1
|
Tu S, Li T, Carroll AS, Mahoney CJ, Huynh W, Park SB, Henderson R, Vucic S, Kiernan MC, Lin CSY. Central neurodegeneration in Kennedy's disease accompanies peripheral motor dysfunction. Sci Rep 2024; 14:18331. [PMID: 39112530 PMCID: PMC11306389 DOI: 10.1038/s41598-024-69393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA), or Kennedy's disease (KD), is a rare hereditary neuromuscular disorder demonstrating commonalities with amyotrophic lateral sclerosis (ALS). The current study aimed to define functional and central nervous system abnormalities associated with SBMA pathology, their interaction, and to identify novel clinical markers for quantifying disease activity. 27 study participants (12 SBMA; 8 ALS; 7 Control) were recruited. SBMA patients underwent comprehensive motor and sensory functional assessments, and neurophysiological testing. All participants underwent whole-brain structural and diffusion MRI. SBMA patients demonstrated marked peripheral motor and sensory abnormalities across clinical assessments. Increased abnormalities on neurological examination were significantly associated with increased disease duration in SBMA patients (R2 = 0.85, p < 0.01). Widespread juxtacortical axonal degeneration of corticospinal white matter tracts were detected in SBMA patients (premotor; motor; somatosensory; p < 0.05), relative to controls. Increased axial diffusivity was significantly correlated with total neuropathy score in SBMA patients across left premotor (R2 = 0.59, p < 0.01), motor (R2 = 0.63, p < 0.01), and somatosensory (R2 = 0.61, p < 0.01) tracts. The present series has identified involvement of motor and sensory brain regions in SBMA, associated with disease duration and increasing severity of peripheral neuropathy. Quantification of annualized brain MRI together with Total Neuropathy Score may represent a novel approach for clinical monitoring.
Collapse
Affiliation(s)
- Sicong Tu
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, 2050, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, 2050, Australia.
| | - Tiffany Li
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, 2050, Australia
| | - Antonia S Carroll
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, 2050, Australia
- Department of Neurology and Neurophysiology, St Vincent's Hospital, Sydney, 2010, Australia
| | - Colin J Mahoney
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, 2050, Australia
| | - William Huynh
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, 2050, Australia
- Prince of Wales Clinical School, The University of New South Wales, Sydney, 2052, Australia
| | - Susanna B Park
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, 2050, Australia
| | - Robert Henderson
- Royal Brisbane and Women's Hospital, University of Queensland, Brisbane, 4029, Australia
| | - Steve Vucic
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, 2050, Australia
- Brain and Nerve Research Centre, Concord Clinical School, The University of Sydney, Sydney, 2137, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, 2050, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, 2050, Australia
| | - Cindy S-Y Lin
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, 2050, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, 2050, Australia.
| |
Collapse
|
2
|
Ju W, Ban J, Im H, Ko SH, Seo J, Min YG, Hong Y, Choi S, Sung J. Association of serum Spp1 levels with disease progression in ALS and SBMA. Ann Clin Transl Neurol 2024; 11:1809-1818. [PMID: 38775192 PMCID: PMC11251464 DOI: 10.1002/acn3.52087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/07/2024] [Accepted: 04/24/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVE In comparison with amyotrophic lateral sclerosis (ALS), the contribution of neuroinflammation in spinobulbar muscular atrophy (SBMA) has been less explored. We investigated the role of neuroinflammation in the pathogenesis of ALS and SBMA by analyzing systemic inflammatory markers and osteopontin (Spp1). METHODS This study involved 105 ALS, 77 SBMA, and 55 healthy controls. We measured their systemic inflammatory markers, serum Spp1, and cytokine levels (interferon-γ, interleukin [IL]-1β, IL-6, IL-8, IL-10, tumor necrosis factor-α, and IL-17A), investigated correlations between Spp1 levels and clinical features, and evaluated ALS survival rates according to Spp1 levels. RESULTS In the ALS group, systemic inflammatory markers were significantly higher than in the control and SBMA groups. Spp1 levels were observed to be higher in ALS patients, but the difference was not statistically significant among the study groups. Cytokine profiles were comparable. In ALS, higher Spp1 levels were correlated with lower ALS Functional Rating Scale-Revised (ALSFRS-R) scores (r = -0.25, p = 0.02) and faster disease progression rate (r = 0.37, p < 0.001). After adjusting for other prognostic indicators, high Spp1 levels were independently associated with shorter survival in ALS patients (hazard ratio 13.65, 95% confidence interval 2.57-72.53, p < 0.01). INTERPRETATION Neuroinflammation does not appear to be a primary contributor to the pathogenesis of SBMA. Serum Spp1 levels may serve as a reliable biomarker for disease progression and prognosis in ALS. These findings expand our understanding of these two distinct motor neuron disorders and offer a potential biomarker for future studies.
Collapse
Affiliation(s)
- Woohee Ju
- Department of NeurologySeoul National University HospitalSeoulRepublic of Korea
- Department of Translational MedicineSeoul National University College of MedicineSeoulRepublic of Korea
| | - Jae‐Jun Ban
- Department of NeurologySeoul National University HospitalSeoulRepublic of Korea
- Biomedical Research InstituteSeoul National University HospitalSeoulRepublic of Korea
| | - Hye‐ryeong Im
- Department of NeurologySeoul National University HospitalSeoulRepublic of Korea
| | - Sun Hi Ko
- Department of NeurologySeoul National University HospitalSeoulRepublic of Korea
| | - Jaewoo Seo
- Department of NeurologySeoul National University HospitalSeoulRepublic of Korea
- Department of Translational MedicineSeoul National University College of MedicineSeoulRepublic of Korea
| | - Young Gi Min
- Department of NeurologySeoul National University HospitalSeoulRepublic of Korea
- Department of Translational MedicineSeoul National University College of MedicineSeoulRepublic of Korea
| | - Yoon‐Ho Hong
- Department of Translational MedicineSeoul National University College of MedicineSeoulRepublic of Korea
- Department of NeurologySeoul Metropolitan Government Seoul National University Boramae Medical CenterSeoulRepublic of Korea
| | - Seok‐Jin Choi
- Department of NeurologySeoul National University HospitalSeoulRepublic of Korea
- Center for Hospital MedicineSeoul National University HospitalSeoulRepublic of Korea
| | - Jung‐Joon Sung
- Department of NeurologySeoul National University HospitalSeoulRepublic of Korea
- Department of Translational MedicineSeoul National University College of MedicineSeoulRepublic of Korea
- Biomedical Research InstituteSeoul National University HospitalSeoulRepublic of Korea
- Neuroscience Research InstituteSeoul National University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
3
|
Barbato F, Bombaci A, Colacicco G, Bruno G, Ippolito D, Pota V, Dongiovanni S, Sica G, Bocchini G, Valente T, Scaglione M, Mainenti PP, Guarino S. Chest Dynamic MRI as Early Biomarker of Respiratory Impairment in Amyotrophic Lateral Sclerosis Patients: A Pilot Study. J Clin Med 2024; 13:3103. [PMID: 38892814 PMCID: PMC11172785 DOI: 10.3390/jcm13113103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is a neuromuscular progressive disorder characterized by limb and bulbar muscle wasting and weakness. A total of 30% of patients present a bulbar onset, while 70% have a spinal outbreak. Respiratory involvement represents one of the worst prognostic factors, and its early identification is fundamental for the early starting of non-invasive ventilation and for the stratification of patients. Due to the lack of biomarkers of early respiratory impairment, we aimed to evaluate the role of chest dynamic MRI in ALS patients. Methods: We enrolled 15 ALS patients and 11 healthy controls. We assessed the revised ALS functional rating scale, spirometry, and chest dynamic MRI. Data were analyzed by using the Mann-Whitney U test and Cox regression analysis. Results: We observed a statistically significant difference in both respiratory parameters and pulmonary measurements at MRI between ALS patients and healthy controls. Moreover, we found a close relationship between pulmonary measurements at MRI and respiratory parameters, which was statistically significant after multivariate analysis. A sub-group analysis including ALS patients without respiratory symptoms and with normal spirometry values revealed the superiority of chest dynamic MRI measurements in detecting signs of early respiratory impairment. Conclusions: Our data suggest the usefulness of chest dynamic MRI, a fast and economically affordable examination, in the evaluation of early respiratory impairment in ALS patients.
Collapse
Affiliation(s)
- Francesco Barbato
- Department of Emergency and Urgent Medicine, Stroke Unit, Santa Maria delle Grazie Hospital, 80078 Naples, Italy;
| | - Alessandro Bombaci
- PhD Program of Neuroscience, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy;
- Neurology Unit, IRCSS Policlinico San Donato, 20097 San Donato Milanese, Italy
- Department of Neurology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Giovanni Colacicco
- NeuroMuscular Omnicentre (NEMO), Serena Onlus, 20162 Milan, Italy; (G.C.); (D.I.); (S.D.)
| | - Giorgia Bruno
- Division of Pediatric Neurology, Department of Neurosciences, “Santobono-Pausilipon” Children’s Hospital, 80121 Naples, Italy;
| | - Domenico Ippolito
- NeuroMuscular Omnicentre (NEMO), Serena Onlus, 20162 Milan, Italy; (G.C.); (D.I.); (S.D.)
| | - Vincenzo Pota
- Department of Women, Child, General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Salvatore Dongiovanni
- NeuroMuscular Omnicentre (NEMO), Serena Onlus, 20162 Milan, Italy; (G.C.); (D.I.); (S.D.)
| | - Giacomo Sica
- Department of Radiology, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy; (G.B.); (T.V.); (S.G.)
| | - Giorgio Bocchini
- Department of Radiology, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy; (G.B.); (T.V.); (S.G.)
| | - Tullio Valente
- Department of Radiology, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy; (G.B.); (T.V.); (S.G.)
| | - Mariano Scaglione
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy;
| | - Pier Paolo Mainenti
- Institute of Biostructures and Bioimaging of the National Council of Research (CNR), 80145 Naples, Italy;
| | - Salvatore Guarino
- Department of Radiology, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy; (G.B.); (T.V.); (S.G.)
| |
Collapse
|
4
|
Gromova A, Cha B, Robinson EM, Strickland LM, Nguyen N, ElMallah MK, Cortes CJ, La Spada AR. X-linked SBMA model mice display relevant non-neurological phenotypes and their expression of mutant androgen receptor protein in motor neurons is not required for neuromuscular disease. Acta Neuropathol Commun 2023; 11:90. [PMID: 37269008 PMCID: PMC10239133 DOI: 10.1186/s40478-023-01582-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/11/2023] [Indexed: 06/04/2023] Open
Abstract
X-linked spinal and bulbar muscular atrophy (SBMA; Kennedy's disease) is a rare neuromuscular disorder characterized by adult-onset proximal muscle weakness and lower motor neuron degeneration. SBMA was the first human disease found to be caused by a repeat expansion mutation, as affected patients possess an expanded tract of CAG repeats, encoding polyglutamine, in the androgen receptor (AR) gene. We previously developed a conditional BAC fxAR121 transgenic mouse model of SBMA and used it to define a primary role for skeletal muscle expression of polyglutamine-expanded AR in causing the motor neuron degeneration. Here we sought to extend our understanding of SBMA disease pathophysiology and cellular basis by detailed examination and directed experimentation with the BAC fxAR121 mice. First, we evaluated BAC fxAR121 mice for non-neurological disease phenotypes recently described in human SBMA patients, and documented prominent non-alcoholic fatty liver disease, cardiomegaly, and ventricular heart wall thinning in aged male BAC fxAR121 mice. Our discovery of significant hepatic and cardiac abnormalities in SBMA mice underscores the need to evaluate human SBMA patients for signs of liver and heart disease. To directly examine the contribution of motor neuron-expressed polyQ-AR protein to SBMA neurodegeneration, we crossed BAC fxAR121 mice with two different lines of transgenic mice expressing Cre recombinase in motor neurons, and after updating characterization of SBMA phenotypes in our current BAC fxAR121 colony, we found that excision of mutant AR from motor neurons did not rescue neuromuscular or systemic disease. These findings further validate a primary role for skeletal muscle as the driver of SBMA motor neuronopathy and indicate that therapies being developed to treat patients should be delivered peripherally.
Collapse
Affiliation(s)
- Anastasia Gromova
- Departments of Pathology and Laboratory Medicine, Neurology, and Biological Chemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Byeonggu Cha
- Departments of Pathology and Laboratory Medicine, Neurology, and Biological Chemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Erica M Robinson
- Department of Neurology, Duke University, Durham, NC, 27710, USA
| | - Laura M Strickland
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University, Durham, NC, 27710, USA
| | - Nhat Nguyen
- Departments of Pathology and Laboratory Medicine, Neurology, and Biological Chemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Mai K ElMallah
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University, Durham, NC, 27710, USA
| | - Constanza J Cortes
- School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Albert R La Spada
- Departments of Pathology and Laboratory Medicine, Neurology, and Biological Chemistry, University of California Irvine, Irvine, CA, 92697, USA.
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, 92697, USA.
- UCI Institute for Neurotherapeutics, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
5
|
McCluskey G, Morrison KE, Donaghy C, McConville J, McCarron MO, McVerry F, Duddy W, Duguez S. Serum Neurofilaments in Motor Neuron Disease and Their Utility in Differentiating ALS, PMA and PLS. Life (Basel) 2023; 13:1301. [PMID: 37374084 DOI: 10.3390/life13061301] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Neurofilament levels are elevated in many neurodegenerative diseases and have shown promise as diagnostic and prognostic biomarkers in Amyotrophic Lateral Sclerosis (ALS), the most common form of Motor Neuron Disease (MND). This study assesses serum neurofilament light (NFL) and neurofilament heavy (NFH) chain concentrations in patients with ALS, other variants of motor neuron disease such as Progressive Muscular Atrophy (PMA) and Primary Lateral Sclerosis (PLS), and a range of other neurological diseases. It aims to evaluate the use of NFL and NFH to differentiate these conditions and for the prognosis of MND disease progression. NFL and NFH levels were quantified using electrochemiluminescence immunoassays (ECLIA). Both were elevated in 47 patients with MND compared to 34 patients with other neurological diseases and 33 healthy controls. NFL was able to differentiate patients with MND from the other groups with a Receiver Operating Characteristic (ROC) curve area under the curve (AUC) of 0.90 (p < 0.001). NFL correlated with the rate of disease progression in MND (rho 0.758, p < 0.001) and with the ALS Functional Rating Scale (rho -0.335, p = 0.021). NFL levels were higher in patients with ALS compared to both PMA (p = 0.032) and PLS (p = 0.012) and were able to distinguish ALS from both PMA and PLS with a ROC curve AUC of 0.767 (p = 0.005). These findings support the use of serum NFL to help diagnose and differentiate types of MND, in addition to providing prognostic information to patients and their families.
Collapse
Affiliation(s)
- Gavin McCluskey
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Department of Neurology, Altnagelvin Hospital, Derry BT47 6SB, UK
| | - Karen E Morrison
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Faculty of Medicine, Health & Life Sciences, Queen's University, Belfast BT9 6AG, UK
| | - Colette Donaghy
- Department of Neurology, Altnagelvin Hospital, Derry BT47 6SB, UK
| | - John McConville
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Department of Neurology, Ulster Hospital, Belfast BT16 1RH, UK
| | - Mark O McCarron
- Department of Neurology, Altnagelvin Hospital, Derry BT47 6SB, UK
| | - Ferghal McVerry
- Department of Neurology, Altnagelvin Hospital, Derry BT47 6SB, UK
| | - William Duddy
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
| | - Stephanie Duguez
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
| |
Collapse
|
6
|
Bombaci A, Manera U, De Marco G, Casale F, Salamone P, Fuda G, Marchese G, Iazzolino B, Peotta L, Moglia C, Calvo A, Chiò A. Plasma CHI3L1 in Amyotrophic Lateral Sclerosis: A Potential Differential Diagnostic Biomarker. J Clin Med 2023; 12:jcm12062367. [PMID: 36983366 PMCID: PMC10058007 DOI: 10.3390/jcm12062367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
(1) Background: Motor neuron diseases (MNDs) are fatal neurodegenerative diseases. Biomarkers could help with defining patients' prognoses and stratifications. Besides neurofilaments, chitinases are a promising family of possible biomarkers which correlate with neuroinflammatory status. We evaluated the plasmatic levels of CHI3L1 in MNDs, MND mimics, and healthy controls (HCs). (2) Methods: We used a sandwich ELISA to quantify the CHI3L1 in plasma samples from 44 MND patients, 7 hereditary spastic paraplegia (HSP) patients, 9 MND mimics, and 19 HCs. We also collected a ALSFRSr scale, MRC scale, spirometry, mutational status, progression rate (PR), blood sampling, and neuropsychological evaluation. (3) Results: The plasma levels of the CHI3L1 were different among groups (p = 0.005). Particularly, the MND mimics showed higher CHI3L1 levels compared with the MND patients and HCs. The CHI3L1 levels did not differ among PMA, PLS, and ALS, and we did not find a correlation among the CHI3L1 levels and clinical scores, spirometry parameters, PR, and neuropsychological features. Of note, the red blood cell count and haemoglobin was correlated with the CHI3L1 levels (respectively, p < 0.001, r = 0.63; p = 0.022, and r = 0.52). (4) Conclusions: The CHI3L1 plasma levels were increased in the MND mimics cohort compared with MNDs group. The increase of CHI3L1 in neuroinflammatory processes could explain our findings. We confirmed that the CHI3L1 plasma levels did not allow for differentiation between ALS and HCs, nor were they correlated with neuropsychological impairment.
Collapse
Affiliation(s)
- Alessandro Bombaci
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, 10126 Turin, Italy
| | - Umberto Manera
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, 10126 Turin, Italy
| | - Giovanni De Marco
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, 10126 Turin, Italy
| | - Federico Casale
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, 10126 Turin, Italy
| | - Paolina Salamone
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, 10126 Turin, Italy
| | - Giuseppe Fuda
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, 10126 Turin, Italy
| | - Giulia Marchese
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, 10126 Turin, Italy
| | - Barbara Iazzolino
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, 10126 Turin, Italy
| | - Laura Peotta
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, 10126 Turin, Italy
| | - Cristina Moglia
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, 10126 Turin, Italy
| | - Andrea Calvo
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, 10126 Turin, Italy
| | - Adriano Chiò
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, 10126 Turin, Italy
| |
Collapse
|
7
|
Molotsky E, Liu Y, Lieberman AP, Merry DE. Neuromuscular junction pathology is correlated with differential motor unit vulnerability in spinal and bulbar muscular atrophy. Acta Neuropathol Commun 2022; 10:97. [PMID: 35791011 PMCID: PMC9258097 DOI: 10.1186/s40478-022-01402-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/23/2022] [Indexed: 11/10/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is an X-linked, neuromuscular neurodegenerative disease for which there is no cure. The disease is characterized by a selective decrease in fast-muscle power (e.g., tongue pressure, grip strength) accompanied by a selective loss of fast-twitch muscle fibers. However, the relationship between neuromuscular junction (NMJ) pathology and fast-twitch motor unit vulnerability has yet to be explored. In this study, we used a cross-model comparison of two mouse models of SBMA to evaluate neuromuscular junction pathology, glycolytic-to-oxidative fiber-type switching, and cytoskeletal alterations in pre- and postsynaptic termini of tibialis anterior (TA), gastrocnemius, and soleus hindlimb muscles. We observed significantly increased NMJ and myofiber pathology in fast-twitch, glycolytic motor units of the TA and gastrocnemius compared to slow-twitch, oxidative motor units of the soleus, as seen by decreased pre- and post-synaptic membrane area, decreased pre- and post-synaptic membrane colocalization, increased acetylcholine receptor compactness, a decrease in endplate area and complexity, and deficits in neurofilament heavy chain. Our data also show evidence for metabolic dysregulation and myofiber atrophy that correlate with severity of NMJ pathology. We propose a model in which the dynamic communicative relationship between the motor neuron and muscle, along with the developmental subtype of the muscle, promotes motor unit subtype specific vulnerability, metabolic alterations, and NMJ pathology.
Collapse
Affiliation(s)
- Elana Molotsky
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Jefferson Alumni Hall, Rm. 411E, Philadelphia, PA, 19107, USA
| | - Yuhong Liu
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Jefferson Alumni Hall, Rm. 411E, Philadelphia, PA, 19107, USA
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Diane E Merry
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Jefferson Alumni Hall, Rm. 411E, Philadelphia, PA, 19107, USA.
| |
Collapse
|
8
|
Pinto WBVDR, Souza PVSD, Badia BML, Farias IB, Albuquerque Filho JMVD, Gonçalves EA, Machado RIL, Oliveira ASB. Adult-onset non-5q proximal spinal muscular atrophy: a comprehensive review. ARQUIVOS DE NEURO-PSIQUIATRIA 2021; 79:912-923. [PMID: 34706022 DOI: 10.1590/0004-282x-anp-2020-0429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/24/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Adult-onset spinal muscular atrophy (SMA) represents an expanding group of inherited neurodegenerative disorders in clinical practice. OBJECTIVE This review aims to synthesize the main clinical, genetic, radiological, biochemical, and neurophysiological aspects related to the classical and recently described forms of proximal SMA. METHODS The authors performed a non-systematic critical review summarizing adult-onset proximal SMA presentations. RESULTS Previously limited to cases of SMN1-related SMA type 4 (adult form), this group has now more than 15 different clinical conditions that have in common the symmetrical and progressive compromise of lower motor neurons starting in adulthood or elderly stage. New clinical and genetic subtypes of adult-onset proximal SMA have been recognized and are currently target of wide neuroradiological, pathological, and genetic studies. CONCLUSIONS This new complex group of rare disorders typically present with lower motor neuron disease in association with other neurological or systemic signs of impairment, which are relatively specific and typical for each genetic subtype.
Collapse
Affiliation(s)
| | - Paulo Victor Sgobbi de Souza
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil
| | - Bruno Mattos Lombardi Badia
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil
| | - Igor Braga Farias
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil
| | | | - Eduardo Augusto Gonçalves
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil
| | - Roberta Ismael Lacerda Machado
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil
| | - Acary Souza Bulle Oliveira
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil
| |
Collapse
|
9
|
Zhou YN, Chen YH, Dong SQ, Yang WB, Qian T, Liu XN, Cheng Q, Wang JC, Chen XJ. Role of Blood Neurofilaments in the Prognosis of Amyotrophic Lateral Sclerosis: A Meta-Analysis. Front Neurol 2021; 12:712245. [PMID: 34690913 PMCID: PMC8526968 DOI: 10.3389/fneur.2021.712245] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Neurofilaments in cerebrospinal fluid (CSF) and in blood are considered promising biomarkers of amyotrophic lateral sclerosis (ALS) because their levels can be significantly increased in patients with ALS. However, the roles of neurofilaments, especially blood neurofilaments, in the prognosis of ALS are inconsistent. We performed a meta-analysis to explore the prognostic roles of blood neurofilaments in ALS patients. Methods: We searched all relevant studies on the relationship between blood neurofilament levels and the prognosis of ALS patients in PubMed, Embase, Scopus, and Web of Science before February 2, 2021. The quality of the included articles was assessed using the Quality in Prognosis Studies (QUIPS) scale, and R (version 4.02) was used for statistical analysis. Results: Fourteen articles were selected, covering 1,619 ALS patients. The results showed that higher blood neurofilament light chain (NfL) levels in ALS patients were associated with a higher risk of death [medium vs. low NfL level: HR = 2.43, 95% CI (1.34-4.39), p < 0.01; high vs. low NfL level: HR = 4.51, 95% CI (2.45-8.32), p < 0.01]. There was a positive correlation between blood phosphorylated neurofilament heavy chain (pNfH) levels and risk of death in ALS patients [HR = 1.87, 95% CI (1.35-2.59), p < 0.01]. The levels of NfL and pNfH in blood positively correlated with disease progression rate (DPR) of ALS patients [NfL: summary r = 0.53, 95% CI (0.45-0.60), p < 0.01; pNfH: summary r = 0.51, 95% CI (0.24-0.71), p < 0.01]. Conclusion: The blood neurofilament levels can predict the prognosis of ALS patients; specifically, higher levels of blood neurofilaments are associated with a greater risk of death.
Collapse
Affiliation(s)
- Yan-ni Zhou
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Institute of Neurology, Fudan University and National Center Neurological Disorders, Shanghai, China
| | - You-hong Chen
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Si-qi Dong
- Department of Neurology, Huashan Hospital, Institute of Neurology, Fudan University and National Center Neurological Disorders, Shanghai, China
| | - Wen-bo Yang
- Department of Neurology, Huashan Hospital, Institute of Neurology, Fudan University and National Center Neurological Disorders, Shanghai, China
| | - Ting Qian
- Department of Neurology, Huashan Hospital, Institute of Neurology, Fudan University and National Center Neurological Disorders, Shanghai, China
| | - Xiao-ni Liu
- Department of Neurology, Huashan Hospital, Institute of Neurology, Fudan University and National Center Neurological Disorders, Shanghai, China
| | - Qi Cheng
- Department of Neurology, Ruijin Hospital Affiliated With the School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiu-cun Wang
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Xiang-jun Chen
- Department of Neurology, Huashan Hospital, Institute of Neurology, Fudan University and National Center Neurological Disorders, Shanghai, China
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Pasetto L, Callegaro S, Corbelli A, Fiordaliso F, Ferrara D, Brunelli L, Sestito G, Pastorelli R, Bianchi E, Cretich M, Chiari M, Potrich C, Moglia C, Corbo M, Sorarù G, Lunetta C, Calvo A, Chiò A, Mora G, Pennuto M, Quattrone A, Rinaldi F, D'Agostino VG, Basso M, Bonetto V. Decoding distinctive features of plasma extracellular vesicles in amyotrophic lateral sclerosis. Mol Neurodegener 2021; 16:52. [PMID: 34376243 PMCID: PMC8353748 DOI: 10.1186/s13024-021-00470-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a multifactorial, multisystem motor neuron disease for which currently there is no effective treatment. There is an urgent need to identify biomarkers to tackle the disease's complexity and help in early diagnosis, prognosis, and therapy. Extracellular vesicles (EVs) are nanostructures released by any cell type into body fluids. Their biophysical and biochemical characteristics vary with the parent cell's physiological and pathological state and make them an attractive source of multidimensional data for patient classification and stratification. METHODS We analyzed plasma-derived EVs of ALS patients (n = 106) and controls (n = 96), and SOD1G93A and TDP-43Q331K mouse models of ALS. We purified plasma EVs by nickel-based isolation, characterized their EV size distribution and morphology respectively by nanotracking analysis and transmission electron microscopy, and analyzed EV markers and protein cargos by Western blot and proteomics. We used machine learning techniques to predict diagnosis and prognosis. RESULTS Our procedure resulted in high-yield isolation of intact and polydisperse plasma EVs, with minimal lipoprotein contamination. EVs in the plasma of ALS patients and the two mouse models of ALS had a distinctive size distribution and lower HSP90 levels compared to the controls. In terms of disease progression, the levels of cyclophilin A with the EV size distribution distinguished fast and slow disease progressors, a possibly new means for patient stratification. Immuno-electron microscopy also suggested that phosphorylated TDP-43 is not an intravesicular cargo of plasma-derived EVs. CONCLUSIONS Our analysis unmasked features in plasma EVs of ALS patients with potential straightforward clinical application. We conceived an innovative mathematical model based on machine learning which, by integrating EV size distribution data with protein cargoes, gave very high prediction rates for disease diagnosis and prognosis.
Collapse
Affiliation(s)
- Laura Pasetto
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Stefano Callegaro
- Department of Mathematics "Tullio Levi-Civita", University of Padova, Padova, Italy
| | | | - Fabio Fiordaliso
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Deborah Ferrara
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Laura Brunelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giovanna Sestito
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Elisa Bianchi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marina Cretich
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC-CNR), Milan, Italy
| | - Marcella Chiari
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC-CNR), Milan, Italy
| | - Cristina Potrich
- Centre for Materials and Microsystems, Fondazione Bruno Kessler, Trento, Italy.,Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Trento, Italy
| | - Cristina Moglia
- 'Rita Levi Montalcini' Department of Neuroscience, Università degli Studi di Torino, Torino, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico (CCP), Milan, Italy
| | - Gianni Sorarù
- Department of Neuroscience, University of Padova, 35122, Padova, Italy
| | - Christian Lunetta
- NEuroMuscular Omnicentre (NEMO), Serena Onlus Foundation, Milan, Italy
| | - Andrea Calvo
- 'Rita Levi Montalcini' Department of Neuroscience, Università degli Studi di Torino, Torino, Italy
| | - Adriano Chiò
- 'Rita Levi Montalcini' Department of Neuroscience, Università degli Studi di Torino, Torino, Italy
| | - Gabriele Mora
- Department of Neurorehabilitation, ICS Maugeri IRCCS, Milan, Italy
| | - Maria Pennuto
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy
| | - Alessandro Quattrone
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Francesco Rinaldi
- Department of Mathematics "Tullio Levi-Civita", University of Padova, Padova, Italy
| | - Vito Giuseppe D'Agostino
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Manuela Basso
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy. .,Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy.
| | - Valentina Bonetto
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
11
|
Molecular pathogenesis of spinal bulbar muscular atrophy (Kennedy's disease) and avenues for treatment. Curr Opin Neurol 2021; 33:629-634. [PMID: 32773451 DOI: 10.1097/wco.0000000000000856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The aim of this study was to illustrate the current understanding and avenues for developing treatment in spinal and bulbar muscular atrophy (SBMA), an inherited neuromuscular disorder caused by a CAG trinucleotide repeat expansion in the androgen receptor (AR) gene. RECENT FINDINGS Important advances have been made in characterizing the molecular mechanism of the disease, including the disruption of protein homeostasis, intracellular trafficking and signalling pathways. Biomarkers such as MRI quantification of muscle volume and fat fraction have been used to track disease progression, and will be useful in future clinical studies. Therapies tested and under development have been based on diverse strategies, including targeting mutant AR gene expression, stability and activity, and pathways that mitigate disease toxicity. SUMMARY We provide an overview of the recent advances in understanding the SBMA disease mechanism and highlight efforts to translate these insights into well tolerated and effective therapy.
Collapse
|
12
|
Cognitive dysfunction in amyotrophic lateral sclerosis: can we predict it? Neurol Sci 2021; 42:2211-2222. [PMID: 33772353 PMCID: PMC8159827 DOI: 10.1007/s10072-021-05188-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/15/2021] [Indexed: 01/26/2023]
Abstract
Background and aim Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the degeneration of both upper and lower motoneurons in the brain and spinal cord leading to motor and extra-motor symptoms. Although traditionally considered a pure motor disease, recent evidences suggest that ALS is a multisystem disorder. Neuropsychological alterations, in fact, are observed in more than 50% of patients: while executive dysfunctions have been firstly identified, alterations in verbal fluency, behavior, and pragmatic and social cognition have also been described. Detecting and monitoring ALS cognitive and behavioral impairment even at early disease stages is likely to have staging and prognostic implications, and it may impact the enrollment in future clinical trials. During the last 10 years, humoral, radiological, neurophysiological, and genetic biomarkers have been reported in ALS, and some of them seem to potentially correlate to cognitive and behavioral impairment of patients. In this review, we sought to give an up-to-date state of the art of neuropsychological alterations in ALS: we will describe tests used to detect cognitive and behavioral impairment, and we will focus on promising non-invasive biomarkers to detect pre-clinical cognitive decline. Conclusions To date, the research on humoral, radiological, neurophysiological, and genetic correlates of neuropsychological alterations is at the early stage, and no conclusive longitudinal data have been published. Further and longitudinal studies on easily accessible and quantifiable biomarkers are needed to clarify the time course and the evolution of cognitive and behavioral impairments of ALS patients.
Collapse
|
13
|
Telemedicine for management of patients with amyotrophic lateral sclerosis through COVID-19 tail. Neurol Sci 2020; 42:9-13. [PMID: 33025327 PMCID: PMC7538170 DOI: 10.1007/s10072-020-04783-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/26/2020] [Indexed: 12/12/2022]
Abstract
Over the last months, due to coronavirus disease (COVID-19) pandemic, containment measures have led to important social restriction. Healthcare systems have faced a complete rearrangement of resources and spaces, with the creation of wards devoted to COVID-19 patients. In this context, patients affected by chronic neurological diseases, such as amyotrophic lateral sclerosis (ALS), are at risk to be lost at follow-up, leading to a higher risk of morbidity and mortality. Telemedicine may allow meet the needs of these patients. In this commentary, we briefly discuss the digital tools to remotely monitor and manage ALS patients. Focusing on detecting disease progression and preventing life-threatening conditions, we propose a toolset able to improve ALS management during this unprecedented situation.
Collapse
|