1
|
Lewis S, Radcliffe E, Ojemann S, Kramer DR, Hirt L, Case M, Holt-Becker AB, Raike R, Kern DS, Thompson JA. Pilot Study to Investigate the Use of In-Clinic Sensing to Identify Optimal Stimulation Parameters for Deep Brain Stimulation Therapy in Parkinson's Disease. Neuromodulation 2024; 27:509-519. [PMID: 36797194 DOI: 10.1016/j.neurom.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) programming is time intensive. Recent advances in sensing technology of local field potentials (LFPs) may enable improvements. Few studies have compared the use of this technology with standard of care. OBJECTIVE/HYPOTHESIS Sensing technology of subthalamic nucleus (STN) DBS leads in Parkinson's disease (PD) is reliable and predicts the optimal contacts and settings as predicted by clinical assessment. MATERIALS AND METHODS Five subjects with PD (n = 9 hemispheres) with bilateral STN DBS and sensing capable battery replacement were recruited. An LFP sensing review of all bipolar contact pairs was performed three times. Contact with the maximal beta peak power (MBP) was then clinically assessed in a double-blinded fashion, and five conditions were tested: 1) entry settings, 2) off stimulation, 3) MBP at 30 μs, 4) MBP at 60 μs, and 5) MBP at 90 μs. RESULTS Contact and frequency of the MBP power in all hemispheres did not differ across sessions. The entry settings matched with the contact with the MBP power in 5 of 9 hemispheres. No clinical difference was evident in the stimulation conditions. The clinician and subject preferred settings determined by MBP power in 7 of 9 and 5 of 7 hemispheres, respectively. CONCLUSIONS This study indicates that STN LFPs in PD recorded directly from contacts of the DBS lead provide consistent recordings across the frequency range and a reliably detected beta peak. Furthermore, programming based on the MBP power provides at least clinical equivalence to standard of care programming with STN DBS.
Collapse
Affiliation(s)
- Sydnei Lewis
- Biomedical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Erin Radcliffe
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Steven Ojemann
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel R Kramer
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lisa Hirt
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michelle Case
- Brain Modulation Business, Neuromodulation Operating Unit, Medtronic, Plc, Minneapolis, MN, USA
| | - Abbey B Holt-Becker
- Brain Modulation Business, Neuromodulation Operating Unit, Medtronic, Plc, Minneapolis, MN, USA
| | - Robert Raike
- Brain Modulation Business, Neuromodulation Operating Unit, Medtronic, Plc, Minneapolis, MN, USA
| | - Drew S Kern
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John A Thompson
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
2
|
Thompson JA, Hirt L, David‐Gerecht P, Fasano A, Kramer DR, Ojemann SG, Kern DS. Comparison of Monopolar Review to Fixed Parameter Fractionation in Deep Brain Stimulation. Mov Disord Clin Pract 2023; 10:987-991. [PMID: 37332654 PMCID: PMC10272899 DOI: 10.1002/mdc3.13750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/21/2023] [Accepted: 03/29/2023] [Indexed: 06/20/2023] Open
Abstract
Background Technological advancements in deep brain stimulation (DBS) require methodological changes in programming. Fractionalization poses significant practical challenges for the most common approach for assessing DBS efficacy, monopolar review (MR). Objectives Two DBS programming methods: MR and fixed parameter vertical and horizontal fractionalization (FPF) were compared. Methods A two-phase process of vertical and horizontal FPF was performed. MR was conducted thereafter. After a short wash-out period, both optimal configurations determined by MR and FPF were tested in a double-blind randomized manner. Results Seven PD patients were enrolled, providing 11 hemispheres to compare the two conditions. In all subjects, the blinded examiner selected a directional or fractionalization configuration. There was no significant difference in clinical benefits between MR and FPF. FPF was the preferred method for initial programming as selected by subject and clinician. Conclusions FPF programming is a viable and efficient methodology that may be incorporated into clinical practice.
Collapse
Affiliation(s)
- John A. Thompson
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- Department of NeurosurgeryUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Lisa Hirt
- Department of NeurosurgeryUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Pamela David‐Gerecht
- Department of NeurosurgeryUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Alfonso Fasano
- Department of NeurologyUniversity of TorontoTorontoOntarioUSA
| | - Daniel R. Kramer
- Department of NeurosurgeryUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Steven G. Ojemann
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- Department of NeurosurgeryUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Drew S. Kern
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- Department of NeurosurgeryUniversity of Colorado School of MedicineAuroraColoradoUSA
| |
Collapse
|
3
|
Andrews L, Keller SS, Osman-Farah J, Macerollo A. A structural magnetic resonance imaging review of clinical motor outcomes from deep brain stimulation in movement disorders. Brain Commun 2023; 5:fcad171. [PMID: 37304793 PMCID: PMC10257440 DOI: 10.1093/braincomms/fcad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/05/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023] Open
Abstract
Patients with movement disorders treated by deep brain stimulation do not always achieve successful therapeutic alleviation of motor symptoms, even in cases where surgery is without complications. Magnetic resonance imaging (MRI) offers methods to investigate structural brain-related factors that may be predictive of clinical motor outcomes. This review aimed to identify features which have been associated with variability in clinical post-operative motor outcomes in patients with Parkinson's disease, dystonia, and essential tremor from structural MRI modalities. We performed a literature search for articles published between 1 January 2000 and 1 April 2022 and identified 5197 articles. Following screening through our inclusion criteria, we identified 60 total studies (39 = Parkinson's disease, 11 = dystonia syndromes and 10 = essential tremor). The review captured a range of structural MRI methods and analysis techniques used to identify factors related to clinical post-operative motor outcomes from deep brain stimulation. Morphometric markers, including volume and cortical thickness were commonly identified in studies focused on patients with Parkinson's disease and dystonia syndromes. Reduced metrics in basal ganglia, sensorimotor and frontal regions showed frequent associations with reduced motor outcomes. Increased structural connectivity to subcortical nuclei, sensorimotor and frontal regions was also associated with greater motor outcomes. In patients with tremor, increased structural connectivity to the cerebellum and cortical motor regions showed high prevalence across studies for greater clinical motor outcomes. In addition, we highlight conceptual issues for studies assessing clinical response with structural MRI and discuss future approaches towards optimizing individualized therapeutic benefits. Although quantitative MRI markers are in their infancy for clinical purposes in movement disorder treatments, structural features obtained from MRI offer the powerful potential to identify candidates who are more likely to benefit from deep brain stimulation and provide insight into the complexity of disorder pathophysiology.
Collapse
Affiliation(s)
- Luke Andrews
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L3 9TA, UK
- Department of Neurology and Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L97LJ, UK
| | - Simon S Keller
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L3 9TA, UK
| | - Jibril Osman-Farah
- Department of Neurology and Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L97LJ, UK
| | - Antonella Macerollo
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L3 9TA, UK
- Department of Neurology and Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L97LJ, UK
| |
Collapse
|
4
|
Bruno F, Tommasino E, Catalucci A, Pastorelli C, Borea F, Caldarelli G, Bellini M, Badini P, Mancini S, Santobuono C, Martino S, Pagliei V, Manco G, Cerone D, Pistoia F, Palumbo P, Arrigoni F, Di Cesare E, Marini C, Barile A, Splendiani A, Masciocchi C. Evaluation of Cerebral Volume Changes in Patients with Tremor Treated by MRgFUS Thalamotomy. Life (Basel) 2022; 13:life13010016. [PMID: 36675970 PMCID: PMC9865014 DOI: 10.3390/life13010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/23/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The purpose of the study is to quantify volumetric variations of cortical and subcortical brain structures after Vim ablation using MRgFUS, and correlate them with the patients’ clinical features and treatment outcomes. For this pilot retrospective study we enrolled 31 patients with a mean age of 70.86 years who were eligible for unilateral Vim thalamotomy. Clinical evaluation included tremor severity assessment using the FTM scale and cognitive assessment using the MoCA score. MRI data were acquired with a 3T scanner, using a dedicated 32-channel coil and acquiring a volumetric sequence of T1 3D IR FSPGR (BRAVO), before treatment and one year after MRgFUS thalamotomy. Image processing and volume data extraction were conducted with dedicated software. A volumetric analysis showed a significant reduction (p < 0.05) of the left thalamus 1 year after the treatment in patients with ET. Other significant results were found on the same side in the other nuclei of the basal ganglia and in the cerebellar cortex. In confronting the two groups (ET, PD), no significant differences were found in terms of age, FTM, MoCA scores, or brain volumes. Similarly, no significant correlations were found between the FTM and MoCA scores and the brain volumes before the treatment.
Collapse
Affiliation(s)
- Federico Bruno
- Emergency Radiology, San Salvatore Hospital, 67100 L’Aquila, Italy
- Italian Society of Medical and Intervention Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
- Correspondence: or ; Tel.: +39-3313240926
| | - Emanuele Tommasino
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Alessia Catalucci
- Neuroradiology and Interventional Radiology, San Salvatore Hospital, 67100 L’Aquila, Italy
| | - Cristina Pastorelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Francesco Borea
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Giulia Caldarelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Mattia Bellini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Pierfrancesco Badini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Sara Mancini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Chiara Santobuono
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Saverio Martino
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Valeria Pagliei
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | | | - Davide Cerone
- Neurology, San Salvatore Hospital, 67100 L’Aquila, Italy
| | - Francesca Pistoia
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Pierpaolo Palumbo
- Italian Society of Medical and Intervention Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
- Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, 67100 L’Aquila, Italy
| | | | - Ernesto Di Cesare
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Carmine Marini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Alessandra Splendiani
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Carlo Masciocchi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
5
|
Kricheldorff J, Göke K, Kiebs M, Kasten FH, Herrmann CS, Witt K, Hurlemann R. Evidence of Neuroplastic Changes after Transcranial Magnetic, Electric, and Deep Brain Stimulation. Brain Sci 2022; 12:929. [PMID: 35884734 PMCID: PMC9313265 DOI: 10.3390/brainsci12070929] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Electric and magnetic stimulation of the human brain can be used to excite or inhibit neurons. Numerous methods have been designed over the years for this purpose with various advantages and disadvantages that are the topic of this review. Deep brain stimulation (DBS) is the most direct and focal application of electric impulses to brain tissue. Electrodes are placed in the brain in order to modulate neural activity and to correct parameters of pathological oscillation in brain circuits such as their amplitude or frequency. Transcranial magnetic stimulation (TMS) is a non-invasive alternative with the stimulator generating a magnetic field in a coil over the scalp that induces an electric field in the brain which, in turn, interacts with ongoing brain activity. Depending upon stimulation parameters, excitation and inhibition can be achieved. Transcranial electric stimulation (tES) applies electric fields to the scalp that spread along the skull in order to reach the brain, thus, limiting current strength to avoid skin sensations and cranial muscle pain. Therefore, tES can only modulate brain activity and is considered subthreshold, i.e., it does not directly elicit neuronal action potentials. In this review, we collect hints for neuroplastic changes such as modulation of behavior, the electric activity of the brain, or the evolution of clinical signs and symptoms in response to stimulation. Possible mechanisms are discussed, and future paradigms are suggested.
Collapse
Affiliation(s)
- Julius Kricheldorff
- Department of Neurology, School of Medicine and Health Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany; (J.K.); (K.W.)
| | - Katharina Göke
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany; (K.G.); (M.K.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Maximilian Kiebs
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany; (K.G.); (M.K.)
| | - Florian H. Kasten
- Experimental Psychology Lab, Carl von Ossietzky University, 26129 Oldenburg, Germany; (F.H.K.); (C.S.H.)
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Carl von Ossietzky University, 26129 Oldenburg, Germany; (F.H.K.); (C.S.H.)
- Research Center Neurosensory Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Karsten Witt
- Department of Neurology, School of Medicine and Health Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany; (J.K.); (K.W.)
- Research Center Neurosensory Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Rene Hurlemann
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany; (K.G.); (M.K.)
- Research Center Neurosensory Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany
- Department of Psychiatry and Psychotherapy, Carl von Ossietzky University, 26129 Oldenburg, Germany
| |
Collapse
|