1
|
Liu Y, Fu R, Jia H, Yang K, Ren F, Zhou MS. GHRH and its analogues in central nervous system diseases. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09920-x. [PMID: 39470866 DOI: 10.1007/s11154-024-09920-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
Growth hormone-releasing hormone (GHRH) is primarily produced by the hypothalamus and stimulates the release of growth hormone (GH) in the anterior pituitary gland, which subsequently regulates the production of hepatic insulin-like growth factor-1 (IGF-1). GH and IGF-1 have potent effects on promoting cell proliferation, inhibiting cell apoptosis, as well as regulating cell metabolism. In central nerve system (CNS), GHRH/GH/IGF-1 promote brain development and growth, stimulate neuronal proliferation, and regulate neurotransmitter release, thereby participating in the regulation of various CNS physiological activities. In addition to hypothalamus-pituitary gland, GHRH and GHRH receptor (GHRH-R) are also expressed in other brain cells or tissues, such as endogenous neural stem cells (NSCs) and tumor cells. Alternations in GHRH/GH/IGF-1 axis are associated with various CNS diseases, for example, Alzheimer's disease, amyotrophic lateral sclerosis and emotional disorders manifest GHRH, GH or IGF-1 deficiency, and GH or IGF-1 supplementation exerts beneficial therapeutic effects on these diseases. CNS tumors, such as glioma, can express GHRH and GHRH-R, and activating this signaling pathway promotes tumor cell growth. The synthesized GHRH antagonists have shown to inhibit glioma cell growth and may hold promising as an adjuvant therapy for treating glioma. In addition, we have shown that GHRH agonist MR-409 can improve neurological sequelae after ischemic stroke by activating extrapituitary GHRH-R signaling and promoting endogenous NSCs-derived neuronal regeneration. This article reviews the involvement of GHRH/GH/IGF-1 in CNS diseases, and potential roles of GHRH agonists and antagonists in treating CNS diseases.
Collapse
Affiliation(s)
- Yueyang Liu
- Department of Pharmacology, Shenyang Medical College, Shenyang, 110034, China
| | - Rong Fu
- Science and Experiment Research Center & Shenyang Key Laboratory of Vascular Biology, Shenyang Medical College, Shenyang, 110034, China
- Department of Physiology, Shenyang Medical College, Shenyang, 110034, China
| | - Hui Jia
- School of Traditional Chinese Medicine, Shenyang Medical College, Shenyang, 110034, China
| | - Kefan Yang
- Science and Experiment Research Center & Shenyang Key Laboratory of Vascular Biology, Shenyang Medical College, Shenyang, 110034, China
- Department of Physiology, Shenyang Medical College, Shenyang, 110034, China
| | - Fu Ren
- Department of Anatomy, Shenyang Medical College, Shenyang, 110034, China.
| | - Ming-Sheng Zhou
- Science and Experiment Research Center & Shenyang Key Laboratory of Vascular Biology, Shenyang Medical College, Shenyang, 110034, China.
- Department of Physiology, Shenyang Medical College, Shenyang, 110034, China.
| |
Collapse
|
2
|
Carnwath TP, Demel SL, Prestigiacomo CJ. Genetics of ischemic stroke functional outcome. J Neurol 2024; 271:2345-2369. [PMID: 38502340 PMCID: PMC11055934 DOI: 10.1007/s00415-024-12263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/21/2024]
Abstract
Ischemic stroke, which accounts for 87% of cerebrovascular accidents, is responsible for massive global burden both in terms of economic cost and personal hardship. Many stroke survivors face long-term disability-a phenotype associated with an increasing number of genetic variants. While clinical variables such as stroke severity greatly impact recovery, genetic polymorphisms linked to functional outcome may offer physicians a unique opportunity to deliver personalized care based on their patient's genetic makeup, leading to improved outcomes. A comprehensive catalogue of the variants at play is required for such an approach. In this review, we compile and describe the polymorphisms associated with outcome scores such as modified Rankin Scale and Barthel Index. Our search identified 74 known genetic polymorphisms spread across 48 features associated with various poststroke disability metrics. The known variants span diverse biological systems and are related to inflammation, vascular homeostasis, growth factors, metabolism, the p53 regulatory pathway, and mitochondrial variation. Understanding how these variants influence functional outcome may be helpful in maximizing poststroke recovery.
Collapse
Affiliation(s)
- Troy P Carnwath
- University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Stacie L Demel
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Charles J Prestigiacomo
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| |
Collapse
|
3
|
Wang Q, Jiang T, Li R, Zheng T, Han Q, Wang M. Whether serum leptin and insulin-like growth factor-1 are predictive biomarkers for post-stroke depression: A meta-analysis and systematic review. J Psychiatr Res 2024; 169:347-354. [PMID: 38091723 DOI: 10.1016/j.jpsychires.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 01/15/2024]
Abstract
Leptin and insulin-like growth factor-1 (IGF-1) may play a role in clinical identification of post-stroke depression (PSD). Here, eight databases (including CNKI, Wanfang, SinoMed, VIP, PubMed, the Cochrane Library, Embase, and the Web of Science) were employed to search for studies on serum leptin and insulin-like growth factor-1 expression levels in patients with PSD. In total, 13 articles were included, of which 6 studies investigated the expression level of serum leptin in patients with PSD, 7 studies explored the serum IGF-1 in PSD patients. Then, the RevMan 5.4 software was used for meta-analysis. The results showed that serum leptin levels were significantly higher in PSD patients than in patients without PSD (SMD = 1.54, 95% CI: 0.84, 2.23; P = 0.006). The result of subgroup analysis showed that the serum leptin levels in PSD patients were significantly higher than those without PSD in acute phase (SMD = 1.38, 95% CI: 0.04, 2.71; P = 0.04), subacute phase (SMD = 2.31, 95% CI: 0.88, 3.73; P = 0.001), and chronic phase (SMD = 1.02, 95% CI: 0.43, 1.60; P = 0.0007); There was no significant difference in serum IGF-1 level between PSD patients and patients without PSD (SMD = 0.49, 95% CI: -0.55, 1.52; P = 0.36). Moreover, the subgroup analysis also showed that there was no statistical difference in acute stage (SMD = 0.36, 95% CI: 0.89, 1.60; P = 0.57). Our study provides evidence to prove that serum leptin level has potential clinical application value as biomarkers for identifying PSD.
Collapse
Affiliation(s)
- Qi Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Taotao Jiang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Rundong Li
- Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Ting Zheng
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou, 730030, China
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
4
|
Analysis of Insulin-like growth factor-1 serum levels and promoter (rs12579108) polymorphism in the children with autism spectrum disorders. J Clin Neurosci 2022; 99:289-293. [DOI: 10.1016/j.jocn.2022.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/09/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022]
|
5
|
Mehrpour M, Rahatlou H, Hamzehpur N, Kia S, Safdarian M. Association of insulin-like growth factor-I with the severity and outcomes of acute ischemic stroke. IRANIAN JOURNAL OF NEUROLOGY 2016; 15:214-218. [PMID: 28435630 PMCID: PMC5392195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Background: The aim of this study was to evaluate whether higher serum levels of insulin-like growth factor-I (IGF-I) in the acute phase of ischemic stroke are associated with less severe strokes and better functional outcome in a period of 12-month follow-up. Methods: From October 2014 to August 2015, patients with the diagnosis of acute ischemic stroke admitted to the stroke unit of Firoozgar Hospital, Tehran, Iran, entered this prospective study. National Institutes of Health Stroke Scale (NIHSS) and Modified Rankin Scale (MRS) for stroke scores were used to measure the severity and outcomes of an acute ischemic stroke at the time of admission and 1 year after the stroke, respectively. Results: A total of 60 acute ischemic stroke patients (28 male, 32 female) with the mean age of 71.1 ± 9.0 years were evaluated for the serum level of IGF-I at the time of admission to the stroke unit of Firoozgar Hospital. There was seen a significant correlation between the IGF-I serum level and the MRS scores (P = 0.020; correlation coefficient = -0.32). IGF-I serum level had no significant correlation with NIHSS scores. Conclusion: These results support that the higher serum levels of IGF-I at the time of stroke is associated with a significant better outcome in a 1-year period of follow-up. However, this hormone serum level seems not to have a predictable value for the ischemic stroke severity. Further studies are required to clarify the neuroprotective mechanisms of IGF-I in ischemic stroke process.
Collapse
Affiliation(s)
- Masoud Mehrpour
- Department of Neurology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hessam Rahatlou
- Department of Neurosurgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Negar Hamzehpur
- Department of Obstetrics and Gynecology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahand Kia
- Department of Otolaryngology-Head and Neck surgery, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Safdarian
- Department of Neurology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
De Geyter D, De Smedt A, Stoop W, De Keyser J, Kooijman R. Central IGF-I Receptors in the Brain are Instrumental to Neuroprotection by Systemically Injected IGF-I in a Rat Model for Ischemic Stroke. CNS Neurosci Ther 2016; 22:611-6. [PMID: 27080541 PMCID: PMC6492886 DOI: 10.1111/cns.12550] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 03/08/2016] [Accepted: 03/20/2016] [Indexed: 01/07/2023] Open
Abstract
AIM Insulin-like growth factor I (IGF-I) is a neuroprotective agent in animal models of ischemic stroke. The purpose of this study was to determine whether systemically injected IGF-I exerts its neuroprotective action by binding to IGF-I receptors in the brain after crossing the blood-brain barrier, or via peripheral effects. METHODS To differentiate the central effects of IGF-I from systemic effects, ischemic stroke was induced in conscious male Wistar Kyoto rats by the injection of endothelin-1 adjacent to the middle cerebral artery in the right hemisphere, while either the IGF-I receptor antagonist JB-1 or vehicle was introduced into the right lateral ventricle. RESULTS Intravenous injection of recombinant human (rh)IGF-I resulted in 50% reduction in infarct size, which was counteracted by the central administration of JB-1. Furthermore, rhIGF-I was detected in both the ischemic and nonischemic hemisphere. CONCLUSIONS Systemically injected rhIGF-I passes the blood-brain barrier and protects neurons via IGF-I receptors in the brain in rats with an ischemic stroke.
Collapse
Affiliation(s)
- Deborah De Geyter
- Center for Neurosciences (C4N)Vrije Universiteit Brussel (VUB)BrusselsBelgium
| | - Ann De Smedt
- Center for Neurosciences (C4N)Vrije Universiteit Brussel (VUB)BrusselsBelgium
- Department of NeurologyUniversitair Ziekenhuis BrusselBrusselsBelgium
| | - Wendy Stoop
- Center for Neurosciences (C4N)Vrije Universiteit Brussel (VUB)BrusselsBelgium
| | - Jacques De Keyser
- Center for Neurosciences (C4N)Vrije Universiteit Brussel (VUB)BrusselsBelgium
- Department of NeurologyUniversitair Ziekenhuis BrusselBrusselsBelgium
- Department of NeurologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Ron Kooijman
- Center for Neurosciences (C4N)Vrije Universiteit Brussel (VUB)BrusselsBelgium
| |
Collapse
|
7
|
Harmatina OY. [INSULIN-LIKE GROWTH FACTOR 1 UNDER CONDITIONS OF THE BRAIN VASCULAR DISEASES.]. ACTA ACUST UNITED AC 2016; 62:95-102. [PMID: 29975480 DOI: 10.15407/fz62.04.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The system insulin-like growth factors (IGF) occupies an important place in the development and growth of the central nervous system (CNS). Gene expression of insulin-like growth factor I (IGF-1) and IGF-1 receptor are represented in all parts of the brain and are heavily concentrated in the cerebral vessels. IGF-1 is involved in neuro-, angiogenesis, in the stimulation of cell proliferation, and repair responses to damage for both the central and peripheral nervous system. IGF- 1 exerts antioxidant, anti-inflammatory and protective effects on the CNS. The review discusses the importance and the role of IGF-I in vascular diseases of the brain, in particular, aneurysms, the ischemic stroke, the aneurysmal subarachnoid hemorrhage, as well as neuroprotection.
Collapse
|
8
|
Aberg ND, Olsson S, Aberg D, Jood K, Stanne TM, Nilsson M, Blomstrand C, Svensson J, Isgaard J, Jern C. Genetic variation at the IGF1 locus shows association with post-stroke outcome and to circulating IGF1. Eur J Endocrinol 2013; 169:759-65. [PMID: 24005314 DOI: 10.1530/eje-13-0486] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE In humans, serum IGF1 (s-IGF1) is associated with outcome after ischemic stroke (IS). Therefore variation at the IGF1 locus could also associate with both IS and s-IGF1. We investigated whether genetic variation at the IGF1 locus is associated with i) s-IGF1, ii) IS occurrence, iii) IS severity, and iv) post-stroke outcome. DESIGN/METHODS Patients (n=844; 66% males, mean age 56 years) and community controls (n=668) were included from the Sahlgrenska Academy Study on Ischemic Stroke (SAHLSIS). Post-stroke outcome was evaluated with the modified Rankin Scale at 3 and 24 months after index stroke, and baseline stroke severity with the Scandinavian Stroke Scale. s-IGF1 was determined in patients and after random selection in 40 of the controls. RESULTS Eleven single nucleotide polymorphisms (SNPs) were selected in the IGF1 gene. In healthy controls the major allele of rs7136446 was associated with higher s-IGF1, whereas in patients no such association was found. No SNP was associated with IS, nor with stroke severity. After multivariate correction for presence of diabetes, smoking, and hypertension, the major allele of rs7136446 was associated with favorable functional outcome 24-months post-stroke (odds ratio 1.46; 95% CI 1.09-1.96). CONCLUSION Variation in rs7136446 of the IGF1 gene associates with post-stroke outcome in relatively young IS patients. Also, rs7136446 associates with s-IGF1 in controls but not in IS, which indicates that IS perturbs a normal genetic impact on s-IGF1 levels.
Collapse
Affiliation(s)
- N David Aberg
- Laboratory of Experimental Endocrinology, Department of Internal Medicine, The Sahlgrenska Academy, Sahlgrenska University Hospital
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Somatotropic and thyroid hormones in the acute phase of subarachnoid haemorrhage. Acta Neurochir (Wien) 2013; 155:2053-62. [PMID: 23494135 DOI: 10.1007/s00701-013-1670-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/24/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Somatotropic and thyroid hormones are probably important for the recovery after acute brain injury. Still, the dynamics of these hormones after spontaneous subarachnoid haemorrhage (SAH) is not well described. The purpose of this study was to investigate the relation between somatotropic and thyroid hormones and clinical factors after SAH. METHODS Twenty patients with spontaneous SAH were included prospectively. Serum concentrations of TSH, fT4, T3, IGF-1 and GH were measured once a day for 7 days after SAH. Hormone patterns and serum concentrations were compared to the severity of SAH, neurological condition at admission, clinical course and outcome of the patients. RESULTS During the first week after SAH, all patients showed increased GH and IGF-1 concentrations. In the whole group, concentrations of TSH increased, whereas T3 and fT4 decreased. There were no relations of serum concentrations of IGF-1 or GH to clinical condition at admission, clinical course or outcome of the patients. Half of the patients showed low T3 serum concentrations. A complicated course was associated with a deeper fall in TSH and T3 concentrations. There were negative correlations for mean concentrations of TSH and T3 versus WFNS grade and a positive correlation for T3 versus GOS after 6 months, indicating that low concentrations of TSH and T3 were connected to worse SAH grade and poor outcome. CONCLUSIONS All patients showed increased GH and IGF-1 concentrations irrespective of the grade of SAH or clinical course. Patients with a complicated clinical course showed a more pronounced fall in TSH and T3 concentrations and low serum T3 concentrations were related to a more serious SAH and poor patient outcome. These results need to be studied further and they may contribute to the accumulated knowledge needed to understand the complex mechanisms influencing the unpredictable clinical course after SAH.
Collapse
|
10
|
Sohrabji F, Selvamani A, Balden R. Revisiting the timing hypothesis: biomarkers that define the therapeutic window of estrogen for stroke. Horm Behav 2013; 63:222-30. [PMID: 22728278 PMCID: PMC3483414 DOI: 10.1016/j.yhbeh.2012.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 02/06/2023]
Abstract
Significantly extended life expectancy coupled with contemporary sedentary lifestyles and poor nutrition has created a global epidemic of cardiovascular disease and stroke. For women, this issue is complicated by the discrepant outcomes of hormone therapy (HT) for stroke incidence and severity as well as the therapeutic complications for stroke associated with advancing age. Here we propose that the impact of estrogen therapy cannot be considered in isolation, but should include age-related changes in endocrine, immune, and nucleic acid mediators that collaborate with estrogen to produce neuroprotective effects commonly seen in younger, healthier demographics. Due to their role as modulators of ischemic cell death, the post-stroke inflammatory response, and neuronal survival and regeneration, this review proposes that Insulin-like Growth Factor (IGF)-1, Vitamin D, and discrete members of the family of non-coding RNA peptides called microRNAs (miRNAs) may be crucial biochemical markers that help determine the neuroprotective "window" of HT. Specifically, IGF-1 confers neuroprotection in concert with, and independently of, estrogen and failure of the insulin/IGF-1 axis is associated with metabolic disturbances that increase the risk for stroke. Vitamin D and miRNAs regulate and complement IGF-1 mediated function and neuroprotective efficacy via modulation of IGF-1 availability and neural stem cell and immune cell proliferation, differentiation and secretions. Together, age-related decline of these factors differentially affects stroke risk, severity, and outcome, and may provide a novel therapeutic adjunct to traditional HT practices.
Collapse
Affiliation(s)
- Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, Texas A&M Health Science Center, College Station, TX 77843-1114, USA.
| | | | | |
Collapse
|
11
|
Winter Y, Sankowski R, Back T. Genetic determinants of obesity and related vascular diseases. VITAMINS AND HORMONES 2013; 91:29-48. [PMID: 23374711 DOI: 10.1016/b978-0-12-407766-9.00002-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Obesity is one of the major risk factors of vascular diseases, and its prevalence is increasing worldwide. In the past decade, progress has been made in the understanding of genetic determinants of obesity and obesity-associated diseases. Genome-wide association studies identified a number of genetic variants associated with obesity. In addition to common variants, FTO and MC4R, new loci, such as TMEM18, KCTD15, GNPDA2, SH2B1, MTCH2, and NEGR1 have been detected. In the past years, abdominal obesity has been shown to be a more important vascular risk factor than the body mass index. In the context of vascular risk assessment, identification of genetic polymorphisms associated with accumulation of visceral fat is of special importance. Some polymorphisms associated with abdominal obesity, such as variants of gene encoding microsomal triglyceride transfer protein, have been already discovered. In this chapter, we provide a review of genetic determinants of obesity and discuss their role in obesity-related vascular diseases.
Collapse
Affiliation(s)
- Yaroslav Winter
- Department of Neurology, Philipps-University, Marburg Germany
| | | | | |
Collapse
|
12
|
Balden R, Selvamani A, Sohrabji F. Vitamin D deficiency exacerbates experimental stroke injury and dysregulates ischemia-induced inflammation in adult rats. Endocrinology 2012; 153:2420-35. [PMID: 22408173 PMCID: PMC3339639 DOI: 10.1210/en.2011-1783] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vitamin D deficiency (VDD) is widespread and considered a risk factor for cardiovascular disease and stroke. Low vitamin D levels are predictive for stroke and more fatal strokes in humans, whereas vitamin D supplements are associated with decreased risk of all-cause mortality. Because VDD occurs with other comorbid conditions that are also independent risk factors for stroke, this study examined the specific effect of VDD on stroke severity in rats. Adult female rats were fed control or VDD diet for 8 wk and were subject to middle cerebral artery occlusion thereafter. The VDD diet reduced circulating vitamin D levels to one fifth (22%) of that observed in rats fed control chow. Cortical and striatal infarct volumes in animals fed VDD diet were significantly larger, and sensorimotor behavioral testing indicated that VDD animals had more severe poststroke behavioral impairment than controls. VDD animals were also found to have significantly lower levels of the neuroprotective hormone IGF-I in plasma and the ischemic hemisphere. Cytokine analysis indicated that VDD significantly reduced IL-1α, IL-1β, IL-2, IL-4, IFN-γ, and IL-10 expression in ischemic brain tissue. However, ischemia-induced IL-6 up-regulation was significantly higher in VDD animals. In a separate experiment, the therapeutic potential of acute vitamin D treatments was evaluated, where animals received vitamin D injections 4 h after stroke and every 24 h thereafter. Acute vitamin D treatment did not improve infarct volume or behavioral performance. Our data indicate that VDD exacerbates stroke severity, involving both a dysregulation of the inflammatory response as well as suppression of known neuroprotectants such as IGF-I.
Collapse
Affiliation(s)
- Robyn Balden
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 228 Reynolds Medical Building, College Station, Texas 77843-1114, USA
| | | | | |
Collapse
|
13
|
Oguro R, Kamide K, Katsuya T, Akasaka H, Sugimoto K, Congrains A, Arai Y, Hirose N, Saitoh S, Ohishi M, Miura T, Rakugi H. A single nucleotide polymorphism of the adenosine deaminase, RNA-specific gene is associated with the serum triglyceride level, abdominal circumference, and serum adiponectin concentration. Exp Gerontol 2011; 47:183-7. [PMID: 22210125 DOI: 10.1016/j.exger.2011.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/24/2011] [Accepted: 12/14/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) of the adenosine deaminase, RNA-specific (ADAR) gene were reported to be associated with human longevity. There are possibilities that ADAR is associated with major risk factors of atherosclerotic cardiovascular diseases (CVD), such as hypertension, diabetes, dyslipidemia, and obesity. OBJECTIVE To investigate the association between SNPs of the ADAR gene and clinical data associated with major risk factors of atherosclerotic CVD. SUBJECTS A total of 1504 general population residents (586 males and 918 females) of two towns, Tanno-cho and Sobestu-cho, in Hokkaido, Japan. METHODS Clinical data associated with risk factors of atherosclerotic CVD were collected from these study subjects. DNA from peripheral blood and written informed consent were obtained. Three single nucleotide polymorphisms of ADARB1 and ADARB2, which were previously reported to be associated with longevity, were genotyped employing the TaqMan PCR method. The associations between SNPs in ADARB1 and ADARB2 and clinical parameters related to risk factors of atherosclerosis were analyzed. RESULTS On uni- and multivariate analyses, rs2805533 in ADARB2 was significantly associated with the abdominal circumference, body mass index, serum triglyceride level, and serum adiponectin level. The subjects with the AA genotype of rs2805533 had a greater abdominal circumference, higher body mass index, higher triglyceride level, and lower adiponectin level than those with AG and GG genotypes. CONCLUSION The SNP in ADARB2 related to longevity is associated with metabolic disorders. This finding suggests that genetic factors modulate human longevity via the regulation of metabolic factors such as abdominal obesity and lipid profiles.
Collapse
Affiliation(s)
- Ryosuke Oguro
- Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Renom Espineira A, Fernandes-Rosa FL, Bueno AC, de Souza RM, Moreira AC, de Castro M, Barbieri MA, Bettiol H, Antonini SR. Postnatal growth and cardiometabolic profile in young adults born large for gestational age. Clin Endocrinol (Oxf) 2011; 75:335-41. [PMID: 21521322 DOI: 10.1111/j.1365-2265.2011.04054.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CONTEXT The association between large for gestational age (LGA) phenotype, postnatal growth and cardiometabolic risk (CMR) in adult life remains unclear. The role of IGF1 genotype on LGA-related outcomes in adult life is unknown. AIM To assess the postnatal growth, IGF-I levels, CMR and the influence of the 737.738 IGF1 in adults born LGA. SUBJECTS Case-control study (n = 515) nested in a population-based prospective cohort (n = 2063); 117 LGA and 398 gender-matched controls appropriate for gestational age (AGA) subjects. METHODS Anthropometry was evaluated at birth, at 9-10 and at 23-25 years old. At the age of 23-25 years, blood pressure (BP), glycaemia, insulinaemia, homeostasis model assessment - insulin resistance, lipids, fibrinogen, and plasma IGF-I and 737.738 IGF1 polymorphism were assessed. RESULTS Large for gestational age subjects remained heavier and taller than AGA at 9-10 and 23-25 years (P < 0·05); at 23-25 years, LGA had greater waist circumference (WC; P < 0·05) and higher BP (P < 0·05) than controls. Body proportionality at birth did not predict metabolic outcome. LGA subjects presenting catch-down of weight in childhood had lower body mass index (BMI; P = 0·001), lower WC (P < 0·05) and lower BP (P < 0·05) at 23-25 years. 737.738 IGF-I genotype differed between groups (P < 0·001). Homozygosis for polymorphic alleles was associated with increased odds of LGA (OR: 3·2; 95% CI: 1·5-6·9), higher IGF-I (56·9 ± 16·4 vs 37·7 ± 16·0 nm; P < 0·01) and lower BP (114/68 vs 121/73 mmHg; P < 0·05). CONCLUSIONS Young adults born LGA presented higher BMI, WC and BP and appear to be at higher CMR risk than AGA subjects. The 737.738 IGF1 polymorphism appears to play a role on birth size and LGA-related metabolic outcomes.
Collapse
Affiliation(s)
- Aniette Renom Espineira
- Department of Pediatrics, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
IGF-1 (insulin-like growth factor-1) plays a unique role in the cell protection of multiple systems, where its fine-tuned signal transduction helps to preserve tissues from hypoxia, ischaemia and oxidative stress, thus mediating functional homoeostatic adjustments. In contrast, its deprivation results in apoptosis and dysfunction. Many prospective epidemiological surveys have associated low IGF-1 levels with late mortality, MI (myocardial infarction), HF (heart failure) and diabetes. Interventional studies suggest that IGF-1 has anti-atherogenic actions, owing to its multifaceted impact on cardiovascular risk factors and diseases. The metabolic ability of IGF-1 in coupling vasodilation with improved function plays a key role in these actions. The endothelial-protective, anti-platelet and anti-thrombotic activities of IGF-1 exert critical effects in preventing both vascular damage and mechanisms that lead to unstable coronary plaques and syndromes. The pro-survival and anti-inflammatory short-term properties of IGF-1 appear to reduce infarct size and improve LV (left ventricular) remodelling after MI. An immune-modulatory ability, which is able to suppress 'friendly fire' and autoreactivity, is a proposed important additional mechanism explaining the anti-thrombotic and anti-remodelling activities of IGF-1. The concern of cancer risk raised by long-term therapy with IGF-1, however, deserves further study. In the present review, we discuss the large body of published evidence and review data on rhIGF-1 (recombinant human IGF-1) administration in cardiovascular disease and diabetes, with a focus on dosage and safety issues. Perhaps the time has come for the regenerative properties of IGF-1 to be assessed as a new pharmacological tool in cardiovascular medicine.
Collapse
|
16
|
Neidert S, Katan M, Schuetz P, Fluri F, Ernst A, Bingisser R, Kappos L, Engelter ST, Steck A, Müller B, Christ-Crain M. Anterior pituitary axis hormones and outcome in acute ischaemic stroke. J Intern Med 2011; 269:420-32. [PMID: 21205022 DOI: 10.1111/j.1365-2796.2010.02327.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Early and accurate prediction of outcome in acute stroke is important and influences risk-optimized therapeutic strategies. Endocrine alterations of the hypothalamic-pituitary axis are amongst the first measurable alterations after cerebral ischaemia. We therefore evaluated the prognostic value of cortisol, triiodothyronine (T3), free thyroxine (fT4), thyroid-stimulating hormone (TSH) and growth hormone (GH) in patients with an acute ischaemic stroke. METHODS In an observational study including 281 patients with ischaemic stroke, anterior pituitary axis hormones (i.e. cortisol, T3, fT4, TSH and GH) were simultaneously assessed to determine their value to predict functional outcome and mortality within 90 days and 1 year. RESULTS In receiver operating characteristic curve analysis, the prognostic accuracy of cortisol was higher compared to all measured hormones and was in the range of the National Institutes of Health Stroke Scale (NIHSS). Cortisol was an independent prognostic marker of functional outcome and death [odds ratio (OR) 1.0 (1.0-1.01) and 1.62 (1.37-1.92), respectively, P<0.0002 for both, adjusted for age and the NIHSS] in patients with ischaemic stroke, but added no significant additional predictive value to the clinical NIHSS score. CONCLUSION Cortisol is an independent prognostic marker for death and functional outcome within 90 days and 1 year in patients with ischaemic stroke. By contrast, other anterior pituitary axis hormones such as peripheral thyroid hormones and GH are only of minor value to predict outcome in stroke.
Collapse
Affiliation(s)
- S Neidert
- Department of Endocrinology, University Hospital Basel, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Winter Y, Back T, Scherag A, Linseisen J, Rohrmann S, Lanczik O, Hinney A, Scherag S, Neumaier M, Ringleb PA, Dodel R, Hebebrand J. Evaluation of the obesity genes FTO and MC4R and the type 2 diabetes mellitus gene TCF7L2 for contribution to stroke risk: The Mannheim-Heidelberg Stroke Study. Obes Facts 2011; 4:290-6. [PMID: 21921652 PMCID: PMC6444624 DOI: 10.1159/000330881] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Studies evaluating genetic markers for vascular risk and risk of stroke are limited, and none of them evaluated obesity genes. The objective was to investigate the genetic markers related to obesity genes FTO and MC4R and the gene of type 2 diabetes mellitus TCF7L2 for their contribution to risk of stroke and transient ischemic attacks (TIA). METHODS We recruited 379 consecutive patients with stroke/TIA and 379 healthy population-based controls. The single-nucleotide polymorphisms (SNPs) rs9937053 (FTO), rs2229616 (MC4R V103I), rs17782313 (188kb downstream of MC4R), and rs7903146 (TCF7L2) were evaluated for association with stroke using logistic regression analyses. RESULTS The odds ratios for stroke/TIA were 1.14 (95%CI 0.91-1.42) for rs9937053/FTO, 1.11 (95%CI 0.49-2.51) for rs2229616/MC4R, 1.05 (95%CI 0.82-1.3) for rs17782313/MC4R, and 0.99 (95%CI 0.78-1.25) for rs7903146/TCF7L2. Further exploration revealed that male patients with the T allele of rs7903146/TCF7L2 had a worse clinical outcome compared with male patients carrying the C allele. CONCLUSION The observed trends of obesity risk alleles for risk of stroke/TIA as well as the possible sex-specific differences in clinical outcomes found for the TCF7L2 (rs7903146) require replication in future studies. Our study demonstrates that candidate gene studies for common stroke may benefit from focusing on polymorphisms that predispose to vascular risk.
Collapse
Affiliation(s)
| | - Tobias Back
- Department of Neurology, Saxon Hospital Arnsdorf, Arnsdorf/Dresden
- * Department of Neurology, Saxon Hospital Arnsdorf, Hufelandstraße 15, 01477 Arnsdorf/Dresden, Germany, Tel. +49 35200 263-511, Fax -513,
| | - André Scherag
- Institute for Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, Essen
| | - Jakob Linseisen
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg
- Institute of Epidemiology, Helmholtz Center Munich, Neuherberg
| | - Sabine Rohrmann
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg
| | - Oliver Lanczik
- Department of Neurology, Klinikum Mannheim, University of Heidelberg
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, University of Duisburg-Essen, Essen
| | - Susann Scherag
- Department of Child and Adolescent Psychiatry, University of Duisburg-Essen, Essen
| | | | - Peter A. Ringleb
- Department of Neurology, Klinikum Heidelberg, University of Heidelberg, Germany
| | - Richard Dodel
- Department of Neurology, Philipps University Marburg
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, University of Duisburg-Essen, Essen
| |
Collapse
|
18
|
Bendel S, Koivisto T, Ryynänen OP, Ruokonen E, Romppanen J, Kiviniemi V, Uusaro A. Insulin like growth factor-I in acute subarachnoid hemorrhage: a prospective cohort study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:R75. [PMID: 20426845 PMCID: PMC2887198 DOI: 10.1186/cc8988] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 02/21/2010] [Accepted: 04/28/2010] [Indexed: 12/05/2022]
Abstract
Introduction Neuroendocrine deficiencies may affect recovery after aneurysmal subarachnoid hemorrhage (aSAH). Insulin like growth factor-I (IGF-I) regulates neuronal growth and apoptosis in ischemic stroke. Our study was designed to a) characterize the behavior of serum IGF-I and growth hormone (GH) in the acute and late phases after aSAH reflecting possible pituitary gland function and b) evaluate the association between IGF-I and morbidity assessed by Glasgow outcome scale (GOS) and health related quality of life (HRQoL) in patients with aSAH. Methods In this prospective cohort study, patients with aSAH (n = 30) were compared to patients who underwent elective aneurysm surgery (n = 16). Serum GH and IGF-I concentrations were measured daily for five (controls) or seven (aSAH) days and at three months. GOS and 15d HRQoL was measured at three months. A mixed models method was used for testing between the groups. For factors possibly affecting HRQoL in aSAH patients, we constructed a Bayesian predicting model using a P-course Bayesian classifier. Results The mean IGF-I concentrations for days one to five were 8.1 ± 3.5 nmol/l in patients with aSAH and 11.2 ± 3.1 in the control group (P = 0.01). No corresponding difference was found at three months. Serum GH concentrations were similar in both patient groups. Severity of the aSAH did not affect serum IGF-I concentrations. Patients with GOS ≤ 4 had lower IGF-I concentrations and lower HRQoL than patients with GOS 5 (P = 0.02 and 0.003 respectively). The 15d HRQoL was 0.81 ± 0.16 in patients with aSAH and 0.86 ± 0.09 in control patients (P = 0.24). In the Bayesian model, the use of statins prior to aSAH, hyponatremia, high maximal sequential organ specific score (SOFAmax), and low cumulative IGF-I concentrations on days one to seven were associated with poor HRQoL (accuracy 89%, sensitivity 86%, and specificity 93%). Conclusions IGF-I concentrations are low during acute aSAH, which may have an impact on morbidity. Trial registration ClinicalTrials.gov Identifier NCT00614887
Collapse
Affiliation(s)
- Stepani Bendel
- Department of Intensive Care, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland.
| | | | | | | | | | | | | |
Collapse
|
19
|
Beresewicz M, Majewska M, Makarewicz D, Vayro S, Zabłocka B, Górecki DC. Changes in the expression of insulin-like growth factor 1 variants in the postnatal brain development and in neonatal hypoxia-ischaemia. Int J Dev Neurosci 2009; 28:91-7. [PMID: 19766709 DOI: 10.1016/j.ijdevneu.2009.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/07/2009] [Accepted: 09/13/2009] [Indexed: 01/08/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is a multifunctional peptide of which numerous isoforms exist. The predominant form, IGF-1Ea is involved in physiological processes while IGF-1Ec (mechano-growth factor, MGF) is expressed in response to a different set of stimuli. We have identified specific changes in the expression patterns of these IGF-1 variants in brain development in normal rats and following neonatal hypoxia-ischaemia (HI). Both IGF-1Ea and IGF-1Ec are expressed during normal postnatal brain development, albeit with highly specific temporal distributions. In contrast, HI produced increased and prolonged expression of the IGF-1Ec isoform only. Importantly, hypoxia alone stimulated the expression of IGF-1Ec as well. Thus, IGF-1Ec may play a role in HI pathology. Neonatal hypoxia-ischaemia occurs in approximately 1:4000-1:10,000 newborns and causes neurological deficits in approximately 75% of those affected. Unfortunately, no specific treatment is available. IGF-1 is known to have neuroprotective activity and its IGF-1Ec variant appears to be an endogenous protective factor in hypoxia-ischaemia. Therefore, IGF-1Ec could potentially be developed into a therapeutic modality for the attenuation or prevention of neuronal damage in this and related disorders.
Collapse
Affiliation(s)
- Małgorzata Beresewicz
- Molecular Biology Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
20
|
Kooijman R, Sarre S, Michotte Y, De Keyser J. Insulin-like growth factor I: a potential neuroprotective compound for the treatment of acute ischemic stroke? Stroke 2009; 40:e83-8. [PMID: 19197073 DOI: 10.1161/strokeaha.108.528356] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND PURPOSE Insulin-like growth factor I (IGF-I) exerts neuroprotective effects in both white and gray matter under different detrimental conditions. The purpose of this review is to collect the evidence whether IGF-I is a candidate neuroprotective drug in patients with acute ischemic stroke. RESULTS IGF-I was found to be neuroprotective in animal models of focal brain ischemia when given >or=2 hours after the insult. Different routes of administration (eg, cerebroventricular, intravenous, and intranasal) were found to be effective. In addition to inhibition of apoptosis and reduction of the infarct volume, IGF-I also improved neurological outcome. Furthermore, there are strong indications that IGF-I can also stimulate the regeneration of neural tissue. CONCLUSIONS Additional studies are required to reveal the neuroprotective mechanisms of IGF-I in detail and to elucidate the role of IGF-binding proteins. Preclinical studies in relevant animal models for studying stroke (ie, hypertensive, diabetic, or aged animals) should be done testing different doses and routes of IGF-I administration and different combinations of IGF-I and IGF-binding proteins.
Collapse
Affiliation(s)
- Ron Kooijman
- Department of Pharmacology, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | |
Collapse
|
21
|
Cheng J, Liu J, Li X, Peng J, Han S, Zhang R, Xu Y, Nie S. Insulin-like growth factor-1 receptor polymorphism and ischemic stroke: a case-control study in Chinese population. Acta Neurol Scand 2008; 118:333-8. [PMID: 18477064 DOI: 10.1111/j.1600-0404.2008.01040.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Low levels of insulin-like growth factor 1 (IGF-1) are associated with atherosclerosis, and insulin-like growth factor-1 receptor (IGF-1R) polymorphisms can change plasma levels of IGF-1 and may alter the function of the receptor. Whether there is any association of genetic variation in IGF-1R gene with ischemic stroke (IS) is presently unknown. MATERIALS AND METHOD A 1:1 case-control study was conducted. The G --> A polymorphism of IGF-1R gene (rs2229765) were analyzed by TaqMan SNP genotyping technique in Chinese patients with IS (n = 309) and old subjects without IS (n = 309). RESULTS The frequency of A allele in the patients and controls was 45.79% and 39.64%, respectively. The AA genotype distribution of IGF-1R gene was significantly higher in the patients (27.51%) than controls (18.23%; P = 0.022). Conditional logistic regression revealed that the AA genotype of IGF-1R was associated with IS (OR = 1.641, P = 0.022). After adjustment for smoking, alcohol drinking, history of hypertension, and body mass index, IGF-1R AA genotype was still significantly associated with an increased risk of IS (OR = 1.787, P = 0.029), compared with IGF-1R GG. CONCLUSIONS The G --> A polymorphism in IGF-1R gene may affect the susceptibility to IS in Chinese population.
Collapse
Affiliation(s)
- J Cheng
- Department of Molecular Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Nelson TJ, Sun MK, Hongpaisan J, Alkon DL. Insulin, PKC signaling pathways and synaptic remodeling during memory storage and neuronal repair. Eur J Pharmacol 2008; 585:76-87. [PMID: 18402935 DOI: 10.1016/j.ejphar.2008.01.051] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 11/29/2007] [Accepted: 01/21/2008] [Indexed: 01/04/2023]
Abstract
Protein kinase C (PKC) is involved in synaptic remodeling, induction of protein synthesis, and many other processes important in learning and memory. Activation of neuronal protein kinase C correlates with, and may be essential for, all phases of learning, including acquisition, consolidation, and reconsolidation. Protein kinase C activation is closely tied to hydrolysis of membrane lipids. Phospholipases C and A2 produce 1,2-diacylglycerol and arachidonic acid, which are direct activators of protein kinase C. Phospholipase C also produces inositol triphosphate, which releases calcium from internal stores. Protein kinase C interacts with many of the same pathways as insulin; therefore, it should not be surprising that insulin signaling and protein kinase C activation can both have powerful effects on memory storage and synaptic remodeling. However, investigating the possible roles of insulin in memory storage can be challenging, due to the powerful peripheral effects of insulin on glucose and the low concentration of insulin in the brain. Although peripheral for insulin, synthesized in the beta-cells of the pancreas, is primarily involved in regulating glucose, small amounts of insulin are also present in the brain. The functions of this brain insulin are inadequately understood. Protein kinase C may also contribute to insulin resistance by phosphorylating the insulin receptor substrates required for insulin signaling. Insulin is also responsible insulin-long term depression, a type of synaptic plasticity that is also dependent on protein kinase C. However, insulin can also activate PKC signaling pathways via PLC gamma, Erk 1/2 MAP kinase, and src stimulation. Taken together, the available evidence suggests that the major impact of protein kinase C and its interaction with insulin in the mature, fully differentiated nervous system appears to be to induce synaptogenesis, enhance memory, reduce Alzheimer's pathophysiology, and stimulate neurorepair.
Collapse
Affiliation(s)
- Thomas J Nelson
- Blanchette Rockefeller Neurosciences Institute, 9601 Medical Center Drive, Rockville, Maryland 20850 USA
| | | | | | | |
Collapse
|
23
|
|
24
|
Abstract
Advances in the Genetic Basis of Ischemic StrokeAs one of the leading causes of death within both the developed and developing world, stroke is a world-wide problem. About 80% of strokes are ischemic. It is caused by multiple genetic factors, environmental factors, and interactions among these factors. There is a long list of candidate genes that have been studied for a possible association with ischemic stroke. Among the most widely investigated genes are those involved in haemostasis, inflammation, nitric oxide production, homocysteine and lipid metabolism, renin-angiotensin-aldosterone system. Combined link-age/association studies have demonstrated that genes encoding PDE4D and ALOX5AP confer risk for stroke. We review the studies of these genes which may have potential application on the early diagnosis, prevention and treatment ischemic stroke patients.
Collapse
|
25
|
Górecki DC, Beresewicz M, Zabłocka B. Neuroprotective effects of short peptides derived from the Insulin-like growth factor 1. Neurochem Int 2007; 51:451-8. [PMID: 17582656 DOI: 10.1016/j.neuint.2007.04.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 04/03/2007] [Accepted: 04/25/2007] [Indexed: 11/22/2022]
Abstract
Insulin-like growth factor I (IGF-1) is a peptide synthesized in response to growth hormone stimulation. While most of the circulating IGF-1 comes from the liver, it can also be produced in other tissues and both its expression and processing undergo tissue-specific regulation. The predominant form, IGF-1Ea is a circulating factor while two others, IGF-1Eb and IGF-1Ec (MGF), are mostly expressed in different tissues or in response to various stimuli and show some preferences with respect to the signal transduction pathways they activate. In skeletal muscle specific forms of IGF-1 play a role in development and growth and in addition to these physiological roles IGF-1 functions in the damaged muscle. IGF-1 is also important for the developing and adult brain and can reduce neuronal death caused by different types of injuries. Like many other peptide hormones IGF-1 originates from a precursor pro-hormone that undergoes extensive post-translational modifications. Processing liberates the mature peptide, which acts via the specific IGF-1 receptor but additional short peptides can arise from both N- and C-termini of various IGF-1 isoforms. These derivatives function as autonomous biologically active peptides and extremely potent neuroprotective agents. Their biological effects are independent of the activation of the IGF-1 receptor. Unfortunately, little is known about their mechanism(s) of action. Likewise, the existence of the endogenous production and wider biological effects of these short peptides are uncertain. However, considering the difference in the modes of action it might be possible to dissociate the unwanted and potentially dangerous mitogenic activity of the full-length IGF-1 exerted via its receptor from the neuroprotective effects of short derivatives mediated through different pathways. Such small molecules show good penetration through the blood brain barrier, can be inexpensively manufactured and modified to increase their stability. Therefore, they are good candidates for development into a neuroprotective therapeutic modality.
Collapse
Affiliation(s)
- Dariusz C Górecki
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, Portsmouth, England, United Kingdom
| | | | | |
Collapse
|
26
|
Rodriguez S, Gaunt TR, Day INM. Molecular genetics of human growth hormone, insulin-like growth factors and their pathways in common disease. Hum Genet 2007; 122:1-21. [PMID: 17534663 DOI: 10.1007/s00439-007-0378-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Accepted: 05/08/2007] [Indexed: 12/29/2022]
Abstract
The human growth hormone gene (GH1) and the insulin-like growth factor 1 and 2 genes (IGF1 and IGF2) encode the central elements of a key pathway influencing growth in humans. This "growth pathway" also includes transcription factors, agonists, antagonists, receptors, binding proteins, and endocrine factors that constitute an intrincate network of feedback loops. GH1 is evolutionarily coupled with other genes in linkage disequilibrium in 17q24.2, and the same applies to IGF2 in 11p15.5. In contrast, IGF1 in 12q22-24.1 is not in strong linkage disequilibrium with neighbouring genes. Knowledge of the functional architecture of these regions is important for the understanding of the combined evolution and function of GH1, IGF2 and IGF1 in relation to complex diseases. A number of mutations accounting for rare Mendelian disorders have been described in GH-IGF elements. The constellation of genes in this key pathway contains potential candidates in a number of complex diseases, including growth disorders, metabolic syndrome, diabetes (notably IGF2BP2) cardiovascular disease, and central nervous system diseases, and in longevity, aging and cancer. We review these genes and their associations with disease phenotypes, with special attention to metabolic risk traits.
Collapse
Affiliation(s)
- Santiago Rodriguez
- Bristol Genetic Epidemiology Laboratories and MRC Centre for Causal Analyses in Translational Epidemiology (CAiTE), Department of Social Medicine, University of Bristol, Canynge Hall, Whiteladies Road, Bristol, BS8 2PR, UK.
| | | | | |
Collapse
|
27
|
Bondanelli M, Ambrosio MR, Onofri A, Bergonzoni A, Lavezzi S, Zatelli MC, Valle D, Basaglia N, degli Uberti EC. Predictive value of circulating insulin-like growth factor I levels in ischemic stroke outcome. J Clin Endocrinol Metab 2006; 91:3928-34. [PMID: 16882751 DOI: 10.1210/jc.2006-1040] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Cerebrovascular disease is highly prevalent in the general population, frequently leading to permanent invalidity and reduced quality of life. IGF-I is recognized as an important neuroprotective factor against cerebral hypoxic insult. OBJECTIVE The objective of the study was to evaluate pituitary function, in particular GH-IGF-I axis, in adult patients receiving rehabilitation after an ischemic stroke. SUBJECTS AND METHODS We studied 42 patients (12 females; age range, 50-88 yr) during rehabilitation after stroke, evaluating the relationship between the GH-IGF-I axis and the severity (National Institutes of Health stroke scale) and outcome [Rancho Los Amigos Scale of Cognitive Functioning (LCFS); Functional Independence Measure (FIM); modified Ranking Scale] from stroke. RESULTS GH deficiency was demonstrated in five patients (11.9%). Peak GH after GHRH + arginine test and IGF-I levels did not correlate with severity of stroke. IGF-I was positively correlated with LCFS (r = 0.305, P < 0.05) and the difference between FIM on admission and at discharge from rehabilitation (DeltaFIM; r = 0.361, P < 0.02). Outcome indexes (LCFS, FIM at discharge, DeltaFIM) and occurrence of favorable outcome (modified Ranking Scale 0-1) were significantly (P < 0.05) higher in patients with IGF-I levels 161.8 mug/dl or greater (50th percentile of the patient distribution). LH-FSH deficiency (three cases), ACTH deficiency (one case), and hyperprolactinemia (two cases) were detected. One patient had primary hypogonadism, and six males had low testosterone with normal LH and FSH levels. By multivariate analysis, IGF-I level was the main significant predictor of DeltaFIM and LCFS. CONCLUSIONS Ischemic stroke may be associated with pituitary dysfunction, particularly GH and gonadotropin deficiencies. The higher IGF-I levels observed in patients with better outcome suggest a possible neuroprotective role of IGF-I. Circulating IGF-I may predict functional performance during rehabilitation and ischemic stroke outcome.
Collapse
Affiliation(s)
- Marta Bondanelli
- Section of Endocrinology, Department of Biomedical Sciences and Advanced Therapies, University of Ferrara, via Savonarola 9, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|