1
|
Rodriguez-Mogeda C, van Ansenwoude CMJ, van der Molen L, Strijbis EMM, Mebius RE, de Vries HE. The role of CD56 bright NK cells in neurodegenerative disorders. J Neuroinflammation 2024; 21:48. [PMID: 38350967 PMCID: PMC10865604 DOI: 10.1186/s12974-024-03040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/07/2024] [Indexed: 02/15/2024] Open
Abstract
Emerging evidence suggests a potential role for natural killer (NK) cells in neurodegenerative diseases, such as multiple sclerosis, Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. However, the precise function of NK cells in these diseases remains ambiguous. The existence of two NK cell subsets, CD56bright and CD56dim NK cells, complicates the understanding of the contribution of NK cells in neurodegeneration as their functions within the context of neurodegenerative diseases may differ significantly. CD56bright NK cells are potent cytokine secretors and are considered more immunoregulatory and less terminally differentiated than their mostly cytotoxic CD56dim counterparts. Hence, this review focusses on NK cells, specifically on CD56bright NK cells, and their role in neurodegenerative diseases. Moreover, it explores the mechanisms underlying their ability to enter the central nervous system. By consolidating current knowledge, we aim to provide a comprehensive overview on the role of CD56bright NK cells in neurodegenerative diseases. Elucidating their impact on neurodegeneration may have implications for future therapeutic interventions, potentially ameliorating disease pathogenesis.
Collapse
Affiliation(s)
- Carla Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Chaja M J van Ansenwoude
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Lennart van der Molen
- IQ Health Science Department, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva M M Strijbis
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
- Department of Neurology, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Mi P, Tan Y, Ye S, Lang JJ, Lv Y, Jiang J, Chen L, Luo J, Lin Y, Yuan Z, Zheng X, Lin YW. Discovery of C-3 isoxazole substituted thiochromone S,S-dioxide derivatives as potent and selective inhibitors for monoamine oxidase B (MAO-B). Eur J Med Chem 2024; 263:115956. [PMID: 37992521 DOI: 10.1016/j.ejmech.2023.115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Developing new scaffolds for highly potent and selective inhibitors of human Monoamine Oxidase B (hMAO-B) is a crucial objective in enhancing the efficacy and safety in the clinical treatment of neurodegenerative diseases. In this study, we have identified a series of C-3 isoxazole-substituted thiochromone S,S-dioxide derivatives that exhibit strong inhibitory activity against hMAO-B. The strategy of oxidizing thiochromone to thiochromone S,S-dioxide solves the key defect of extreme insolubility observed for thiochromone analogues. In addition, the sulfone group contributes extra hydrogen(H)-bonding interactions with Tyr435, which significantly increases the activity of thiochromone S,S-dioxide derivatives against hMAO-B. Furthermore, the presence of isoxazole group provides potential H-bonding interaction and electrostatic interaction with the residue of Tyr326, while the rigid aryl ring introduces a potential steric conflict with Phe208 of hMAO-A to improve both potency and selectivity. In our investigations, several compounds (9c, 10c, 10e, 10g, 10l and 10m) demonstrate remarkable single-digit nanomolar potency. These compounds exhibit favorable cytotoxicity profiles in both differentiated SH-SY5Y and HVSMC cells, without apparent cardiotoxic effects. Moreover, compounds 10e and 10h do not lead to an increase in ROS levels in differentiated SH-SY5Y cells, further demonstrating their potential as safe and effective hMAO-B inhibitors. These findings indicate that the C-3 isoxazole substituted thiochromone S,S-dioxide analogues are potential leading compounds for the development of selective inhibitors with high potency.
Collapse
Affiliation(s)
- Pengbing Mi
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China; Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang, Hunan 421001, China.
| | - Yan Tan
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Shiying Ye
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Jia-Jia Lang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China; Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - You Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi 710026, China
| | - Jinhuan Jiang
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Limei Chen
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Jianxiong Luo
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Yuqing Lin
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Zhonghua Yuan
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China.
| | - Xing Zheng
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China; Department of Pharmacy, Hunan Vocational College of Science and Technology, Changsha, Hunan 410004, China.
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China; Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
3
|
Sheng S, Li X, Zhao S, Zheng C, Zhang F. Effects of levodopa on gut bacterial antibiotic resistance in Parkinson's disease rat. Front Aging Neurosci 2023; 15:1122712. [PMID: 36824263 PMCID: PMC9941341 DOI: 10.3389/fnagi.2023.1122712] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
The second most prevalent neurodegenerative ailment, Parkinson's disease (PD), is characterized by both motor and non-motor symptoms. Levodopa is the backbone of treatment for PD at the moment. However, levodopa-induced side effects, such as dyskinesia, are commonly seen in PD patients. Recently, several antibiotics were found to present neuroprotective properties against neurodegenerative and neuro-inflammatory processes, which might be developed to effective therapies against PD. In this study, we aimed to identify if levodopa treatment could influence the gut bacterial antibiotic resistance in PD rat. Fecal samples were collected from healthy rats and 6-OHDA induced PD rats treated with different doses of levodopa, metagenomic sequencing data showed that levodopa resulted in gut bacteria composition change, the biomarkers of gut bacteria analyzed by LEfSe changed as well. More interestingly, compared with levodopa (5 mg/kg)-treated or no levodopa-treated PD rats, levodopa (10 mg/kg) caused a significant decrease in the abundance of tetW and vanTG genes in intestinal bacteria, which were related to tetracycline and vancomycin resistance, while the abundance of AAC6-lb-Suzhou gene increased apparently, which was related to aminoglycosides resistance, even though the total quantity of Antibiotic Resistance Gene (ARG) and Antibiotic Resistance Ontology (ARO) among all groups did not significantly differ. Consequently, our results imply that the combination of levodopa and antibiotics, such as tetracycline and vancomycin, in the treatment of PD may decrease the amount of corresponding antibiotic resistance genes in gut bacteria, which would give a theoretical basis for treating PD with levodopa combined with tetracycline and vancomycin in the future.
Collapse
Affiliation(s)
- Shuo Sheng
- Key Laboratory of Basic Pharmacology of the Ministry of Education, Joint International Research Laboratory of Ethnomedicine of the Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xianwei Li
- Key Laboratory of Basic Pharmacology of the Ministry of Education, Joint International Research Laboratory of Ethnomedicine of the Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shuo Zhao
- Electron Microscopy Room of School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Changqing Zheng
- Key Laboratory of Basic Pharmacology of the Ministry of Education, Joint International Research Laboratory of Ethnomedicine of the Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of the Ministry of Education, Joint International Research Laboratory of Ethnomedicine of the Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China,Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China,*Correspondence: Feng Zhang, ✉
| |
Collapse
|
4
|
Latif K, Ullah A, Shkodina AD, Boiko DI, Rafique Z, Alghamdi BS, Alfaleh MA, Ashraf GM. Drug reprofiling history and potential therapies against Parkinson's disease. Front Pharmacol 2022; 13:1028356. [PMID: 36386233 PMCID: PMC9643740 DOI: 10.3389/fphar.2022.1028356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/03/2022] [Indexed: 12/02/2022] Open
Abstract
Given the high whittling down rates, high costs, and moderate pace of new medication, revelation, and improvement, repurposing "old" drugs to treat typical and uncommon illnesses is progressively becoming an appealing proposition. Drug repurposing is the way toward utilizing existing medications in treating diseases other than the purposes they were initially designed for. Faced with scientific and economic challenges, the prospect of discovering new medication indications is enticing to the pharmaceutical sector. Medication repurposing can be used at various stages of drug development, although it has shown to be most promising when the drug has previously been tested for safety. We describe strategies of drug repurposing for Parkinson's disease, which is a neurodegenerative condition that primarily affects dopaminergic neurons in the substantia nigra. We also discuss the obstacles faced by the repurposing community and suggest new approaches to solve these challenges so that medicine repurposing can reach its full potential.
Collapse
Affiliation(s)
- Komal Latif
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Aman Ullah
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millet University, Islamabad, Pakistan
| | - Anastasiia D. Shkodina
- Department of Neurological Diseases, Poltava State Medical University, Poltava, Ukraine
- Municipal Enterprise “1 City Clinical Hospital of Poltava City Council”, Poltava, Ukraine
| | - Dmytro I. Boiko
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Zakia Rafique
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Badrah S. Alghamdi
- Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed A. Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Division of Vaccines and Immunotherapy, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
5
|
Shadfar S, Khanal S, Bohara G, Kim G, Sadigh-Eteghad S, Ghavami S, Choi H, Choi DY. Methanolic Extract of Boswellia serrata Gum Protects the Nigral Dopaminergic Neurons from Rotenone-Induced Neurotoxicity. Mol Neurobiol 2022; 59:5874-5890. [PMID: 35804280 PMCID: PMC9395310 DOI: 10.1007/s12035-022-02943-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/28/2022] [Indexed: 11/05/2022]
Abstract
Boswellia serrata gum is a natural product that showed beneficial effects on neurodegenerative diseases in recent studies. In this study, we investigated the effects of Boswellia serrata resin on rotenone-induced dopaminergic neurotoxicity. Firstly, we attempted to see if the resin can induce AMP-activated protein kinase (AMPK) signaling pathway which has been known to have broad neuroprotective effects. Boswellia increased AMPK phosphorylation and reduced phosphorylation of mammalian target of rapamycin (p-mTOR) and α-synuclein (p-α-synuclein) in the striatum while increased the expression level of Beclin1, a marker for autophagy and brain-derived neurotrophic factor. Next, we examined the neuroprotective effects of the Boswellia extract in the rotenone-injected mice. The results showed that Boswellia evidently attenuated the loss of the nigrostriatal dopaminergic neurons and microglial activation caused by rotenone. Moreover, Boswellia ameliorated rotenone-induced decrease in the striatal dopamine and impairment in motor function. Accumulation of α-synuclein meditated by rotenone was significantly ameliorated by Boswellia. Also, we showed that β-boswellic acid, the active constituents of Boswellia serrata gum, induced AMPK phosphorylation and attenuated α-synuclein phosphorylation in SHSY5 cells. These results suggest that Boswellia protected the dopaminergic neurons from rotenone neurotoxicity via activation of the AMPK pathway which might be associated with attenuation of α-synuclein aggregation and neuroinflammation. Further investigations are warranted to identify specific molecules in Boswellia which are responsible for the neuroprotection.
Collapse
Affiliation(s)
- Sina Shadfar
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2121 NSW, Australia.
- College of Pharmacy, Yeungnam University, 280 Daehak Avenue, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Shristi Khanal
- College of Pharmacy, Yeungnam University, 280 Daehak Avenue, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Ganesh Bohara
- College of Pharmacy, Yeungnam University, 280 Daehak Avenue, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Geumjin Kim
- College of Pharmacy, Yeungnam University, 280 Daehak Avenue, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB, R3E 0V9, Canada
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB, R3E 0V9, Canada
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, 7134845794, Iran
- Faculty of Medicine, Katowice School of Technology, 40-555, Katowice, Poland
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, 280 Daehak Avenue, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, 280 Daehak Avenue, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
6
|
Lopes MJP, Delmondes GDA, Leite GMDL, Cavalcante DRA, Aquino PÉAD, Lima FAVD, Neves KRT, Costa AS, Oliveira HDD, Bezerra Felipe CF, Pampolha Lima IS, Kerntopf MR, Viana GSDB. The Protein-Rich Fraction from Spirulina platensis Exerts Neuroprotection in Hemiparkinsonian Rats by Decreasing Brain Inflammatory-Related Enzymes and Glial Fibrillary Acidic Protein Expressions. J Med Food 2022; 25:695-709. [PMID: 35834631 DOI: 10.1089/jmf.2021.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Spirulina platensis is a cyanobacterium with high protein content and presenting neuroprotective effects. Now, we studied a protein-enriched fraction (SPF), on behavior, neurochemical and immunohistochemical (IHC) assays in hemiparkinsonian rats, distributed into the groups: SO (sham-operated), 6-hydroxydopamine (6-OHDA), and 6-OHDA (treated with SPF, 5 and 10 mg/kg, p.o., 15 days). Afterward, animals were subjected to behavioral tests and euthanized, and brain areas used for neurochemical and IHC assays. SPF partly reversed the changes in the apomorphine-induced rotations, open field and forced swim tests, and also the decrease in striatal dopamine and 3,4-dihydroxyphenylacetic acid contents seen in hemiparkinsonian rats. Furthermore, SPF reduced brain oxidative stress and increased striatal expressions of tyrosine hydroxylase and dopamine transporter and significantly reduced hippocampal inducible nitric oxide synthase, cyclooxygenase-2 and glial fibrillary acidic protein expressions. The data suggest that the protein fraction from S. platensis, through its brain anti-inflammatory and antioxidative actions, exerts neuroprotective effects that could benefit patients affected by neurodegenerative diseases, like Parkinson's disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andréa Santos Costa
- Faculty of Medicine of the Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil
| | | | | | | | | | | |
Collapse
|
7
|
Shirsath K, Agrawal YO. Intranasal Nanoemulsions A Potential Strategy for Targeting The Neurodegenerative Disorder: Parkinson's. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 22:CNSNDDT-EPUB-124720. [PMID: 35733314 DOI: 10.2174/1871527321666220622163403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/11/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Intranasal delivery has great potential to cross the blood-brain barrier and deliver the drug molecule into the central nervous system faster than traditional methods. The olfactory neuronal and trigeminal pathways both are involved in intranasal delivery. The nano-technology is an innovative strategy for the nose to brain delivery. The mucoadhesive nanoemulsion formulation is a modified technology that increases the duration of drug accumulation and provides prolonged delivery at a targeted site. The nanoemulsion formulation oil, surfactant, and co-surfactant components maintain lower surface tension and particle coalescence. The globule dimension and zeta potential are affected in brain targeting. The globule size of the innovative formulation should be < 200 nm for drug permeation because, in humans, the average axon magnitude ranges from around 100 to 700. Furthermore, modified technology of nanoemulsion like nanogel and nanoemulsion in-situ gel provide a great advantage to cure neurodegenerative disorders. Therefore, focusing on the innovative pharmaceutical approaches of nanoemulsion in intranasal drug delivery, the current review provides insight into the applications of nanoemulsion in neurodegenerative disorders like Parkinson's disease, which are due to the depletion of dopamine in substania nigra resulting in cardinal motor activity bradykinesia and tremors. The review also touches upon the pathways for intranasal delivery of nanoemulsion, the pathogenesis of Parkinson's disease, and the future direction of the research on intranasal nanoemulsion.
Collapse
Affiliation(s)
- Krushna Shirsath
- Department of Pharmaceutics R. C. Patel Institute of Pharmaceutical Education and Research India
| | - Yogeeta O Agrawal
- Department of Pharmaceutics R. C. Patel Institute of Pharmaceutical Education and Research India
| |
Collapse
|
8
|
Sola P, Krishnamurthy PT, Kumari M, Byran G, Gangadharappa HV, Garikapati KK. Neuroprotective approaches to halt Parkinson's disease progression. Neurochem Int 2022; 158:105380. [PMID: 35718278 DOI: 10.1016/j.neuint.2022.105380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023]
Abstract
One of the most significant threats in Parkinson's disease (PD) is neurodegeneration. Neurodegeneration at both nigral as well as non-nigral regions of the brain is considered responsible for disease progression in PD. The key factors that initiate neurodegeneration are oxidative stress, neuroinflammation, mitochondrial complex-1 inhibition, and abnormal α-synuclein (SNCA) protein aggregations. Nigral neurodegeneration results in motor symptoms (tremor, bradykinesia, rigidity, shuffling gait, and postural instability) whereas; non-nigral neurodegeneration is responsible for non-motor symptoms (depression, cognitive dysfunctions, sleep disorders, hallucination, and psychosis). The available therapies for PD aim at increasing dopamine levels. The medications such as Monoamine oxidase B (MAO-B) inhibitors, catechol o-methyltransferase (COMT) inhibitors, Dopamine precursor (Levodopa), dopamine agonists, and dopamine reuptake inhibitors drastically improve the motor symptoms and quality of life only in the early stages of the disease. However, dopa resistant motor symptoms (abnormality in posture, speech impediment, gait, and balance problems), dopa resistant non-motor signs (sleep problems, autonomic dysfunction, mood, and cognitive impairment, pain), and drug-related side effects (motor fluctuations, psychosis, and dyskinesias) are considered responsible for the failure of these therapies. Further, none of the treatments, alone or in combination, are capable of halting the disease progression in the long run. Therefore, there is a need to develop safe and efficient neuroprotective agents, which can slow or stop the disease progression for the better management of PD. In this review, an effort has been made to discuss the various mechanisms responsible for progressive neurodegeneration (disease progression) in PD and also multiple strategies available for halting disease progression.
Collapse
Affiliation(s)
- Piyong Sola
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India.
| | - Mamta Kumari
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | - Gowramma Byran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | | | - Kusuma Kumari Garikapati
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| |
Collapse
|
9
|
Kluss JH, Lewis PA, Greggio E. Leucine-rich repeat kinase 2 (LRRK2): an update on the potential therapeutic target for Parkinson's disease. Expert Opin Ther Targets 2022; 26:537-546. [PMID: 35642531 DOI: 10.1080/14728222.2022.2082937] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AREAS COVERED In this review, we will provide an update on the current status of drugs and other technologies that have emerged in recent years and provide an overview of their efficacy in ameliorating LRRK2 kinase activity and overall safety in animal models and humans. EXPERT OPINION The growth of both target discovery and innovative drug design has sparked a lot of excitement for the future of how we treat Parkinson's disease. Given the immense focus on LRRK2 as a therapeutic target, it is expected within the next decade to determine its therapeutic properties, or lack thereof, for PD.
Collapse
Affiliation(s)
- Jillian H Kluss
- School of Pharmacy, University of Reading, Whiteknights, Reading, UK.,Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Patrick A Lewis
- School of Pharmacy, University of Reading, Whiteknights, Reading, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Elisa Greggio
- Department of Biology, University of Padova, Padova, Italy.,Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| |
Collapse
|
10
|
Reis J, Fernandes C, Salem H, Maia M, Tomé C, Benfeito S, Teixeira J, Oliveira PJ, Uriarte E, Ortuso F, Alcaro S, Bagetta D, Cagide F, Borges F. Design and synthesis of chromone-based monoamine oxidase B inhibitors with improved drug-like properties. Eur J Med Chem 2022; 239:114507. [DOI: 10.1016/j.ejmech.2022.114507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 11/26/2022]
|
11
|
Zhang J, Villringer A, Nikulin VV. Dopaminergic Modulation of Local Non-oscillatory Activity and Global-Network Properties in Parkinson's Disease: An EEG Study. Front Aging Neurosci 2022; 14:846017. [PMID: 35572144 PMCID: PMC9106139 DOI: 10.3389/fnagi.2022.846017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Dopaminergic medication for Parkinson's disease (PD) modulates neuronal oscillations and functional connectivity (FC) across the basal ganglia-thalamic-cortical circuit. However, the non-oscillatory component of the neuronal activity, potentially indicating a state of excitation/inhibition balance, has not yet been investigated and previous studies have shown inconsistent changes of cortico-cortical connectivity as a response to dopaminergic medication. To further elucidate changes of regional non-oscillatory component of the neuronal power spectra, FC, and to determine which aspects of network organization obtained with graph theory respond to dopaminergic medication, we analyzed a resting-state electroencephalography (EEG) dataset including 15 PD patients during OFF and ON medication conditions. We found that the spectral slope, typically used to quantify the broadband non-oscillatory component of power spectra, steepened particularly in the left central region in the ON compared to OFF condition. In addition, using lagged coherence as a FC measure, we found that the FC in the beta frequency range between centro-parietal and frontal regions was enhanced in the ON compared to the OFF condition. After applying graph theory analysis, we observed that at the lower level of topology the node degree was increased, particularly in the centro-parietal area. Yet, results showed no significant difference in global topological organization between the two conditions: either in global efficiency or clustering coefficient for measuring global and local integration, respectively. Interestingly, we found a close association between local/global spectral slope and functional network global efficiency in the OFF condition, suggesting a crucial role of local non-oscillatory dynamics in forming the functional global integration which characterizes PD. These results provide further evidence and a more complete picture for the engagement of multiple cortical regions at various levels in response to dopaminergic medication in PD.
Collapse
Affiliation(s)
- Juanli Zhang
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Vadim V. Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Neurophysics Group, Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
12
|
Kiran P, Debnath SK, Neekhra S, Pawar V, Khan A, Dias F, Pallod S, Srivastava R. Designing nanoformulation for the nose-to-brain delivery in Parkinson's disease: Advancements and barrier. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1768. [PMID: 34825510 DOI: 10.1002/wnan.1768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/30/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder characterized by the degeneration of dopaminergic neurons, which results in the loss of motor activity. In the management of PD, the primary aim is to increase the dopamine content in the brain either by delivering the precursors of dopamine or by inhibiting the molecules responsible for dopamine degradation. Due to the low bioavailability, a higher dosage of drugs needs to be administered repeatedly for achieving the desired therapeutic effect. This repeated high dose not only increases the severe side effects but also produces tolerance in the body. Often, direct administration of drugs fails to ameliorate the symptoms as the unmodified drugs cannot cross the blood-brain barrier (BBB). Nanotherapeutic is at the forefront of the alternative treatment against the central nervous system (CNS) disorders due to the ability to circumvents the BBB. Here, all the available treatments for PD have been discussed with their limitation. The current trends of nanotherapeutics for PD have been explored. Suitability and formulation prospects for nasal delivery have been analyzed in detail to explore new research scope. The most effective approach is the nose-to-brain delivery for targeting drugs directly to the brain. This delivery bypasses the BBB and concentrates more drugs at the target site. Thus, developments of nose-to-brain delivery of nanoformulations explicit the new scope to manage PD better. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Pallavi Kiran
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sujit Kumar Debnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Suditi Neekhra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Vaishali Pawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Amreen Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Faith Dias
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Shubham Pallod
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
13
|
Elkamhawy A, Kim HJ, Elsherbeny MH, Paik S, Park JH, Gotina L, Abdellattif MH, Gouda NA, Cho J, Lee K, Nim Pae A, Park KD, Roh EJ. Discovery of 3,4-dichloro-N-(1H-indol-5-yl)benzamide: A highly potent, selective, and competitive hMAO-B inhibitor with high BBB permeability profile and neuroprotective action. Bioorg Chem 2021; 116:105352. [PMID: 34562673 DOI: 10.1016/j.bioorg.2021.105352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/29/2021] [Accepted: 09/07/2021] [Indexed: 01/07/2023]
Abstract
Since there is no disease-modifying treatment discovered yet for Parkinson's disease (PD), there is still a vital need to develop novel selective monoamine oxidase B (MAO-B) inhibitors as promising therapeutically active candidates for PD patients. Herein, we report the design, synthesis, and full characterization of new twenty-six indole derivatives as potential human MAO-B (hMAO-B) selective inhibitors. Six compounds (2i, 3b-e, and 5) exhibited low micromolar to nanomolar inhibitory activities over hMAO-B; compared to our recently reported N-substituted indole-based lead compound VIII (hMAO-B IC50 = 777 nM), compound 5 (3,4-dichloro-N-(1H-indol-5-yl)benzamide) exhibited 18-fold increase in potency (IC50 = 42 nM). A selectivity study over hMAO-A revealed an excellent selectivity index of compound 5 (SI > 2375) with a 47-fold increase compared to rasagiline (II, a well-known MAO-B inhibitor, SI > 50). A further kinetic evaluation of compound 5 over hMAO-B showed a reversible and competitive mode of inhibition with Ki value of 7 nM. Highly effective permeability and high CNS bioavailability of compound 5 with Pe = 54.49 × 10-6 cm/s were demonstrated. Compound 5 also exhibited a low cytotoxicity profile and a promising neuroprotective effect against the 6-hydroxydopamine-induced neuronal cell damage in PC12 cells, which was more effective than that of rasagiline. Docking simulations on both hMAO-B and hMAO-A supported the in vitro data and served as further molecular evidence. Accordingly, we report the discovery of compound 5 as one of the most potent indole-based MAO-B inhibitors to date which is noteworthy to be further evaluated as a promising agent for PD treatment.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Hyeon Jeong Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Mohamed H Elsherbeny
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza 12566, Egypt
| | - Sora Paik
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Lizaveta Gotina
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Magda H Abdellattif
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Noha A Gouda
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
14
|
Kadbhane A, Patel M, Srivastava S, Singh PK, Madan J, Singh SB, Khatri DK. Perspective insights and application of exosomes as a novel tool against neurodegenerative disorders: An expository appraisal. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Kumar B, Pandey M, Pottoo FH, Fayaz F, Sharma A, Sahoo PK. Liposomes: Novel Drug Delivery Approach for Targeting Parkinson's Disease. Curr Pharm Des 2021; 26:4721-4737. [PMID: 32003666 DOI: 10.2174/1381612826666200128145124] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 11/22/2022]
Abstract
Parkinson's disease is one of the most severe progressive neurodegenerative disorders, having a mortifying effect on the health of millions of people around the globe. The neural cells producing dopamine in the substantia nigra of the brain die out. This leads to symptoms like hypokinesia, rigidity, bradykinesia, and rest tremor. Parkinsonism cannot be cured, but the symptoms can be reduced with the intervention of medicinal drugs, surgical treatments, and physical therapies. Delivering drugs to the brain for treating Parkinson's disease is very challenging. The blood-brain barrier acts as a highly selective semi-permeable barrier, which refrains the drug from reaching the brain. Conventional drug delivery systems used for Parkinson's disease do not readily cross the blood barrier and further lead to several side-effects. Recent advancements in drug delivery technologies have facilitated drug delivery to the brain without flooding the bloodstream and by directly targeting the neurons. In the era of Nanotherapeutics, liposomes are an efficient drug delivery option for brain targeting. Liposomes facilitate the passage of drugs across the blood-brain barrier, enhances the efficacy of the drugs, and minimize the side effects related to it. The review aims at providing a broad updated view of the liposomes, which can be used for targeting Parkinson's disease.
Collapse
Affiliation(s)
- Bhumika Kumar
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, Delhi, 110017, India
| | - Mukesh Pandey
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, Delhi, 110017, India
| | - Faheem H Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. BOX 1982, Dammam 31441, Saudi Arabia
| | - Faizana Fayaz
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, Delhi, 110017, India
| | - Anjali Sharma
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, Delhi, 110017, India
| | - P K Sahoo
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, Delhi, 110017, India
| |
Collapse
|
16
|
Iron molybdenum oxide-modified screen-printed electrode: Application for electrocatalytic oxidation of cabergoline. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104890] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Ito H, Takayama T, Kondo H, Fukuta Y. Real-world safety and effectiveness of rotigotine in patients with Parkinson's disease: analysis of a post-marketing surveillance study in Japan. Int J Neurosci 2020; 132:237-247. [PMID: 32842828 DOI: 10.1080/00207454.2020.1807976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the safety and effectiveness of rotigotine under daily clinical practice in Parkinson's disease patients. METHODS The study was a prospective, non-interventional, observational study targeting patients who were treated with rotigotine for the first time, with a 1-year follow-up period from September 2013 to August 2016. RESULTS There were 603 patients in the safety population and 599 patients in the effectiveness population. The mean age was 71.6 years, and the age group of ≥65 and ≥80 years accounted for 80% and 18.6% of all patients, respectively. The frequency of adverse drug reaction (ADR) was 34.3%, and common ADRs were application site reaction (20.2%), typical for transdermal patches. However, the majority of patients recovered or was recovering from these ADRs and were non-serious. Although ADRs related to non-motor symptoms of Parkinson's disease were observed, most of them were non-serious. Total scores of the Unified Parkinson's Disease Rating Scale Part III (UPDRS-III) (ON-time) significantly decreased from baseline in the effectiveness population. In the analysis of overall improvement in 12 months of post-treatment, ≥70% of patients achieved mild or greater improvement. The safety profiles and improvements in the UPDRS-III score were similar in both the ≥80 years of age group and younger age group. CONCLUSION There were no new or notable safety concerns observed, and the effectiveness of rotigotine was suggested in daily clinical practice.
Collapse
Affiliation(s)
- Hidefumi Ito
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Tomoyo Takayama
- Pharmacovigilance, Otsuka Pharmaceutical Co., Ltd, Osaka, Japan
| | - Hiroyuki Kondo
- Medical Affairs, Otsuka Pharmaceutical Co., Ltd, Tokyo, Japan
| | - Yasuhiko Fukuta
- Pharmacovigilance, Otsuka Pharmaceutical Co., Ltd, Osaka, Japan
| |
Collapse
|
18
|
Bento-Pereira C, Dinkova-Kostova AT. Activation of transcription factor Nrf2 to counteract mitochondrial dysfunction in Parkinson's disease. Med Res Rev 2020; 41:785-802. [PMID: 32681666 DOI: 10.1002/med.21714] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/29/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder, for which no disease-modifying therapies are available to date. Although understanding of the precise aetiology of PD is incomplete, it is clear that age, genetic predisposition and environmental stressors increase the risk. At the cellular level, oxidative stress, chronic neuroinflammation, mitochondrial dysfunction and aberrant protein aggregation have been implicated as contributing factors. These detrimental processes are counteracted by elaborate networks of cellular defence mechanisms, one of which is orchestrated by transcription factor nuclear factor-erythroid 2 p45-related factor 2 (Nrf2; gene name NFE2L2). A wealth of preclinical evidence suggests that Nrf2 activation is beneficial in cellular and animal models of PD. In this review, we summarise the current understanding of mitochondrial dysfunction in PD, the role of Nrf2 in mitochondrial function and explore the potential of Nrf2 as a therapeutic target for mitochondrial dysfunction in PD.
Collapse
Affiliation(s)
- Claudia Bento-Pereira
- Division of Cellular Medicine, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, Dundee, Scotland, UK
| | - Albena T Dinkova-Kostova
- Division of Cellular Medicine, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, Dundee, Scotland, UK.,Departments of Medicine and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Neuropsychiatric aspects of Parkinson disease psychopharmacology: Insights from circuit dynamics. HANDBOOK OF CLINICAL NEUROLOGY 2020; 165:83-121. [PMID: 31727232 DOI: 10.1016/b978-0-444-64012-3.00007-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder with a complex pathophysiology characterized by the progressive loss of dopaminergic neurons within the substantia nigra. Persons with PD experience several motoric and neuropsychiatric symptoms. Neuropsychiatric features of PD include depression, anxiety, psychosis, impulse control disorders, and apathy. In this chapter, we will utilize the National Institutes of Mental Health Research Domain Criteria (RDoC) to frame and integrate observations from two prevailing disease constructions: neurotransmitter anomalies and circuit physiology. When there is available evidence, we posit how unified translational observations may have clinical relevance and postulate importance outside of PD. Finally, we review the limited evidence available for pharmacologic management of these symptoms.
Collapse
|
20
|
Bali NR, Shinde MP, Rathod SB, Salve PS. Enhanced transdermal permeation of rasagiline mesylate nanoparticles: design, optimization, and effect of binary combinations of solvent systems across biological membrane. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2019.1706507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nikhil R. Bali
- University Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Mahesh P. Shinde
- University Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Shahadev B. Rathod
- University Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Pramod S. Salve
- University Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| |
Collapse
|
21
|
Karthivashan G, Ganesan P, Park SY, Lee HW, Choi DK. Lipid-based nanodelivery approaches for dopamine-replacement therapies in Parkinson's disease: From preclinical to translational studies. Biomaterials 2019; 232:119704. [PMID: 31901690 DOI: 10.1016/j.biomaterials.2019.119704] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022]
Abstract
The incidence of Parkinson's disease (PD), the second most common neurodegenerative disorder, has increased exponentially as the global population continues to age. Although the etiological factors contributing to PD remain uncertain, its average incidence rate is reported to be 1% of the global population older than 60 years. PD is primarily characterized by the progressive loss of dopaminergic (DAergic) neurons and/or associated neuronal networks and the subsequent depletion of dopamine (DA) levels in the brain. Thus, DA or levodopa (l-dopa), a precursor of DA, represent cardinal targets for both idiopathic and symptomatic PD therapeutics. While several therapeutic strategies have been investigated over the past decade for their abilities to curb the progression of PD, an effective cure for PD is currently unavailable. Even DA replacement therapy, an effective PD therapeutic strategy that provides an exogenous supply of DA or l-dopa, has been hindered by severe challenges, such as a poor capacity to bypass the blood-brain barrier and inadequate bioavailability. Nevertheless, with recent advances in nanotechnology, several drug delivery systems have been developed to bypass the barriers associated with central nervous system therapeutics. In here, we sought to describe the adapted lipid-based nanodrug delivery systems used in the field of PD therapeutics and their recent advances, with a particular focus placed on DA replacement therapies. This work initially explores the background of PD; offers descriptions of the most recent molecular targets; currently available clinical medications/limitations; an overview of several lipid-based PD nanotherapeutics, functionalized nanoparticles, and technical aspects in brain delivery; and, finally, presents future perspectives to enhance the use of nanotherapeutics in PD treatment.
Collapse
Affiliation(s)
- Govindarajan Karthivashan
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, 27478, Republic of Korea; Research Institute of Inflammatory Diseases (RID), College of Biomedical and Health Science and BK21plus Glocal Education Program of Nutraceuticals Development, Konkuk University, Chungju, 27478, Republic of Korea
| | - Palanivel Ganesan
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, 27478, Republic of Korea; Department of Biomedical Chemistry, Nanotechnology Research Center, Department of Applied Life Science, College of Biomedical and Health Science, Konkuk University, Chungju, 27478, Republic of Korea
| | - Shin-Young Park
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, 27478, Republic of Korea
| | - Ho-Won Lee
- Department of Neurology, Kyungpook National University School of Medicine and Brain Science & Engineering Institute, Kyungpook National University, Daegu, 41404, Republic of Korea
| | - Dong-Kug Choi
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, 27478, Republic of Korea; Research Institute of Inflammatory Diseases (RID), College of Biomedical and Health Science and BK21plus Glocal Education Program of Nutraceuticals Development, Konkuk University, Chungju, 27478, Republic of Korea.
| |
Collapse
|
22
|
Azam F, Abodabos HS, Taban IM, Rfieda AR, Mahmood D, Anwar MJ, Khan S, Sizochenko N, Poli G, Tuccinardi T, Ali HI. Rutin as promising drug for the treatment of Parkinson’s disease: an assessment of MAO-B inhibitory potential by docking, molecular dynamics and DFT studies. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1662003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Faizul Azam
- Department of Pharmaceutical Chemistry & Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - Honiwa Suliman Abodabos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Misurata University, Misurata, Libya
| | - Ismail M. Taban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Misurata University, Misurata, Libya
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Abdalla R. Rfieda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Misurata University, Misurata, Libya
| | - Danish Mahmood
- Department of Pharmacology & Toxicology, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - Md Jamir Anwar
- Department of Pharmacology & Toxicology, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - Shamshir Khan
- Department of Pharmacognosy & Medicinal Chemistry, Buraidah College of Dentistry & Pharmacy, Al-Qassim, Saudi Arabia
| | - Natalia Sizochenko
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, USA
- Department of Computer Science, Dartmouth College, Hanover, NH, USA
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Hamed I. Ali
- Rangel College of Pharmacy, Health Science Center, Texas A&M University, Kingsville, TX, USA
| |
Collapse
|
23
|
Mathew B, Parambi DGT, Mathew GE, Uddin MS, Inasu ST, Kim H, Marathakam A, Unnikrishnan MK, Carradori S. Emerging therapeutic potentials of dual-acting MAO and AChE inhibitors in Alzheimer's and Parkinson's diseases. Arch Pharm (Weinheim) 2019; 352:e1900177. [PMID: 31478569 DOI: 10.1002/ardp.201900177] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 01/07/2023]
Abstract
No drug has been approved to prevent neuronal cell loss in patients suffering from Parkinson's disease (PD) or Alzheimer's disease (AD); despite increased comprehension of the underlying molecular causes, therapies target cognitive functional improvement and motor fluctuation control. Drug design strategies that adopt the "one protein, one target" philosophy fail to address the multifactorial aetiologies of neurodegenerative disorders such as AD and PD optimally. On the contrary, restoring neurotransmitter levels by combined combinatorial inhibition of cholinesterases, monoamine oxidases, and adenosine A2A A receptors, in conjunction with strategies to counter oxidative stress and beta-amyloid plaque accumulation, would constitute a therapeutically robust, multitarget approach. This extensive review delineates the therapeutic advantages of combining dual-acting molecules that inhibit monoamine oxidases and cholinesterases and/or adenosine A2A A receptors, and describes the structure-activity relationships of compound classes that include, but are not limited to, alkaloids, coumarins, chalcones, donepezil-propargylamine conjugates, homoisoflavonoids, resveratrol analogs, hydrazones, and pyrazolines. In the wake of recent advances in network biology, in silico approaches, and omics, this review emphasizes the need to consider conceptually informed research strategies for drug discovery, in the context of the mounting burden posed by chronic neurodegenerative diseases with complex aetiologies and pathophysiologies involving multiple signalling pathways and numerous drug targets.
Collapse
Affiliation(s)
- Bijo Mathew
- Department of Pharmaceutical Chemistry Research Lab, Division of Drug Design and Medicinal Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Della G T Parambi
- Department of Pharmaceutical Chemistry, Jouf University, Sakaka, Saudi Arabia
| | - Githa E Mathew
- Department of Pharmacology, Grace College of Pharmacy, Palakkad, India
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Sini T Inasu
- Department of Pharmaceutical Chemistry Research Lab, Division of Drug Design and Medicinal Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Hoon Kim
- Department of Pharmacy and Research, Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Akash Marathakam
- Department of Pharmaceutical Chemistry, National College of Pharmacy, Calicut, India
| | | | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
24
|
Mohammadi SZ, Beitollahi H, Allahabadi H, Rohani T. Disposable electrochemical sensor based on modified screen printed electrode for sensitive cabergoline quantification. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Madiha S, Haider S. Curcumin restores rotenone induced depressive-like symptoms in animal model of neurotoxicity: assessment by social interaction test and sucrose preference test. Metab Brain Dis 2019; 34:297-308. [PMID: 30506334 DOI: 10.1007/s11011-018-0352-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/22/2018] [Indexed: 12/21/2022]
Abstract
Environmental toxin rotenone has been associated to with increased Parkinson's disease (PD) prevalence in population. Depression is one of the main non-motor symptoms of PD. Curcumin exhibits neuroprotective action in neurodegenerative diseases. In the study we investigated the effect of pre- and post-treatment of curcumin on rotenone-induced depressive-like behaviors and neurotransmitter alterations in rat model of PD. In pre-treatment phase rats were administered with curcumin (100 mg/kg/day, p.o.) for 2 weeks. After curcumin treatment rotenone (1.5 mg/kg/day, s.c.) was administered in Pre-Cur + Rot group and rotenone alone group for 8 days. Meanwhile, in Post-Cur + Rot group rotenone was injected for 8 days in order to develop PD-like symptoms. After rotenone administration curcumin (100 mg/kg/day, p.o.) was administered in Post-Cur + Rot group for 2 weeks. Depressive-like behaviors were monitored by the forced swim test (FST), open field test (OFT), sucrose preference test (SPT) and social interaction test (SIT). Animals were decapitated after behavioral analysis, striatum and hippocampus were dissected out for neurochemical estimations. Results showed that the rotenone administration significantly (p < 0.01) produced depressive-like symptoms in all depression-related behavioral test. All these behavioral deficits were accompanied by the reduction of striatal and hippocampal neurotransmitter levels following rotenone administration. Pre- and post-treatment with curcumin significantly (p < 0.01) reversed the depressive-like behavior induced by rotenone and significantly (p < 0.01) improved neurotransmitter levels as compared to rotenone injected rats. Our results strongly suggest that normalization of neurotransmitter levels particularly highlights the antidepressant effect of curcumin against rotenone-induced depressive behavior.
Collapse
Affiliation(s)
- Syeda Madiha
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Saida Haider
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
26
|
Lakkappa N, Krishnamurthy PT, M D P, Hammock BD, Hwang SH. Soluble epoxide hydrolase inhibitor, APAU, protects dopaminergic neurons against rotenone induced neurotoxicity: Implications for Parkinson's disease. Neurotoxicology 2019; 70:135-145. [PMID: 30472438 PMCID: PMC6873230 DOI: 10.1016/j.neuro.2018.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 01/20/2023]
Abstract
Epoxyeicosatrienoic acids (EETs), metabolites of arachidonic acid, play a crucial role in cytoprotection by attenuating oxidative stress, inflammation and apoptosis. EETs are rapidly metabolised in vivo by the soluble epoxide hydrolase (sEH). Increasing the half life of EETs by inhibiting the sEH enzyme is a novel strategy for neuroprotection. In the present study, sEH inhibitors APAU was screened in silico and further evaluated for their antiparkinson activity against rotenone (ROT) induced neurodegeneration in N27 dopaminergic cell line and Drosophila melanogaster model of Parkinson disease (PD). In the in vitro study cell viability (MTT and LDH release assay), oxidative stress parameters (total intracellular ROS, hydroperoxides, protein oxidation, lipid peroxidation, superoxide dismutase, catalase, glutathione peroxidise, glutathione reductase, glutathione, total antioxidant status, mitochondrial complex-1activity and mitochondrial membrane potential), inflammatory markers (IL-6, COX-1 and COX-2), and apoptotic markers (JNK, phospho-JNK, c-jun, phospho-c-jun, pro and active caspase-3) were assessed to study the neuroprotective effects. In vivo activity of APAU was assessed in Drosophila melanogaster by measuring survival rate, negative geotaxis, oxidative stress parameters (total intracellular ROS, hydroperoxides, glutathione levels) were measured. Dopamine and its metabolites were estimated by LC-MS/MS analysis. In the in silico study the molecule, APAU showed good binding interaction at the active site of sEH (PDB: 1VJ5). In the in vitro study, APAU significantly attenuated ROT induced changes in oxidative, pro-inflammatory and apoptotic parameters. In the in vivo study, APAU significantly attenuates ROT induced changes in survival rate, negative geotaxis, oxidative stress, dopamine and its metabolites levels (p < 0.05). Our study, therefore, concludes that the molecule APAU, has significant neuroprotection benefits against rotenone induced Parkinsonism.
Collapse
Affiliation(s)
- Navya Lakkappa
- Department of Pharmacology, JSS College of Pharmacy, Ooty, India
| | | | - Pandareesh M D
- Department of Neurochemistry, National Institute of Mental Health & Neuro Sciences, Bangalore, India
| | - Bruce D Hammock
- Department of Entomology and Nematology, and Comprehensive Cancer Research Center, University of California, Davis, United States
| | - Sung Hee Hwang
- Department of Entomology and Nematology, and Comprehensive Cancer Research Center, University of California, Davis, United States
| |
Collapse
|
27
|
Poovaiah N, Davoudi Z, Peng H, Schlichtmann B, Mallapragada S, Narasimhan B, Wang Q. Treatment of neurodegenerative disorders through the blood-brain barrier using nanocarriers. NANOSCALE 2018; 10:16962-16983. [PMID: 30182106 DOI: 10.1039/c8nr04073g] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Neurodegenerative diseases refer to disorders of the central nervous system (CNS) that are caused by neuronal degradations, dysfunctions, or death. Alzheimer's disease, Parkinson's disease, and Huntington's disease (APHD) are regarded as the three major neurodegenerative diseases. There is a vast body of literature on the causes and treatments of these neurodegenerative diseases. However, the main obstacle in developing an effective treatment strategy is the permeability of the treatment components at the blood-brain barrier (BBB). Several strategies have been developed to improve this obstruction. For example, nanomaterials facilitate drug delivery to the BBB due to their size. They have been used widely in nanomedicine and as nanoprobes for diagnosis purposes among others in neuroscience. Nanomaterials in different forms, such as nanoparticles, nanoemulsions, solid lipid nanoparticles (SLN), and liposomes, have been used to treat neurodegenerative diseases. This review will cover the basic concepts and applications of nanomaterials in the therapy of APHD.
Collapse
Affiliation(s)
- N Poovaiah
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Bortolanza M, Nascimento GC, Socias SB, Ploper D, Chehín RN, Raisman-Vozari R, Del-Bel E. Tetracycline repurposing in neurodegeneration: focus on Parkinson’s disease. J Neural Transm (Vienna) 2018; 125:1403-1415. [DOI: 10.1007/s00702-018-1913-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/03/2018] [Indexed: 01/03/2023]
|
29
|
Sampaio TF, Dos Santos EUD, de Lima GDC, Dos Anjos RSG, da Silva RC, Asano AGC, Asano NMJ, Crovella S, de Souza PRE. MAO-B and COMT Genetic Variations Associated With Levodopa Treatment Response in Patients With Parkinson's Disease. J Clin Pharmacol 2018; 58:920-926. [PMID: 29578580 DOI: 10.1002/jcph.1096] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/16/2018] [Indexed: 12/19/2022]
Abstract
The most commonly used Parkinson's disease (PD) treatment is the replacement of dopamine by its levodopa precursor (l-dopa). Monoamine oxidase-B (MAO-B) and catechol-o-methyl transferase (COMT) are enzymes involved in the metabolism and regulation of dopamine availability. In our study we investigated the possible relation among selected single-nucleotide polymorphisms (SNPs) in the MAO-B (rs1799836) and COMT (rs4680) genes and the therapeutic response to levodopa (l-dopa). A total of 162 Brazilian patients from the Pro-Parkinson service of Clinics Hospital of Pernambuco diagnosed with sporadic PD and treated with levodopa were enrolled. PD patients were stratified into 2 groups according to the daily levodopa dose. MAO-B and COMT SNP genotyping was conducted by polymerase chain reaction-restriction fragment length polymorphism. After multivariate analysis, we observed a significant difference between PD groups for the following variables: sex (P = .02), longer duration of disease (P = .02), longer levodopa therapy duration (P = .01), younger onset of PD (P = .01), and use of COMT inhibitor (P = .02). We observed that patients carrying MAO-B (rs1799836) A and AA genotypes and COMT (rs4680) LL genotype suffered more frequently from levodopa-induced-dyskinesia. In addition, we found an increased risk of 2.84-fold for male individuals carrying the MAO-B G allele to be treated with higher doses of levodopa (P = .04). We concluded that before beginning PD pharmacological treatment, it is important to consider the genetic variants of the MAO-B and COMT genes and the sex, reinforcing the evidence that sexual dimorphism in the genes related to dopamine metabolism might affect PD treatment.
Collapse
Affiliation(s)
- Tiago Furtado Sampaio
- Postgraduate Program of Biology Applied to Health, Federal University of Pernambuco (UFPE), Recife, Brazil
| | | | | | | | - Ronaldo Celerino da Silva
- Postgraduate Program of Biology Applied to Health, Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Amdore Guescel C Asano
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Pernambuco (UFPE), Recife, Brazil.,Pro-Parkinson Program of Clinical Hospital of Federal University of Pernambuco e Recife (HC/UFPE), Recife, Brazil
| | - Nadja Maria Jorge Asano
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Pernambuco (UFPE), Recife, Brazil.,Pro-Parkinson Program of Clinical Hospital of Federal University of Pernambuco e Recife (HC/UFPE), Recife, Brazil
| | - Sergio Crovella
- Department of Genetics, Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Paulo Roberto Eleutério de Souza
- Postgraduate Program of Biology Applied to Health, Federal University of Pernambuco (UFPE), Recife, Brazil.,Postgraduate Program of Applied Cellular and Molecular Biology, University of Pernambuco (UPE), Recife, Brazil.,Department of Biology, Federal Rural University of Pernambuco (UFRPE), Recife, Brazil
| |
Collapse
|
30
|
Beitollahi H, Tajik S, Alizadeh R. Nano composite System based on ZnO-functionalized Graphene Oxide Nanosheets for Determination of Cabergoline. J ELECTROCHEM SCI TE 2017. [DOI: 10.33961/jecst.2017.8.4.307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
31
|
Ahmad N. Rasagiline-encapsulated chitosan-coated PLGA nanoparticles targeted to the brain in the treatment of parkinson's disease. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1343735] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Niyaz Ahmad
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (Formerly University of Dammam), Dammam, Kingdom of Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (Formerly University of Dammam), Dammam, Kingdom of Saudi
| |
Collapse
|
32
|
Novel tactics for neuroprotection in Parkinson's disease: Role of antibiotics, polyphenols and neuropeptides. Prog Neurobiol 2017; 155:120-148. [DOI: 10.1016/j.pneurobio.2015.10.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 10/08/2015] [Accepted: 10/26/2015] [Indexed: 02/04/2023]
|
33
|
Pires AO, Teixeira FG, Mendes-Pinheiro B, Serra SC, Sousa N, Salgado AJ. Old and new challenges in Parkinson's disease therapeutics. Prog Neurobiol 2017; 156:69-89. [PMID: 28457671 DOI: 10.1016/j.pneurobio.2017.04.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 03/15/2017] [Accepted: 04/20/2017] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopaminergic neurons and/or loss od neuronal projections, in several dopaminergic networks. Current treatments for idiopathic PD rely mainly on the use of pharmacologic agents to improve motor symptomatology of PD patients. Nevertheless, so far PD remains an incurable disease. Therefore, it is of utmost importance to establish new therapeutic strategies for PD treatment. Over the last 20 years, several molecular, gene and cell/stem-cell therapeutic approaches have been developed with the aim of counteracting or retarding PD progression. The scope of this review is to provide an overview of PD related therapies and major breakthroughs achieved within this field. In order to do so, this review will start by focusing on PD characterization and current treatment options covering thereafter molecular, gene and cell/stem cell-based therapies that are currently being studied in animal models of PD or have recently been tested in clinical trials. Among stem cell-based therapies, those using MSCs as possible disease modifying agents for PD therapy and, specifically, the MSCs secretome contribution to meet the clinical challenge of counteracting or retarding PD progression, will be more deeply explored.
Collapse
Affiliation(s)
- Ana O Pires
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - F G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - B Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Sofia C Serra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
34
|
The resolution of Expert Board meeting «Advanced stage of Parkinson’s disease. Possibilities of the transition to non-invasive methods of treatment». Moscow. Dec16 2016. Zh Nevrol Psikhiatr Im S S Korsakova 2017. [DOI: 10.17116/jnevro201711751117-118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Maasz G, Zrinyi Z, Reglodi D, Petrovics D, Rivnyak A, Kiss T, Jungling A, Tamas A, Pirger Z. Pituitary adenylate cyclase-activating polypeptide (PACAP) has a neuroprotective function in dopamine-based neurodegeneration in rat and snail parkinsonian models. Dis Model Mech 2016; 10:127-139. [PMID: 28067625 PMCID: PMC5312006 DOI: 10.1242/dmm.027185] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/06/2016] [Indexed: 01/12/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) rescues dopaminergic neurons from neurodegeneration and improves motor changes induced by 6-hydroxy-dopamine (6-OHDA) in rat parkinsonian models. Recently, we investigated the molecular background of the neuroprotective effect of PACAP in dopamine (DA)-based neurodegeneration using rotenone-induced snail and 6-OHDA-induced rat models of Parkinson's disease. Behavioural activity, monoamine (DA and serotonin), metabolic enzyme (S-COMT, MB-COMT and MAO-B) and PARK7 protein concentrations were measured before and after PACAP treatment in both models. Locomotion and feeding activity were decreased in rotenone-treated snails, which corresponded well to findings obtained in 6-OHDA-induced rat experiments. PACAP was able to prevent the behavioural malfunctions caused by the toxins. Monoamine levels decreased in both models and the decreased DA level induced by toxins was attenuated by ∼50% in the PACAP-treated animals. In contrast, PACAP had no effect on the decreased serotonin (5HT) levels. S-COMT metabolic enzyme was also reduced but a protective effect of PACAP was not observed in either of the models. Following toxin treatment, a significant increase in MB-COMT was observed in both models and was restored to normal levels by PACAP. A decrease in PARK7 was also observed in both toxin-induced models; however, PACAP had a beneficial effect only on 6-OHDA-treated animals. The neuroprotective effect of PACAP in different animal models of Parkinson's disease is thus well correlated with neurotransmitter, enzyme and protein levels. The models successfully mimic several, but not all etiological properties of the disease, allowing us to study the mechanisms of neurodegeneration as well as testing new drugs. The rotenone and 6-OHDA rat and snail in vivo parkinsonian models offer an alternative method for investigation of the molecular mechanisms of neuroprotective agents, including PACAP. Summary: PACAP has a neuroprotective effect in different toxin-induced rat and snail parkinsonian models, acting partially through the same mechanisms.
Collapse
Affiliation(s)
- Gabor Maasz
- MTA-ÖK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA-CER, 8237 Tihany, Hungary.,Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pecs, 7624 Pecs, Hungary
| | - Zita Zrinyi
- MTA-ÖK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA-CER, 8237 Tihany, Hungary
| | - Dora Reglodi
- Department of Anatomy, University of Pecs, 7624 Pecs, Hungary
| | - Dora Petrovics
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pecs, 7624 Pecs, Hungary
| | - Adam Rivnyak
- Department of Anatomy, University of Pecs, 7624 Pecs, Hungary
| | - Tibor Kiss
- Department of Experimental Zoology, Balaton Limnological Institute, MTA-CER, 8237 Tihany, Hungary
| | - Adel Jungling
- Department of Anatomy, University of Pecs, 7624 Pecs, Hungary
| | - Andrea Tamas
- Department of Anatomy, University of Pecs, 7624 Pecs, Hungary
| | - Zsolt Pirger
- MTA-ÖK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA-CER, 8237 Tihany, Hungary
| |
Collapse
|
36
|
Shadfar S, Kim YG, Katila N, Neupane S, Ojha U, Bhurtel S, Srivastav S, Jeong GS, Park PH, Hong JT, Choi DY. Neuroprotective Effects of Antidepressants via Upregulation of Neurotrophic Factors in the MPTP Model of Parkinson’s Disease. Mol Neurobiol 2016; 55:554-566. [DOI: 10.1007/s12035-016-0342-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 12/02/2016] [Indexed: 12/23/2022]
|
37
|
Reis J, Cagide F, Chavarria D, Silva T, Fernandes C, Gaspar A, Uriarte E, Remião F, Alcaro S, Ortuso F, Borges F. Discovery of New Chemical Entities for Old Targets: Insights on the Lead Optimization of Chromone-Based Monoamine Oxidase B (MAO-B) Inhibitors. J Med Chem 2016; 59:5879-93. [PMID: 27244485 DOI: 10.1021/acs.jmedchem.6b00527] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The discovery of new chemical entities endowed with potent, selective, and reversible monoamine oxidase B inhibitory activity is a clinically relevant subject. Therefore, a small library of chromone derivatives was synthesized and screened toward human monoamine oxidase isoforms (hMAO-A and hMAO-B). The structure-activity relationships studies strengthen the importance of the amide spacer and the direct linkage of carbonyl group to the γ-pyrone ring, along with the presence of meta and para substituents in the exocyclic ring. The most potent MAO-B inhibitors were N-(3'-chlorophenyl)-4-oxo-4H-chromene-3-carboxamide (20) (IC50 = 403 pM) and N-(3',4'-dimethylphenyl)-4-oxo-4H-chromene-3-carboxamide (27) (IC50 = 669 pM), acting as competitive and noncompetitive reversible inhibitors, respectively. Computational docking studies provided insights into enzyme-inhibitor interactions and a rationale for the observed selectivity and potency. Compound 27 stands out due to its favorable toxicological profile and physicochemical properties, which pointed toward blood-brain barrier permeability, thus being a valid candidate for subsequent animal studies.
Collapse
Affiliation(s)
- Joana Reis
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto , 4169-007, Porto, Portugal
| | - Fernando Cagide
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto , 4169-007, Porto, Portugal
| | - Daniel Chavarria
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto , 4169-007, Porto, Portugal
| | - Tiago Silva
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto , 4169-007, Porto, Portugal
| | - Carlos Fernandes
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto , 4169-007, Porto, Portugal
| | - Alexandra Gaspar
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto , 4169-007, Porto, Portugal
| | - Eugenio Uriarte
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela , 15782 Santiago de Compostela, Spain
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto , 4050-313, Porto, Portugal
| | - Stefano Alcaro
- Department of "Scienze della Vita", University "Magna Græcia" of Catanzaro , 88100 Catanzaro, Italy
| | - Francesco Ortuso
- Department of "Scienze della Vita", University "Magna Græcia" of Catanzaro , 88100 Catanzaro, Italy
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto , 4169-007, Porto, Portugal
| |
Collapse
|
38
|
Neuroprotective and Therapeutic Strategies against Parkinson's Disease: Recent Perspectives. Int J Mol Sci 2016; 17:ijms17060904. [PMID: 27338353 PMCID: PMC4926438 DOI: 10.3390/ijms17060904] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/27/2016] [Accepted: 05/30/2016] [Indexed: 12/18/2022] Open
Abstract
Parkinsonism is a progressive motor disease that affects 1.5 million Americans and is the second most common neurodegenerative disease after Alzheimer’s. Typical neuropathological features of Parkinson’s disease (PD) include degeneration of dopaminergic neurons located in the pars compacta of the substantia nigra that project to the striatum (nigro-striatal pathway) and depositions of cytoplasmic fibrillary inclusions (Lewy bodies) which contain ubiquitin and α-synuclein. The cardinal motor signs of PD are tremors, rigidity, slow movement (bradykinesia), poor balance, and difficulty in walking (Parkinsonian gait). In addition to motor symptoms, non-motor symptoms that include autonomic and psychiatric as well as cognitive impairments are pressing issues that need to be addressed. Several different mechanisms play an important role in generation of Lewy bodies; endoplasmic reticulum (ER) stress induced unfolded proteins, neuroinflammation and eventual loss of dopaminergic neurons in the substantia nigra of mid brain in PD. Moreover, these diverse processes that result in PD make modeling of the disease and evaluation of therapeutics against this devastating disease difficult. Here, we will discuss diverse mechanisms that are involved in PD, neuroprotective and therapeutic strategies currently in clinical trial or in preclinical stages, and impart views about strategies that are promising to mitigate PD pathology.
Collapse
|
39
|
Fathi S, Omrani SG, Zamani S. Simple and low-cost electrochemical sensor based on nickel nanoparticles for the determination of cabergoline. JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1134/s1061934816030126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Impact of Plant-Derived Flavonoids on Neurodegenerative Diseases. Neurotox Res 2016; 30:41-52. [PMID: 26951456 DOI: 10.1007/s12640-016-9600-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/24/2015] [Accepted: 01/21/2016] [Indexed: 12/27/2022]
Abstract
Neurodegenerative disorders have a common characteristic that is the involvement of different cell types, typically the reactivity of astrocytes and microglia, characterizing gliosis, which in turn contributes to the neuronal dysfunction and or death. Flavonoids are secondary metabolites of plant origin widely investigated at present and represent one of the most important and diversified among natural products phenolic groups. Several biological activities are attributed to this class of polyphenols, such as antitumor activity, antioxidant, antiviral, and anti-inflammatory, among others, which give significant pharmacological importance. Our group have observed that flavonoids derived from Brazilian plants Dimorphandra mollis Bent., Croton betulaster Müll. Arg., e Poincianella pyramidalis Tul., botanical synonymous Caesalpinia pyramidalis Tul. also elicit a broad spectrum of responses in astrocytes and neurons in culture as activation of astrocytes and microglia, astrocyte associated protection of neuronal progenitor cells, neuronal differentiation and neuritogenesis. It was observed the flavonoids also induced neuronal differentiation of mouse embryonic stem cells and human pluripotent stem cells. Moreover, with the objective of seeking preclinical pharmacological evidence of these molecules, in order to assess its future use in the treatment of neurodegenerative disorders, we have evaluated the effects of flavonoids in preclinical in vitro models of neuroinflammation associated with Parkinson's disease and glutamate toxicity associated with ischemia. In particular, our efforts have been directed to identify mechanisms involved in the changes in viability, morphology, and glial cell function induced by flavonoids in cultures of glial cells and neuronal cells alone or in interactions and clarify the relation with their neuroprotective and morphogetic effects.
Collapse
|
41
|
Bhayye SS, Roy K, Saha A. Pharmacophore generation, atom-based 3D-QSAR, HQSAR and activity cliff analyses of benzothiazine and deazaxanthine derivatives as dual A 2A antagonists/MAO‑B inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2016; 27:183-202. [PMID: 26873265 DOI: 10.1080/1062936x.2015.1136840] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Dual inhibition of A2A and MAO-B is an emerging strategy in neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). In this study, atom-based three-dimensional quantitative structure-activity relationship (3D-QSAR) and hologram quantitative structure-activity relationship (HQSAR) models were generated with benzothiazine and deazaxanthine derivatives. Based on activity against A2A and MAO-B, two statistically significant 3D-QSAR models (r2 = 0.96, q2 = 0.76 and r2 = 0.91, q2 = 0.63) and HQSAR models (r2 = 0.93, q2 = 0.68 and r2 = 0.97, q2 = 0.58) were developed. In an activity cliff analysis, structural outliers were identified by calculating the Mahalanobis distance for a pair of compounds with A2A and MAO-B inhibitory activities. The generated 3D-QSAR and HQSAR models, activity cliff analysis, molecular docking and dynamic studies for dual target protein inhibitors provide key structural scaffolds that serve as building blocks in designing drug-like molecules for neurodegenerative diseases.
Collapse
Affiliation(s)
- S S Bhayye
- a Department of Chemical Technology , University of Calcutta , Kolkata , West Bengal , India
| | - K Roy
- b Department of Pharmaceutical Technology , Jadavpur University , Kolkata , West Bengal , India
| | - A Saha
- a Department of Chemical Technology , University of Calcutta , Kolkata , West Bengal , India
| |
Collapse
|
42
|
Fitting S, Booze RM, Mactutus CF. HIV-1 proteins, Tat and gp120, target the developing dopamine system. Curr HIV Res 2015; 13:21-42. [PMID: 25613135 DOI: 10.2174/1570162x13666150121110731] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 11/17/2014] [Accepted: 12/23/2014] [Indexed: 11/22/2022]
Abstract
In 2014, 3.2 million children (< 15 years of age) were estimated to be living with HIV and AIDS worldwide, with the 240,000 newly infected children in the past year, i.e., another child infected approximately every two minutes [1]. The primary mode of HIV infection is through mother-to-child transmission (MTCT), occurring either in utero, intrapartum, or during breastfeeding. The effects of HIV-1 on the central nervous system (CNS) are putatively accepted to be mediated, in part, via viral proteins, such as Tat and gp120. The current review focuses on the targets of HIV-1 proteins during the development of the dopamine (DA) system, which appears to be specifically susceptible in HIV-1-infected children. Collectively, the data suggest that the DA system is a clinically relevant target in chronic HIV-1 infection, is one of the major targets in pediatric HIV-1 CNS infection, and may be specifically susceptible during development. The present review discusses the development of the DA system, follows the possible targets of the HIV-1 proteins during the development of the DA system, and suggests potential therapeutic approaches. By coupling our growing understanding of the development of the CNS with the pronounced age-related differences in disease progression, new light may be shed on the neurological and neurocognitive deficits that follow HIV-1 infection.
Collapse
Affiliation(s)
| | - Rosemarie M Booze
- Department of Psychology, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, USA.
| | | |
Collapse
|
43
|
Fourcade S, Ferrer I, Pujol A. Oxidative stress, mitochondrial and proteostasis malfunction in adrenoleukodystrophy: A paradigm for axonal degeneration. Free Radic Biol Med 2015; 88:18-29. [PMID: 26073123 DOI: 10.1016/j.freeradbiomed.2015.05.041] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/07/2015] [Accepted: 05/26/2015] [Indexed: 12/15/2022]
Abstract
Peroxisomal and mitochondrial malfunction, which are highly intertwined through redox regulation, in combination with defective proteostasis, are hallmarks of the most prevalent multifactorial neurodegenerative diseases-including Alzheimer's (AD) and Parkinson's disease (PD)-and of the aging process, and are also found in inherited conditions. Here we review the interplay between oxidative stress and axonal degeneration, taking as groundwork recent findings on pathomechanisms of the peroxisomal neurometabolic disease adrenoleukodystrophy (X-ALD). We explore the impact of chronic redox imbalance caused by the excess of very long-chain fatty acids (VLCFA) on mitochondrial respiration and biogenesis, and discuss how this impairs protein quality control mechanisms essential for neural cell survival, such as the proteasome and autophagy systems. As consequence, prime molecular targets in the pathogenetic cascade emerge, such as the SIRT1/PGC-1α axis of mitochondrial biogenesis, and the inhibitor of autophagy mTOR. Thus, we propose that mitochondria-targeted antioxidants; mitochondrial biogenesis boosters such as the antidiabetic pioglitazone and the SIRT1 ligand resveratrol; and the autophagy activator temsirolimus, a derivative of the mTOR inhibitor rapamycin, hold promise as disease-modifying therapies for X-ALD.
Collapse
Affiliation(s)
- Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain; Institut of Neuropathology, Pathologic Anatomy Service, Bellvitge Biomedical Research Institute, IDIBELL-Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, 08908 Barcelona, Spain; Center for Biomedical Research on Rare Diseases (CIBERER), U759, ISCIII, Spain.
| | - Isidre Ferrer
- Institut of Neuropathology, Pathologic Anatomy Service, Bellvitge Biomedical Research Institute, IDIBELL-Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, 08908 Barcelona, Spain; Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain; Institut of Neuropathology, Pathologic Anatomy Service, Bellvitge Biomedical Research Institute, IDIBELL-Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, 08908 Barcelona, Spain; Center for Biomedical Research on Rare Diseases (CIBERER), U759, ISCIII, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Barcelona 08010, Catalonia, Spain.
| |
Collapse
|
44
|
Rabinca AA, Buleandra M, Balan A, Stamatin I, Ciucu AA. Electrochemical Behaviour and Rapid Determination of L-Dopa at Electrochemically Pretreated Screen Printed Carbon Electrode. ELECTROANAL 2015. [DOI: 10.1002/elan.201500230] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
45
|
Renaud J, Nabavi SF, Daglia M, Nabavi SM, Martinoli MG. Epigallocatechin-3-Gallate, a Promising Molecule for Parkinson's Disease? Rejuvenation Res 2015; 18:257-69. [PMID: 25625827 DOI: 10.1089/rej.2014.1639] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, and it is characterized by the loss of the neurotransmitter dopamine and neuronal degeneration in the substantia nigra pars compacta. Thus far, current therapeutic strategies have failed to address neuronal degeneration. It has been reported that overproduction of reactive oxygen species, resulting in oxidative stress, and neuroinflammation play an important role in neurodegenerative diseases through the induction of macromolecular oxidative damage and modulation of intracellular signaling pathways concurring to neuronal cell death. Indeed, anti-oxidant and anti-inflammatory drugs have been the subject of recommendation as a complementary therapy alongside an effective symptomatic treatment to hamper the progression of PD. Today, much attention is paid to polyphenols in light of their potent capacity to reduce oxidative stress and inflammation, while having much fewer side effects than most other drugs. Camellia sinensis L. is the most common ancient herbal tea prepared as a beverage worldwide and it possesses numerous beneficial effects on human health. Epigallocatechin-3-gallate is the best-known bioactive component of C. sinensis and is recognized to exert potent neuroprotective effects against oxidative stress, neuroinflammation, protein aggregation, autophagy, and neuronal cell death in vitro as well as in vivo. The present review appraises the available literature on the beneficial role of epigallocatechin-3-gallate pertaining to dopaminergic degeneration characteristic of PD with particular emphasis on its possible mechanisms of action.
Collapse
Affiliation(s)
- Justine Renaud
- 1 Department of Medical Biology and Research Group in Neuroscience, Université du Québec , Trois-Rivières, Québec, Canada
| | - Seyed Fazel Nabavi
- 2 Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences , Tehran, Iran
| | - Maria Daglia
- 3 Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia , Italy
| | - Seyed Mohammad Nabavi
- 2 Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences , Tehran, Iran
| | - Maria-Grazia Martinoli
- 1 Department of Medical Biology and Research Group in Neuroscience, Université du Québec , Trois-Rivières, Québec, Canada
- 4 Department of Psychiatry and Neuroscience, Université Laval and CHU Research Center , Québec, Canada
| |
Collapse
|
46
|
Kakkar AK, Dahiya N. Management of Parkinson׳s disease: Current and future pharmacotherapy. Eur J Pharmacol 2015; 750:74-81. [DOI: 10.1016/j.ejphar.2015.01.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 01/18/2023]
|
47
|
Michel A, Downey P, Nicolas JM, Scheller D. Unprecedented therapeutic potential with a combination of A2A/NR2B receptor antagonists as observed in the 6-OHDA lesioned rat model of Parkinson's disease. PLoS One 2014; 9:e114086. [PMID: 25513815 PMCID: PMC4267740 DOI: 10.1371/journal.pone.0114086] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/04/2014] [Indexed: 12/12/2022] Open
Abstract
In Parkinson's disease, the long-term use of dopamine replacing agents is associated with the development of motor complications; therefore, there is a need for non-dopaminergic drugs. This study evaluated the potential therapeutic impact of six different NR2B and A2A receptor antagonists given either alone or in combination in unilateral 6-OHDA-lesioned rats without (monotherapy) or with (add-on therapy) the co-administration of L-Dopa: Sch-58261+ Merck 22; Sch-58261+Co-101244; Preladenant + Merck 22; Preladenant + Radiprodil; Tozadenant + Radiprodil; Istradefylline + Co-101244. Animals given monotherapy were assessed on distance traveled and rearing, whereas those given add-on therapy were assessed on contralateral rotations. Three-way mixed ANOVA were conducted to assess the main effect of each drug separately and to determine whether any interaction between two drugs was additive or synergistic. Additional post hoc analyses were conducted to compare the effect of the combination with the effect of the drugs alone. Motor activity improved significantly and was sustained for longer when the drugs were given in combination than when administered separately at the same dose. Similarly, when tested as add-on treatment to L-Dopa, the combinations resulted in higher levels of contralateral rotation in comparison to the single drugs. Of special interest, the activity observed with some combinations could not be described by a simplistic additive effect and involved more subtle synergistic pharmacological interactions. The combined administration of A2A/NR2B-receptor antagonists improved motor behaviour in 6-OHDA rats. Given the proven translatability of this model such a combination may be expected to be effective in improving motor symptoms in patients.
Collapse
Affiliation(s)
- Anne Michel
- Neurosciences TA Biology, UCB BioPharma SPRL, Braine l'Alleud, Belgium
| | - Patrick Downey
- Neurosciences TA Biology, UCB BioPharma SPRL, Braine l'Alleud, Belgium
| | | | - Dieter Scheller
- Neurosciences TA Biology, UCB BioPharma SPRL, Braine l'Alleud, Belgium
| |
Collapse
|
48
|
Cai JP, Chen WJ, Lin Y, Cai B, Wang N. Safety and efficacy of rasagiline in addition to levodopa for the treatment of idiopathic Parkinson's disease: a meta-analysis of randomised controlled trials. Eur Neurol 2014; 73:5-12. [PMID: 25358603 DOI: 10.1159/000367892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/24/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND To assess the safety and efficacy of rasagiline for the treatment of Parkinson's disease (PD) among individuals currently receiving levodopa. METHODS A systematic literature search was conducted to identify randomised controlled trials (RCT) comparing rasagiline with placebo/no treatment in individuals with PD currently receiving levodopa. Outcome measures included improvement in motor functions; symptomatic improvement; improvement in quality of life; adverse effects. Random-effect meta-analytical techniques were conducted for the outcome measure and subgroup analyses. RESULTS Three RCTs were included (n = 1002). The results showed significantly greater improvements in daily 'on' time without dyskinesia in levodopa-treated participants with idiopathic PD receiving 1 mg/day rasagiline compared to placebo (n = 712, 2 RCTs, MD 0.80, CI 0.45 to 1.15; p < 0.00001), and significantly greater improvements in Unified Parkinson's Disease Rating Scale motor performance scores during 'on' time in participants receiving 0.5-1 mg/day rasagiline (0.5 mg/day: n = 282, MD -2.91, CI -4.59 to -1.23; p = 0.0007; 1 mg/day: n = 712, 2 RCTs, MD -2.91, CI -4.02 to -1.80; p < 0.00001). There were no significant differences in adverse effects. CONCLUSION 0.5 to 1 mg/day rasagiline in addition to levodopa is a safe and well-tolerated combination therapy for individuals with Parkinson's disease.
Collapse
Affiliation(s)
- Jiang-Ping Cai
- Department of Neurology, First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian Province China
| | | | | | | | | |
Collapse
|
49
|
Mittal D, Md S, Hasan Q, Fazil M, Ali A, Baboota S, Ali J. Brain targeted nanoparticulate drug delivery system of rasagiline via intranasal route. Drug Deliv 2014; 23:130-9. [PMID: 24786489 DOI: 10.3109/10717544.2014.907372] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of the present study was to prepare and evaluate a rasagiline-loaded chitosan glutamate nanoparticles (RAS-CG-NPs) by ionic gelation of CG with tripolyphosphate anions (TPP). RAS-loaded CG-NPs were characterized for particle size, size distribution, encapsulation efficiency and in vitro drug release. The mean particles size, polydispersity index (PDI) and encapsulation efficiency was found to be 151.1 ± 10.31, 0.380 ± 0.01 and 96.43 ± 4.23, respectively. Biodistribution of RAS formulations in the brain and blood of mice following intranasal (i.n.) and intravenous (i.v.) administration was performed using HPLC analytical method. The drug concentrations in brain following the i.n. of CG-NPs were found to be significantly higher at all the time points compared to both drug (i.n.) and drug CG-NPs (i.v.). The Cmax (999.25 ng/ml) and AUC (2086.60 ng h/ml) of formulation CG-NPs (i.n) were found to be significantly higher than CG-NPs (i.v.) and RAS solution (i.n.). The direct transport percentage (DTP%) values of RAS-loaded CG-NPs (i.n.) as compared to drug solution (i.n.) increased from 66.27 ± 1.8 to 69.27 ± 2.1%. The results showed significant enhancement of bioavailability in brain, after administration of the RAS-loaded CG-NPs which could be a substantial achievement of direct nose to brain targeting in Parkinson's disease therapy.
Collapse
Affiliation(s)
| | | | - Quamrul Hasan
- b Department of Pharmacology , Faculty of Pharmacy , Jamia Hamdard , New Delhi , India
| | | | | | | | | |
Collapse
|
50
|
Abstract
It is well known that the death of dopaminergic neurons of the substantia nigra pars compacta (SNc) is the pathological hallmark of Parkinson's disease (PD), the second most common and disabling condition in the expanding elderly population. Nevertheless, the intracellular cascade of events leading to dopamine cell death is still unknown and, consequently, treatment is largely symptomatic rather than preventive. Moreover, the mechanisms whereby nigral dopaminergic neurons may degenerate still remain controversial. Hitherto, several data have shown that the earlier cellular disturbances occurring in dopaminergic neurons include oxidative stress, excitotoxicity, inflammation, mitochondrial dysfunction and altered proteolysis. These alterations, rather than killing neurons, trigger subsequent death-related molecular pathways, including elements of apoptosis. In rare incidences, PD may be inherited; this evidence has opened a new and exciting area of research, attempting to shed light on the nature of the more common idiopathic PD form. In this review, the characteristics of the SNc dopaminergic neurons and their lifecycle from birth to death are reviewed. In addition, of the mechanisms by which the aforementioned alterations cause neuronal dopaminergic death, particular emphasis will be given to the role played by inflammation, and the relevance of the possible use of anti-inflammatory drugs in the treatment of PD. Finally, new evidence of a possible de novo neurogenesis in the SNc of adult animals and in PD patients will also be examined.
Collapse
Affiliation(s)
- Ennio Esposito
- Istituto di Ricerche Farmacologiche Mario Negri, Consorzio Mario Negri Sud, Via Nazionale 8, 66030 Santa Maria Imbaro (Chieti), Italy.
| | | | | |
Collapse
|