multistep model of disease and could exert a negative prognostic effect. Moreover, we further extend the genetic landscape of ALS to other MND-associated genes traditionally implicated in degenerative diseases of peripheral axons, such as HMN and CMT2.
Collapse
|
29
|
Kasahara S, Ishihara T, Koike Y, Sugai A, Onodera O. [Molecular mechanism of amyotrophic lateral sclerosis (ALS) from the viewpoint of the formation and degeneration of transactive response DNA-binding protein 43 kDa (TDP-43) inclusions]. Rinsho Shinkeigaku 2020; 60:109-116. [PMID: 31956195 DOI: 10.5692/clinicalneurol.cn-001362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Sporadic amyotrophic lateral sclerosis (SALS) and many cases of familial ALS (FALS) demonstrate cytoplasmic transactive response DNA-binding protein 43 kDa (TDP-43)-positive inclusion bodies. Thus, TDP-43 plays a vital role in ALS pathogenesis. Functional analysis of the ALS causative genes advanced the elucidation of the mechanism associated with the formation and degradation of TDP-43 aggregates. Stress granules, which are non-membranous organelles, are attracting attention as sites of aggregate formation, with involvement of FUS and C9orf72. Concurrently, ALS causative genes related to the ubiquitin-proteasome and autophagy systems, which are aggregate degradation mechanisms, have also been reported. Therefore, therapeutic research based on the molecular pathology common to SALS and FALS has been advanced.
Collapse
Affiliation(s)
- Sou Kasahara
- Department of Neurology, Brain Research Institute, Niigata University
| | - Tomohiko Ishihara
- Department of Neurology, Brain Research Institute, Niigata University
| | - Yuka Koike
- Department of Neurology, Brain Research Institute, Niigata University
| | - Akihiro Sugai
- Department of Neurology, Brain Research Institute, Niigata University
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University
| |
Collapse
|
30
|
Naruse H, Matsukawa T, Ishiura H, Mitsui J, Takahashi Y, Takano H, Goto J, Toda T, Tsuji S. Association of ATXN2 intermediate-length CAG repeats with amyotrophic lateral sclerosis correlates with the distributions of normal CAG repeat alleles among individual ethnic populations. Neurogenetics 2019; 20:65-71. [PMID: 30847648 DOI: 10.1007/s10048-019-00570-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 10/27/2022]
Abstract
Intermediate-length CAG repeats in ATXN2 have been widely shown to be a risk factor for sporadic amyotrophic lateral sclerosis (SALS). To evaluate the association of ATXN2 intermediate-length CAG repeat alleles with an increased risk of SALS, we investigated distributions of CAG repeat alleles in 394 patients with SALS and 490 control individuals in the Japanese population. In the intermediate-length repeat units of 29 or more, we identified one SALS patient with 31 repeat units and two control individuals with 30 repeat units. Thus, no significant differences in the carrier frequency of intermediate-length CAG repeat alleles were detected between patients with SALS and control individuals. When we investigated the distribution of "large normal alleles" defined as ATXN2 CAG repeats ranging from 24 up to 33 in the Japanese population compared with those in other populations in previous studies, the frequency of large normal alleles was significantly higher in the European and North American series than in the Japanese series. Moreover, these frequencies in the Turkish, Chinese, Korean, and Brazilian (Latin American) series were also higher than that in the Japanese series. These results raise the possibility that the frequencies of large normal alleles in individual populations underlie the frequencies of ALS risk alleles in the corresponding populations.
Collapse
Affiliation(s)
- Hiroya Naruse
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Matsukawa
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroki Takano
- Department of Neurology, Tachikawa General Hospital, Niigata, Japan
| | - Jun Goto
- Department of Neurology, International University of Health and Welfare Mita Hospital, Tokyo, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8655, Japan. .,Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan.
| |
Collapse
|