1
|
Grassano M, Canosa A, D’Alfonso S, Corrado L, Brodini G, Koumantakis E, Cugnasco P, Manera U, Vasta R, Palumbo F, Mazzini L, Gallone S, Moglia C, Dewan R, Chia R, Ding J, Dalgard C, Gibbs RJ, Scholz S, Calvo A, Traynor B, Chio A. Intermediate HTT CAG repeats worsen disease severity in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2024; 96:100-102. [PMID: 39242198 PMCID: PMC11672072 DOI: 10.1136/jnnp-2024-333998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/23/2024] [Indexed: 09/09/2024]
Affiliation(s)
- Maurizio Grassano
- Department of Neurosciences Rita Levi Montalcini, University of Turin, Torino, Piemonte, Italy
- National Institute on Aging Laboratory of Neurogenetics, Bethesda, Maryland, USA
| | - Antonio Canosa
- Department of Neurosciences Rita Levi Montalcini, University of Turin, Torino, Piemonte, Italy
| | - Sandra D’Alfonso
- Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases, University of Eastern Piedmont Amedeo Avogadro School of Medicine, Novara, Piemonte, Italy
| | - Lucia Corrado
- Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases, University of Eastern Piedmont Amedeo Avogadro School of Medicine, Novara, Piemonte, Italy
| | - Giorgia Brodini
- Department of Neurosciences Rita Levi Montalcini, University of Turin, Torino, Piemonte, Italy
| | | | - Paolo Cugnasco
- Department of Neurosciences Rita Levi Montalcini, University of Turin, Torino, Piemonte, Italy
| | - Umberto Manera
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Piemonte, Italy
| | - Rosario Vasta
- Department of Neurosciences Rita Levi Montalcini, University of Turin, Torino, Piemonte, Italy
| | - Francesca Palumbo
- Department of Neurosciences Rita Levi Montalcini, University of Turin, Torino, Piemonte, Italy
| | - Letizia Mazzini
- University Hospital Maggiore della Carità, Novara, Piemonte, Italy
- University of Eastern Piedmont Amedeo Avogadro School of Medicine, Novara, Piemonte, Italy
| | - Salvatore Gallone
- Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Piemonte, Italy
| | - Cristina Moglia
- Department of Neurosciences Rita Levi Montalcini, University of Turin, Torino, Piemonte, Italy
| | - Ramita Dewan
- National Institute on Aging Laboratory of Neurogenetics, Bethesda, Maryland, USA
| | - Ruth Chia
- National Institute on Aging Laboratory of Neurogenetics, Bethesda, Maryland, USA
| | - Jinhui Ding
- National Institute on Aging Laboratory of Neurogenetics, Bethesda, Maryland, USA
| | - Clifton Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Raphael J Gibbs
- National Institute on Aging Laboratory of Neurogenetics, Bethesda, Maryland, USA
| | - Sonja Scholz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrea Calvo
- Department of Neurosciences Rita Levi Montalcini, University of Turin, Torino, Piemonte, Italy
| | - Bryan Traynor
- National Institute on Aging Laboratory of Neurogenetics, Bethesda, Maryland, USA
- Johns Hopkins University, Baltimore, Maryland, USA
| | - Adriano Chio
- Department of Neurosciences Rita Levi Montalcini, University of Turin, Torino, Piemonte, Italy
| |
Collapse
|
2
|
Yang T, Wei Q, Pang D, Cheng Y, Huang J, Lin J, Xiao Y, Jiang Q, Wang S, Li C, Shang H. Mutation Screening of ATXN1, ATXN2, and ATXN3 in Amyotrophic Lateral Sclerosis. Mol Neurobiol 2024:10.1007/s12035-024-04600-y. [PMID: 39496878 DOI: 10.1007/s12035-024-04600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/27/2024] [Indexed: 11/06/2024]
Abstract
Emerging evidence suggests potential disease modifying roles of ATXN1, ATXN2, and ATXN3 in amyotrophic lateral sclerosis (ALS). We aimed to provide a comprehensive variants profile of the ATXN1, ATXN2, and ATXN3 genes and examine the association of these variants with the risk and clinical characteristics of ALS. We screened and analyzed the rare variants in a cohort of 2220 ALS patients from Southwest China, using controls from the Genome Aggregation Database (gnomAD) and the China Metabolic Analytics Project (ChinaMAP). The over-representation of rare variants and their association with disease risk in ALS patients were assessed using Fisher's exact test with Bonferroni correction at both allele and gene levels. Kaplan-Meier analysis was employed to explore the relationship between the distribution of variants and survival. A total of 62 eligible rare missense variants were identified, comprising 32 from ATXN1, 21 from ATXN2, and 9 from ATXN3. Allelic association testing revealed a significant enrichment of the ATXN1 (c.2122C > G, p.Leu708Val) variant and the ATXN2 (c.3778C > G, p.Pro1260Ala) variant in ALS. Gene burden analysis indicated that variants in the ATXN1 and ATXN3 genes had a higher burden in ALS. Substantial heterogeneity in survival time was observed among patients carrying different variants within the same gene. However, there were no significant differences in survival between ALS patients grouped by N-terminal or C-terminal distribution. Our results provided a genetic variation profile of ATXN1, ATXN2, and ATXN3 in ALS patients, along with the clinical characteristics of individuals carrying these variations. This information might offer valuable insights for the ongoing ALS disease-modifying treatments.
Collapse
Affiliation(s)
- Tianmi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Dejiang Pang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Yangfan Cheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Jingxuan Huang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Yi Xiao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Qirui Jiang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Shichan Wang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, China.
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Ferrari V, Conti M, Bovenzi R, Cerroni R, Pierantozzi M, Mercuri NB, Stefani A. Rare association between spinocerebellar ataxia and amyotrophic lateral sclerosis: a case series. Neurol Sci 2024; 45:4367-4371. [PMID: 38642323 PMCID: PMC11306432 DOI: 10.1007/s10072-024-07521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/08/2024] [Indexed: 04/22/2024]
Abstract
INTRODUCTION In this work, we describe a new case of association between SCA2 and MND. CASE REPORT A 58-year-old man who was diagnosed with spinocerebellar ataxia type 2 presented dysphagia and a significant decline in his ability to walk, with a reduction in autonomy and the need to use a wheelchair. We performed electromyography and electroneurography of the four limbs and of the cranial district and motor-evoked potentials to study upper and lower motor neurons. Referring to the revised El Escorial criteria of 2015, ALS diagnosis was made. DISCUSSION Considering different cases described in literature over the years, SCA2 could represent an important risk factor for developing ALS. In particular, the presence of alleles of ATXN2 with 27 and 28 CAG repeats seems to slightly decrease the risk of developing the disease, which would instead be progressively increased by the presence of alleles with 29, 30, 31, 32, and 33 repeats. The exact physiopathological mechanism by which the mutation increases the risk of developing the disease is currently unknown. Transcriptomic studies on mouse models have demonstrated the involvement of several pathways, including the innate immunity regulation by STING and the biosynthesis of fatty acid and cholesterol by SREBP. CONCLUSION CAG repeat expansions in the ATXN2 gene have been associated with variable neurological presentations, which include SCA2, ALS, Parkinsonism, or a combination of them. Further research is needed to understand the relationship between SCA2 and ALS better and explore molecular underlying mechanisms.
Collapse
Affiliation(s)
- Valerio Ferrari
- Parkinson Centre, Department of Systems Medicine, University of Rome "Tor Vergata,", Rome, Italy
| | - Matteo Conti
- Parkinson Centre, Department of Systems Medicine, University of Rome "Tor Vergata,", Rome, Italy
| | - Roberta Bovenzi
- Parkinson Centre, Department of Systems Medicine, University of Rome "Tor Vergata,", Rome, Italy
| | - Rocco Cerroni
- Parkinson Centre, Department of Systems Medicine, University of Rome "Tor Vergata,", Rome, Italy
| | - Mariangela Pierantozzi
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata,", Rome, Italy
| | - Nicola B Mercuri
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata,", Rome, Italy
| | - Alessandro Stefani
- Parkinson Centre, Department of Systems Medicine, University of Rome "Tor Vergata,", Rome, Italy.
| |
Collapse
|
4
|
Li L, Wang M, Huang L, Zheng X, Wang L, Miao H. Ataxin-2: a powerful RNA-binding protein. Discov Oncol 2024; 15:298. [PMID: 39039334 PMCID: PMC11263328 DOI: 10.1007/s12672-024-01158-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
Ataxin-2 (ATXN2) was originally discovered in the context of spinocerebellar ataxia type 2 (SCA2), but it has become a key player in various neurodegenerative diseases. This review delves into the multifaceted roles of ATXN2 in human diseases, revealing its diverse molecular and cellular pathways. The impact of ATXN2 on diseases extends beyond functional outcomes; it mainly interacts with various RNA-binding proteins (RBPs) to regulate different stages of post-transcriptional gene expression in diseases. With the progress of research, ATXN2 has also been found to play an important role in the development of various cancers, including breast cancer, gastric cancer, pancreatic cancer, colon cancer, and esophageal cancer. This comprehensive exploration underscores the crucial role of ATXN2 in the pathogenesis of diseases and warrants further investigation by the scientific community. By reviewing the latest discoveries on the regulatory functions of ATXN2 in diseases, this article helps us understand the complex molecular mechanisms of a series of human diseases related to this intriguing protein.
Collapse
Affiliation(s)
- Lulu Li
- School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Meng Wang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
| | - Lai Huang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Xiaoli Zheng
- School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China.
| | - Lina Wang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China.
| | - Hongming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
5
|
Rajan-Babu IS, Dolzhenko E, Eberle MA, Friedman JM. Sequence composition changes in short tandem repeats: heterogeneity, detection, mechanisms and clinical implications. Nat Rev Genet 2024; 25:476-499. [PMID: 38467784 DOI: 10.1038/s41576-024-00696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/13/2024]
Abstract
Short tandem repeats (STRs) are a class of repetitive elements, composed of tandem arrays of 1-6 base pair sequence motifs, that comprise a substantial fraction of the human genome. STR expansions can cause a wide range of neurological and neuromuscular conditions, known as repeat expansion disorders, whose age of onset, severity, penetrance and/or clinical phenotype are influenced by the length of the repeats and their sequence composition. The presence of non-canonical motifs, depending on the type, frequency and position within the repeat tract, can alter clinical outcomes by modifying somatic and intergenerational repeat stability, gene expression and mutant transcript-mediated and/or protein-mediated toxicities. Here, we review the diverse structural conformations of repeat expansions, technological advances for the characterization of changes in sequence composition, their clinical correlations and the impact on disease mechanisms.
Collapse
Affiliation(s)
- Indhu-Shree Rajan-Babu
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada.
| | | | | | - Jan M Friedman
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Borrego-Hernández D, Vázquez-Costa JF, Domínguez-Rubio R, Expósito-Blázquez L, Aller E, Padró-Miquel A, García-Casanova P, Colomina MJ, Martín-Arriscado C, Osta R, Cordero-Vázquez P, Esteban-Pérez J, Povedano-Panadés M, García-Redondo A. Intermediate Repeat Expansion in the ATXN2 Gene as a Risk Factor in the ALS and FTD Spanish Population. Biomedicines 2024; 12:356. [PMID: 38397958 PMCID: PMC10886453 DOI: 10.3390/biomedicines12020356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Intermediate CAG expansions in the gene ataxin-2 (ATXN2) are a known risk factor for ALS, but little is known about their role in FTD risk. Moreover, their contribution to the risk and phenotype of patients might vary in populations with different genetic backgrounds. The aim of this study was to assess the relationship of intermediate CAG expansions in ATXN2 with the risk and phenotype of ALS and FTD in the Spanish population. Repeat-primed PCR was performed in 620 ALS and 137 FTD patients in three referral centers in Spain to determine the exact number of CAG repeats. In our cohort, ≥27 CAG repeats in ATXN2 were associated with a higher risk of developing ALS (odds ratio [OR] = 2.666 [1.471-4.882]; p = 0.0013) but not FTD (odds ratio [OR] = 1.446 [0.558-3.574]; p = 0.44). Moreover, ALS patients with ≥27 CAG repeats in ATXN2 showed a shorter survival rate compared to those with <27 repeats (hazard ratio [HR] 1.74 [1.18, 2.56], p = 0.005), more frequent limb onset (odds ratio [OR] = 2.34 [1.093-4.936]; p = 0.028) and a family history of ALS (odds ratio [OR] = 2.538 [1.375-4.634]; p = 0.002). Intermediate CAG expansions of ≥27 repeats in ATXN2 are associated with ALS risk but not with FTD in the Spanish population. ALS patients carrying an intermediate expansion in ATXN2 show more frequent limb onset but a worse prognosis than those without expansions. In patients carrying C9orf72 expansions, the intermediate ATXN2 expansion might increase the penetrance and modify the phenotype.
Collapse
Affiliation(s)
- Daniel Borrego-Hernández
- ALS Research Laboratory Unit, Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (L.E.-B.); (P.C.-V.); (J.E.-P.); (A.G.-R.)
| | - Juan Francisco Vázquez-Costa
- Neuromuscular Unit, ERN-NMD Group, Department of Neurology, Hospital Universitario y Politécnico La Fe, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.F.V.-C.); (P.G.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Raúl Domínguez-Rubio
- Motoneuron Functional Unit, Hospital Universitari de Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (R.D.-R.); (M.P.-P.)
| | - Laura Expósito-Blázquez
- ALS Research Laboratory Unit, Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (L.E.-B.); (P.C.-V.); (J.E.-P.); (A.G.-R.)
| | - Elena Aller
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
- Genetics Department, Hospital Universitario y Politécnico La Fe, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Ariadna Padró-Miquel
- Genetics Laboratory (LCTMS), Bellvitge University Hospital-IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
| | - Pilar García-Casanova
- Neuromuscular Unit, ERN-NMD Group, Department of Neurology, Hospital Universitario y Politécnico La Fe, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.F.V.-C.); (P.G.-C.)
| | - María J. Colomina
- Anesthesia Service Unit, Hospital Universitari de Bellvitge, 08907 L’Hospitalet de Llobregat, Spain;
| | | | - Rosario Osta
- Laboratório de Genética e Biotecnologia (LAGENBIO), Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Aragon Institute for Health Research (IIS Aragon), Zaragoza University, 50013 Zaragoza, Spain;
| | - Pilar Cordero-Vázquez
- ALS Research Laboratory Unit, Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (L.E.-B.); (P.C.-V.); (J.E.-P.); (A.G.-R.)
| | - Jesús Esteban-Pérez
- ALS Research Laboratory Unit, Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (L.E.-B.); (P.C.-V.); (J.E.-P.); (A.G.-R.)
| | - Mónica Povedano-Panadés
- Motoneuron Functional Unit, Hospital Universitari de Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (R.D.-R.); (M.P.-P.)
| | - Alberto García-Redondo
- ALS Research Laboratory Unit, Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (L.E.-B.); (P.C.-V.); (J.E.-P.); (A.G.-R.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
| |
Collapse
|
7
|
Nagy ZF, Pál M, Engelhardt JI, Molnár MJ, Klivényi P, Széll M. Beyond C9orf72: repeat expansions and copy number variations as risk factors of amyotrophic lateral sclerosis across various populations. BMC Med Genomics 2024; 17:30. [PMID: 38254109 PMCID: PMC10804878 DOI: 10.1186/s12920-024-01807-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder which is characterized by the loss of both upper and lower motor neurons in the central nervous system. In a significant fraction of ALS cases - irrespective of family history- a genetic background may be identified. The genetic background of ALS shows a high variability from one ethnicity to another. The most frequent genetic cause of ALS is the repeat expansion of the C9orf72 gene. With the emergence of next-generation sequencing techniques and copy number alteration calling tools the focus in ALS genetics has shifted from disease causing genes and mutations towards genetic susceptibility and risk factors.In this review we aimed to summarize the most widely recognized and studied ALS linked repeat expansions and copy number variations other than the hexanucleotide repeat expansion in the C9orf72 gene. We compare and contrast their involvement and phenotype modifying roles in ALS among different populations.
Collapse
Affiliation(s)
- Zsófia Flóra Nagy
- Department of Medical Genetics, University of Szeged, Szeged, Hungary.
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary.
| | - Margit Pál
- Department of Medical Genetics, University of Szeged, Szeged, Hungary
- HUN-REN - SZTE Functional Clinical Genetics Research Group, Szeged, Hungary
| | | | - Mária Judit Molnár
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
- HUN-REN-SE Multiomics Neurodegeneration Research Group, Budapest, Hungary
| | - Péter Klivényi
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Márta Széll
- Department of Medical Genetics, University of Szeged, Szeged, Hungary
- HUN-REN - SZTE Functional Clinical Genetics Research Group, Szeged, Hungary
| |
Collapse
|