1
|
Premi E, Diano M, Mattioli I, Altomare D, Cantoni V, Bocchetta M, Gasparotti R, Buratti E, Pengo M, Bouzigues A, Russell LL, Foster PH, Ferry-Bolder E, Heller C, van Swieten JC, Jiskoot LC, Seelaar H, Moreno F, Sanchez-Valle R, Galimberti D, Laforce R, Graff C, Masellis M, Tartaglia MC, Rowe JB, Finger E, Vandenberghe R, de Mendonça A, Butler CR, Gerhard A, Ducharme S, Le Ber I, Tiraboschi P, Santana I, Pasquier F, Synofzik M, Levin J, Otto M, Sorbi S, Rohrer JD, Borroni B. Impaired glymphatic system in genetic frontotemporal dementia: a GENFI study. Brain Commun 2024; 6:fcae185. [PMID: 39015769 PMCID: PMC11249959 DOI: 10.1093/braincomms/fcae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/30/2024] [Accepted: 06/13/2024] [Indexed: 07/18/2024] Open
Abstract
The glymphatic system is an emerging target in neurodegenerative disorders. Here, we investigated the activity of the glymphatic system in genetic frontotemporal dementia with a diffusion-based technique called diffusion tensor image analysis along the perivascular space. We investigated 291 subjects with symptomatic or presymptomatic frontotemporal dementia (112 with chromosome 9 open reading frame 72 [C9orf72] expansion, 119 with granulin [GRN] mutations and 60 with microtubule-associated protein tau [MAPT] mutations) and 83 non-carriers (including 50 young and 33 old non-carriers). We computed the diffusion tensor image analysis along the perivascular space index by calculating diffusivities in the x-, y- and z-axes of the plane of the lateral ventricle body. Clinical stage and blood-based markers were considered. A subset of 180 participants underwent cognitive follow-ups for a total of 640 evaluations. The diffusion tensor image analysis along the perivascular space index was lower in symptomatic frontotemporal dementia (estimated marginal mean ± standard error, 1.21 ± 0.02) than in old non-carriers (1.29 ± 0.03, P = 0.009) and presymptomatic mutation carriers (1.30 ± 0.01, P < 0.001). In mutation carriers, lower diffusion tensor image analysis along the perivascular space was associated with worse disease severity (β = -1.16, P < 0.001), and a trend towards a significant association between lower diffusion tensor image analysis along the perivascular space and higher plasma neurofilament light chain was reported (β = -0.28, P = 0.063). Analysis of longitudinal data demonstrated that worsening of disease severity was faster in patients with low diffusion tensor image analysis along the perivascular space at baseline than in those with average (P = 0.009) or high (P = 0.006) diffusion tensor image analysis along the perivascular space index. Using a non-invasive imaging approach as a proxy for glymphatic system function, we demonstrated glymphatic system abnormalities in the symptomatic stages of genetic frontotemporal dementia. Such measures of the glymphatic system may elucidate pathophysiological processes in human frontotemporal dementia and facilitate early phase trials of genetic frontotemporal dementia.
Collapse
Affiliation(s)
- Enrico Premi
- Stroke Unit, ASST Spedali Civili Brescia, Brescia, 25123, Italy
| | - Matteo Diano
- Department of Psychology, University of Torino, Turin, 10124, Italy
| | - Irene Mattioli
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, 25123, Italy
| | - Daniele Altomare
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, 25123, Italy
| | - Valentina Cantoni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, 25123, Italy
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N, UK
- Centre for Cognitive and Clinical Neuroscience, Division of Psychology, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, London, UB8 3PN, UK
| | | | - Emanuele Buratti
- International Centre for Genetic Enginneering and Biotechnology, Trieste, 34149, Italy
| | - Marta Pengo
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, 25123, Italy
| | - Arabella Bouzigues
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N, UK
| | - Lucy L Russell
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N, UK
| | - Phoebe H Foster
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N, UK
| | - Eve Ferry-Bolder
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N, UK
| | - Carolin Heller
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N, UK
| | - John C van Swieten
- Department of Neurology, Erasmus Medical Centre, Rotterdam, 2040 3000, The Netherlands
| | - Lize C Jiskoot
- Department of Neurology, Erasmus Medical Centre, Rotterdam, 2040 3000, The Netherlands
| | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, Rotterdam, 2040 3000, The Netherlands
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, 20014, Spain
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, 20014, Spain
| | - Raquel Sanchez-Valle
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d’Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, 08036, Spain
| | - Daniela Galimberti
- Fondazione Ca’ Granda, IRCCS Ospedale Policlinico, Milan, 20122, Italy
- Centro Dino Ferrari, University of Milan, Milan, 20122, Italy
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, Faculté de Médecine, Université Laval, Quebec City, G1V 0A6, Canada
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Solna, 17177, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, 17177, Sweden
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 1TN, UK
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON N6A 5A5, Canada
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, 3000, Belgium
- Neurology Service, University Hospitals Leuven, Leuven, 3000, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium
| | | | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, OX1 4BH, UK
- Department of Brain Sciences, Imperial College London, London, SW7 2BX, UK
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, M13 9GB, UK
- Department of Geriatric Medicine, University of Duisburg-Essen, Duisburg, 47057, Germany
- Department of Nuclear Medicine, University of Duisburg-Essen, Duisburg, 47057, Germany
| | - Simon Ducharme
- Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, H3H 2R9, Québec, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, H3H 2R9, Québec, Canada
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute—Institut du Cerveau—ICM, Inserm U1127, CNRS UMR 7225, Paris, 75013, France
- Centre de Référence des Démences Rares ou Précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, 75651, France
- Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, 5783, France
| | - Pietro Tiraboschi
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, 20133, Italy
| | - Isabel Santana
- Neurology Service, Faculty of Medicine, University Hospital of Coimbra (HUC), University of Coimbra, Coimbra, 3000-214, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, 3000-214, Portugal
| | - Florence Pasquier
- University of Lille, Lille, 59000, France
- Inserm 1172, Lille, Lille, 59000, France
- CHU, CNR-MAJ, Labex Distalz, LiCEND Lille, Lille, 59000, France
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, 72074, Germany
- Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians Universität München, Munich, 80539, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, 81377, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, 81377, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, 89081, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Florence, 50139, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, 50124, Italy
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N, UK
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, 25123, Italy
- Department of Continuity of Care and Frailty, ASST Spedali Civili Brescia, Brescia, 25123, Italy
| |
Collapse
|
2
|
Kertesz A, Finger E, Munoz DG. Progress in Primary Progressive Aphasia: A Review. Cogn Behav Neurol 2024; 37:3-12. [PMID: 38498721 DOI: 10.1097/wnn.0000000000000365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/07/2023] [Indexed: 03/20/2024]
Abstract
We present a review of the definition, classification, and epidemiology of primary progressive aphasia (PPA); an update of the taxonomy of the clinical syndrome of PPA; and recent advances in the neuroanatomy, pathology, and genetics of PPA, as well as the search for biomarkers and treatment. PPA studies that have contributed to concepts of language organization and disease propagation in neurodegeneration are also reviewed. In addition, the issues of heterogeneity versus the relationships of the clinical phenotypes and their relationship to biological, pathological, and genetic advances are discussed, as is PPA's relationship to other conditions such as frontotemporal dementia, corticobasal degeneration, progressive supranuclear palsy, Pick disease, and amyotrophic lateral sclerosis. Arguments are presented in favor of considering these conditions as one entity versus many.
Collapse
Affiliation(s)
- Andrew Kertesz
- Department of Clinical Neurosciences, Western University Schulich School of Medicine & Dentistry, London, Ontario, Canada
| | - Elizabeth Finger
- Department of Clinical Neurosciences, Western University Schulich School of Medicine & Dentistry, London, Ontario, Canada
| | - David G Munoz
- Department of Pathology, St Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Cousins KAQ, Shaw LM, Chen-Plotkin A, Wolk DA, Van Deerlin VM, Lee EB, McMillan CT, Grossman M, Irwin DJ. Distinguishing Frontotemporal Lobar Degeneration Tau From TDP-43 Using Plasma Biomarkers. JAMA Neurol 2022; 79:1155-1164. [PMID: 36215050 PMCID: PMC9552044 DOI: 10.1001/jamaneurol.2022.3265] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/05/2022] [Indexed: 01/14/2023]
Abstract
Importance Biomarkers are lacking that can discriminate frontotemporal lobar degeneration (FTLD) associated with tau (FTLD-tau) or TDP-43 (FTLD-TDP). Objective To test whether plasma biomarkers glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), or their ratio (GFAP/NfL) differ between FTLD-tau and FTLD-TDP. Design, Setting, and Participants This retrospective cross-sectional study included data from 2009 to 2020 from the University of Pennsylvania Integrated Neurodegenerative Disease Database, with a median (IQR) follow-up duration of 2 (0.3-4.2) years. The training sample was composed of patients with autopsy-confirmed and familial FTLD; nonimpaired controls were included as a reference group. The independent validation sample included patients with FTD with a clinical diagnosis of progressive supranuclear palsy syndrome (PSPS) associated with tau (PSPS-tau) or amytrophic lateral sclerosis (ALS) associated with TDP-43 (ALS-TDP). In patients with FTLD with autopsy-confirmed or variant-confirmed pathology, receiver operating characteristic (ROC) curves tested the GFAP/NfL ratio and established a pathology-confirmed cut point. The cut point was validated in an independent sample of patients with clinical frontotemporal dementia (FTD). Data were analyzed from February to July 2022. Exposures Clinical, postmortem histopathological assessments, and plasma collection. Main Outcomes and Measures ROC and area under the ROC curve (AUC) with 90% CIs evaluated discrimination of pure FTLD-tau from pure FTLD-TDP using plasma GFAP/NfL ratio; the Youden index established optimal cut points. Sensitivity and specificity of cut points were assessed in an independent validation sample. Results Of 349 participants with available plasma data, 234 met inclusion criteria (31 controls, 141 in the training sample, and 62 in the validation sample). In the training sample, patients with FTLD-tau were older than patients with FTLD-TDP (FTLD-tau: n = 46; mean [SD] age, 65.8 [8.29] years; FTLD-TDP: n = 95; mean [SD] age, 62.3 [7.82] years; t84.6 = 2.45; mean difference, 3.57; 95% CI, 0.67-6.48; P = .02) but with similar sex distribution (FTLD-tau: 27 of 46 [59%] were male; FTLD-TDP: 51 of 95 [54%] were male; χ21 = 0.14; P = .70). In the validation sample, patients with PSPS-tau were older than those with ALS-TDP (PSPS-tau: n = 31; mean [SD] age, 69.3 [7.35] years; ALS-TDP: n = 31; mean [SD] age, 54.6 [10.17] years; t54.6 = 6.53; mean difference, 14.71; 95% CI, 10.19-19.23; P < .001) and had fewer patients who were male (PSPS-tau: 9 of 31 [29%] were male; ALS-TDP: 22 of 31 [71%] were male; χ21 = 9.3; P = .002). ROC revealed excellent discrimination of FTLD-tau from FTLD-TDP by plasma GFAP/NfL ratio (AUC = 0.89; 90% CI, 0.82-0.95; sensitivity = 0.73; 90% CI, 0.65-0.89; specificity = 0.89; 90% CI, 0.78-0.98), which was higher than either GFAP level alone (AUC = 0.65; 90% CI, 0.54-0.76) or NfL levels alone (AUC = 0.75; 90% CI, 0.64-0.85). In the validation sample, there was sensitivity of 0.84 (90% CI, 0.66-0.94) and specificity of 0.81 (90% CI, 0.62-0.91) when applying the autopsy-derived plasma GFAP/NfL threshold. Conclusions and Relevance The plasma ratio of GFAP/NfL may discriminate FTLD-tau from FTLD-TDP.
Collapse
Affiliation(s)
- Katheryn A. Q. Cousins
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - David A. Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | | | - Edward B. Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
| | - Corey T. McMillan
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Murray Grossman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - David J. Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
4
|
Bolsewig K, Hok-A-Hin Y, Sepe F, Boonkamp L, Jacobs D, Bellomo G, Paoletti FP, Vanmechelen E, Teunissen C, Parnetti L, Willemse E. A Combination of Neurofilament Light, Glial Fibrillary Acidic Protein, and Neuronal Pentraxin-2 Discriminates Between Frontotemporal Dementia and Other Dementias. J Alzheimers Dis 2022; 90:363-380. [DOI: 10.3233/jad-220318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The differential diagnosis of frontotemporal dementia (FTD) is still a challenging task due to its symptomatic overlap with other neurological diseases and the lack of biofluid-based biomarkers. Objective: To investigate the diagnostic potential of a combination of novel biomarkers in cerebrospinal fluid (CSF) and blood. Methods: We included 135 patients from the Centre for Memory Disturbances, University of Perugia, with the diagnoses FTD (n = 37), mild cognitive impairment due to Alzheimer’s disease (MCI-AD, n = 47), Lewy body dementia (PDD/DLB, n = 22), and cognitively unimpaired patients as controls (OND, n = 29). Biomarker levels of neuronal pentraxin-2 (NPTX2), neuronal pentraxin receptor, neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) were measured in CSF, as well as NfL and GFAP in serum. We assessed biomarker differences by analysis of covariance and generalized linear models (GLM). We performed receiver operating characteristics analyses and Spearman correlation to determine biomarker associations. Results: CSF NPTX2 and serum GFAP levels varied most between diagnostic groups. The combination of CSF NPTX2, serum NfL and serum GFAP differentiated FTD from the other groups with good accuracy FTD versus MCI-AD: area under the curve (AUC [95% CI] = 0.89 [0.81–0.96]; FTD versus PDD/DLB: AUC = 0.82 [0.71–0.93]; FTD versus OND: AUC = 0.80 [0.70–0.91]). CSF NPTX2 and serum GFAP correlated positively only in PDD/DLB (ρ= 0.56, p < 0.05). NPTX2 and serum NfL did not correlate in any of the diagnostic groups. Serum GFAP and serum NfL correlated positively in all groups (ρ= 0.47–0.74, p < 0.05). Conclusion: We show the combined potential of CSF NPTX2, serum NfL, and serum GFAP to differentiate FTD from other neurodegenerative disorders.
Collapse
Affiliation(s)
- Katharina Bolsewig
- Department of Clinical Chemistry, Neuro chemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam UMC, VU University, The Netherlands
| | - Yanaika Hok-A-Hin
- Department of Clinical Chemistry, Neuro chemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam UMC, VU University, The Netherlands
| | - Federica Sepe
- Department of Clinical Chemistry, Neuro chemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam UMC, VU University, The Netherlands
- Department of Medicine and Surgery, Laboratory of Clinical Neuro chemistry, University of Perugia, Perugia, Italy
| | - Lynn Boonkamp
- Department of Clinical Chemistry, Neuro chemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam UMC, VU University, The Netherlands
| | | | - Giovanni Bellomo
- Department of Medicine and Surgery, Laboratory of Clinical Neuro chemistry, University of Perugia, Perugia, Italy
| | - Federico Paolini Paoletti
- Department of Medicine and Surgery, Laboratory of Clinical Neuro chemistry, University of Perugia, Perugia, Italy
| | | | - Charlotte Teunissen
- Department of Clinical Chemistry, Neuro chemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam UMC, VU University, The Netherlands
| | - Lucilla Parnetti
- Department of Medicine and Surgery, Laboratory of Clinical Neuro chemistry, University of Perugia, Perugia, Italy
| | - Eline Willemse
- Department of Clinical Chemistry, Neuro chemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam UMC, VU University, The Netherlands
| |
Collapse
|
5
|
Serum glial fibrillary acidic protein is a body fluid biomarker: A valuable prognostic for neurological disease – A systematic review. Int Immunopharmacol 2022; 107:108624. [DOI: 10.1016/j.intimp.2022.108624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 12/14/2022]
|
6
|
Boeve BF, Boxer AL, Kumfor F, Pijnenburg Y, Rohrer JD. Advances and controversies in frontotemporal dementia: diagnosis, biomarkers, and therapeutic considerations. Lancet Neurol 2022; 21:258-272. [DOI: 10.1016/s1474-4422(21)00341-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/16/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022]
|
7
|
McGrath ER, Beiser AS, O'Donnell A, Yang Q, Ghosh S, Gonzales MM, Himali JJ, Satizabal CL, Johnson KA, Tracy RP, Seshadri S. Blood Phosphorylated Tau 181 as a Biomarker for Amyloid Burden on Brain PET in Cognitively Healthy Adults. J Alzheimers Dis 2022; 87:1517-1526. [PMID: 35491781 DOI: 10.3233/jad-215639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Plasma phosphorylated-tau181 (p-tau181) is a promising biomarker for Alzheimer's disease (AD) and may offer utility for predicting preclinical disease. OBJECTIVE To evaluate the prospective association between plasma p-tau181 and amyloid-β (Aβ) and tau-PET deposition in cognitively unimpaired individuals. METHODS Plasma p-tau181 levels were measured at baseline in 52 [48% women, mean 64.4 (SD 5.5) years] cognitively unimpaired Framingham Offspring cohort participants using samples stored between 2011-2014 who subsequently underwent 11C-Pittsburgh Compound-B (PiB)-PET and/or 18F-Flortaucipir (FTP)-PET scans (n = 18 with tau-PET) a mean of 6.8 (SD 0.6) years later. Our primary outcomes included Aβ-precuneus, Aβ-FLR (frontal, lateral, and retrosplenial cortices) and tau-global composite region PET deposition. Secondary outcomes included individual regional Aβ and tau PET-deposition. P-tau181 was compared with plasma neurofilament light chain (NFL) and glial fibrillary acidic protein (GFAP) in predicting PET outcomes. RESULTS P-tau181 was associated with increased Aβ deposition in the FLR (β±SE, 1.25±0.30, p < 0.0001), precuneus (1.35±0.29, p < 0.001), and other cortical regions. Plasma NFL (1.30±0.49, p = 0.01) and GFAP (1.46±0.39, p < 0.001) were also associated with FLR Aβ deposition. In models including all three biomarkers adjusted for age, sex, APOE E4 allele, AD polygenic risk score and cortical atrophy score, p-tau181 (0.93±0.31, p < 0.01, R2 = 0.18) and GFAP (0.93±0.41, p = 0.03, R2 = 0.11), but not NFL (0.25±0.51, p = 0.62, R2 = 0.01), were associated with FLR-Aβ deposition. Plasma p-tau181 was not associated with tau-PET burden. CONCLUSION In cognitively unimpaired adults, elevated plasma p-tau181 is associated with future increased Aβ deposition across multiple brain regions. Our results highlight the potential utility of p-tau181 as a blood-biomarker to screen for brain-amyloid deposition in cognitively healthy individuals in a community-setting.
Collapse
Affiliation(s)
- Emer R McGrath
- HRB Clinical Research Facility, National University of Ireland Galway, Galway, Ireland
- The Framingham Heart Study, Framingham, MA, USA
| | - Alexa S Beiser
- The Framingham Heart Study, Framingham, MA, USA
- Boston University School of Public Health, Boston, MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Adrienne O'Donnell
- The Framingham Heart Study, Framingham, MA, USA
- Boston University School of Public Health, Boston, MA, USA
| | - Qiong Yang
- The Framingham Heart Study, Framingham, MA, USA
- Boston University School of Public Health, Boston, MA, USA
| | - Saptaparni Ghosh
- The Framingham Heart Study, Framingham, MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Mitzi M Gonzales
- The Framingham Heart Study, Framingham, MA, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Jayandra J Himali
- The Framingham Heart Study, Framingham, MA, USA
- Boston University School of Public Health, Boston, MA, USA
- Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Claudia L Satizabal
- The Framingham Heart Study, Framingham, MA, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Keith A Johnson
- Department of Radiology, Massachusetts General Hospital, the Gordon Center for Medical Imaging and the Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Sudha Seshadri
- The Framingham Heart Study, Framingham, MA, USA
- Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| |
Collapse
|
8
|
Zhu N, Santos-Santos M, Illán-Gala I, Montal V, Estellés T, Barroeta I, Altuna M, Arranz J, Muñoz L, Belbin O, Sala I, Sánchez-Saudinós MB, Subirana A, Videla L, Pegueroles J, Blesa R, Clarimón J, Carmona-Iragui M, Fortea J, Lleó A, Alcolea D. Plasma glial fibrillary acidic protein and neurofilament light chain for the diagnostic and prognostic evaluation of frontotemporal dementia. Transl Neurodegener 2021; 10:50. [PMID: 34893073 PMCID: PMC8662866 DOI: 10.1186/s40035-021-00275-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Astrocytes play an essential role in neuroinflammation and are involved in the pathogenesis of neurodenegerative diseases. Studies of glial fibrillary acidic protein (GFAP), an astrocytic damage marker, may help advance our understanding of different neurodegenerative diseases. In this study, we investigated the diagnostic performance of plasma GFAP (pGFAP), plasma neurofilament light chain (pNfL) and their combination for frontotemporal dementia (FTD) and Alzheimer's disease (AD) and their clinical utility in predicting disease progression. METHODS pGFAP and pNfL concentrations were measured in 72 FTD, 56 AD and 83 cognitively normal (CN) participants using the Single Molecule Array technology. Of the 211 participants, 199 underwent cerebrospinal (CSF) analysis and 122 had magnetic resonance imaging. We compared cross-sectional biomarker levels between groups, studied their diagnostic performance and assessed correlation between CSF biomarkers, cognitive performance and cortical thickness. The prognostic performance was investigated, analyzing cognitive decline through group comparisons by tertile. RESULTS Unlike pNfL, which was increased similarly in both clinical groups, pGFAP was increased in FTD but lower than in AD (all P < 0.01). Combination of both plasma markers improved the diagnostic performance to discriminate FTD from AD (area under the curve [AUC]: combination 0.78; pGFAP 0.7; pNfL 0.61, all P < 0.05). In FTD, pGFAP correlated with cognition, CSF and plasma NfL, and cortical thickness (all P < 0.05). The higher tertile of pGFAP was associated with greater change in MMSE score and poor cognitive outcome during follow-up both in FTD (1.40 points annually, hazard ratio [HR] 3.82, P < 0.005) and in AD (1.20 points annually, HR 2.26, P < 0.005). CONCLUSIONS pGFAP and pNfL levels differ in FTD and AD, and their combination is useful for distinguishing between the two diseases. pGFAP could also be used to track disease severity and predict greater cognitive decline during follow-up in patients with FTD.
Collapse
Affiliation(s)
- Nuole Zhu
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.,Autonomous University of Barcelona, 08913, Barcelona, Spain
| | - Miguel Santos-Santos
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Ignacio Illán-Gala
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Victor Montal
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain
| | - Teresa Estellés
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Isabel Barroeta
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Miren Altuna
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Javier Arranz
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Laia Muñoz
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Olivia Belbin
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Isabel Sala
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Maria Belén Sánchez-Saudinós
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Andrea Subirana
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Laura Videla
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.,Fundación Catalana Síndrome de Down, Centre Mèdic Down, 08029, Barcelona, Spain
| | - Jordi Pegueroles
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain
| | - Rafael Blesa
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain
| | - Jordi Clarimón
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Maria Carmona-Iragui
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.,Fundación Catalana Síndrome de Down, Centre Mèdic Down, 08029, Barcelona, Spain
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.,Fundación Catalana Síndrome de Down, Centre Mèdic Down, 08029, Barcelona, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain. .,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain. .,Autonomous University of Barcelona, 08913, Barcelona, Spain.
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain. .,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain. .,Autonomous University of Barcelona, 08913, Barcelona, Spain.
| |
Collapse
|
9
|
Sogorb-Esteve A, Swift IJ, Woollacott IOC, Warren JD, Zetterberg H, Rohrer JD. Differential chemokine alteration in the variants of primary progressive aphasia-a role for neuroinflammation. J Neuroinflammation 2021; 18:224. [PMID: 34602080 PMCID: PMC8489077 DOI: 10.1186/s12974-021-02247-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 08/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The primary progressive aphasias (PPA) represent a group of usually sporadic neurodegenerative disorders with three main variants: the nonfluent or agrammatic variant (nfvPPA), the semantic variant (svPPA), and the logopenic variant (lvPPA). They are usually associated with a specific underlying pathology: nfvPPA with a primary tauopathy, svPPA with a TDP-43 proteinopathy, and lvPPA with underlying Alzheimer's disease (AD). Little is known about their cause or pathophysiology, but prior studies in both AD and svPPA have suggested a role for neuroinflammation. In this study, we set out to investigate the role of chemokines across the PPA spectrum, with a primary focus on central changes in cerebrospinal fluid (CSF) METHODS: Thirty-six participants with sporadic PPA (11 svPPA, 13 nfvPPA, and 12 lvPPA) as well as 19 healthy controls were recruited to the study and donated CSF and plasma samples. All patients with lvPPA had a tau/Aβ42 biomarker profile consistent with AD, whilst this was normal in the other PPA groups and controls. We assessed twenty chemokines in CSF and plasma using Proximity Extension Assay technology: CCL2 (MCP-1), CCL3 (MIP-1a), CCL4 (MIP-1β), CCL7 (MCP-3), CCL8 (MCP-2), CCL11 (eotaxin), CCL13 (MCP-4), CCL19, CCL20, CCL23, CCL25, CCL28, CX3CL1 (fractalkine), CXCL1, CXCL5, CXCL6, CXCL8 (IL-8), CXCL9, CXCL10, and CXCL11. RESULTS In CSF, CCL19 and CXCL6 were decreased in both svPPA and nfvPPA compared with controls whilst CXCL5 was decreased in the nfvPPA group with a borderline significant decrease in the svPPA group. In contrast, CCL2, CCL3 and CX3CL1 were increased in lvPPA compared with controls and nfvPPA (and greater than svPPA for CX3CL1). CXCL1 was also increased in lvPPA compared with nfvPPA but not the other groups. CX3CL1 was significantly correlated with CSF total tau concentrations in the controls and each of the PPA groups. Fewer significant differences were seen between groups in plasma, although in general, results were in the opposite direction to CSF, i.e. decreased in lvPPA compared with controls (CCL3 and CCL19), and increased in svPPA (CCL8) and nfvPPA (CCL13). CONCLUSION Differential alteration of chemokines across the PPA variants is seen in both CSF and plasma. Importantly, these results suggest a role for neuroinflammation in these poorly understood sporadic disorders, and therefore also a potential future therapeutic target.
Collapse
Affiliation(s)
- Aitana Sogorb-Esteve
- UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, University College London, London, UK
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Imogen J Swift
- UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, University College London, London, UK
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Ione O C Woollacott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Jason D Warren
- UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
| |
Collapse
|
10
|
Verde F, Otto M, Silani V. Neurofilament Light Chain as Biomarker for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Front Neurosci 2021; 15:679199. [PMID: 34234641 PMCID: PMC8255624 DOI: 10.3389/fnins.2021.679199] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two related currently incurable neurodegenerative diseases. ALS is characterized by degeneration of upper and lower motor neurons causing relentless paralysis of voluntary muscles, whereas in FTD, progressive atrophy of the frontal and temporal lobes of the brain results in deterioration of cognitive functions, language, personality, and behavior. In contrast to Alzheimer's disease (AD), ALS and FTD still lack a specific neurochemical biomarker reflecting neuropathology ex vivo. However, in the past 10 years, considerable progress has been made in the characterization of neurofilament light chain (NFL) as cerebrospinal fluid (CSF) and blood biomarker for both diseases. NFL is a structural component of the axonal cytoskeleton and is released into the CSF as a consequence of axonal damage or degeneration, thus behaving in general as a relatively non-specific marker of neuroaxonal pathology. However, in ALS, the elevation of its CSF levels exceeds that observed in most other neurological diseases, making it useful for the discrimination from mimic conditions and potentially worthy of consideration for introduction into diagnostic criteria. Moreover, NFL correlates with disease progression rate and is negatively associated with survival, thus providing prognostic information. In FTD patients, CSF NFL is elevated compared with healthy individuals and, to a lesser extent, patients with other forms of dementia, but the latter difference is not sufficient to enable a satisfying diagnostic performance at individual patient level. However, also in FTD, CSF NFL correlates with several measures of disease severity. Due to technological progress, NFL can now be quantified also in peripheral blood, where it is present at much lower concentrations compared with CSF, thus allowing less invasive sampling, scalability, and longitudinal measurements. The latter has promoted innovative studies demonstrating longitudinal kinetics of NFL in presymptomatic individuals harboring gene mutations causing ALS and FTD. Especially in ALS, NFL levels are generally stable over time, which, together with their correlation with progression rate, makes NFL an ideal pharmacodynamic biomarker for therapeutic trials. In this review, we illustrate the significance of NFL as biomarker for ALS and FTD and discuss unsolved issues and potential for future developments.
Collapse
Affiliation(s)
- Federico Verde
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| | - Markus Otto
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Vincenzo Silani
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
11
|
Ashton NJ, Suárez‐Calvet M, Karikari TK, Lantero‐Rodriguez J, Snellman A, Sauer M, Simrén J, Minguillon C, Fauria K, Blennow K, Zetterberg H. Effects of pre-analytical procedures on blood biomarkers for Alzheimer's pathophysiology, glial activation, and neurodegeneration. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12168. [PMID: 34124336 PMCID: PMC8171159 DOI: 10.1002/dad2.12168] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022]
Abstract
INTRODUCTION We tested how tube types (ethylenediaminetetraacetic acid [EDTA], serum, lithium heparin [LiHep], and citrate) and freeze-thaw cycles affect levels of blood biomarkers for Alzheimer's disease (AD) pathophysiology, glial activation, and neuronal injury. METHODS Amyloid beta (Aβ)42, Aβ40, phosphorylated tau181 (p-tau181), glial fibrillary acidic protein, total tau (t-tau), neurofilament light, and phosphorylated neurofilament heavy protein were measured using single molecule arrays. RESULTS LiHep demonstrated the highest mean value for all biomarkers. Tube types were highly correlated for most biomarkers (r > 0.95) but gave significantly different absolute concentrations. Weaker correlations between tube types were found for Aβ42/40 (r = 0.63-0.86) and serum t-tau (r = 0.46-0.64). Freeze-thaw cycles highly influenced levels of serum Aβ and t-tau (P < .0001), and minor decreases in EDTA Aβ40 and EDTA p-tau181 were found after freeze-thaw cycle 4 (P < .05). DISCUSSION The same tube type should be used in research studies on blood biomarkers. Individual concentration cut-offs are needed for each tube type in all tested biomarkers despite being highly correlated. Serum should be avoided for Aβ42, Aβ40, and t-tau. Freeze-thaw cycles > 3 should be avoided for p-tau181.
Collapse
Affiliation(s)
- Nicholas J. Ashton
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational MedicineDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Department of Old Age PsychiatryPsychology & NeuroscienceKing's College LondonInstitute of PsychiatryLondonUK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS FoundationLondonUK
| | - Marc Suárez‐Calvet
- Pasqual Maragall FoundationBarcelonaβeta Brain Research Center (BBRC)BarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
- Servei de NeurologiaHospital del MarBarcelonaSpain
| | - Thomas K. Karikari
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Juan Lantero‐Rodriguez
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Anniina Snellman
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Turku PET CentreUniversity of TurkuTurkuFinland
| | - Mathias Sauer
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Joel Simrén
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Carolina Minguillon
- Pasqual Maragall FoundationBarcelonaβeta Brain Research Center (BBRC)BarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Karine Fauria
- Pasqual Maragall FoundationBarcelonaβeta Brain Research Center (BBRC)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
| |
Collapse
|
12
|
Karantali E, Kazis D, Chatzikonstantinou S, Petridis F, Mavroudis I. The role of neurofilament light chain in frontotemporal dementia: a meta-analysis. Aging Clin Exp Res 2021; 33:869-881. [PMID: 32306372 DOI: 10.1007/s40520-020-01554-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
Frontotemporal dementia (FTD) is the second most frequent dementia, after Alzheimer's, in patients under the age of 65. It encompasses clinical entities characterized by behavioral, language, and executive control dysfunction. Neurofilament light chain (NfL) is a new, non-disease specific, widely studied biomarker indicative of axonal injury and degeneration. Various studies have previously explored the role of NfL in the diagnostic process, monitoring, and prognosis of dementia. The current systematic review and meta-analysis include all the available data concerning the role of NfL in frontotemporal dementia and its use as a potential biomarker in differentiating patients with FTD from (a) healthy individuals, (b) Alzheimer's dementia, (c) Dementia with Lewy bodies, (d) Motor Neuron disease, (e) Parkinsonian syndromes, and (f) psychiatric disorders. We also analyze the utility of NfL in distinguishing specific FTD subgroups. Neurofilament light chain has a potential role in differentiating patients with frontotemporal dementia from healthy controls, patients with Alzheimer's dementia, and psychiatric disorders. Higher NfL levels were also noted in patients with semantic primary progressive aphasia (PPA) when compared with behavioral FTD and non-fluent PPA patients. Further studies exploring the use of NfL in frontotemporal dementia are needed.
Collapse
Affiliation(s)
- Eleni Karantali
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Fivos Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Mavroudis
- Leeds Teaching Hospitals, Leeds, UK
- Medical School, Cyprus University, Nicosia, Cyprus
| |
Collapse
|