1
|
Zaman M, Shutt TE. The Role of Impaired Mitochondrial Dynamics in MFN2-Mediated Pathology. Front Cell Dev Biol 2022; 10:858286. [PMID: 35399520 PMCID: PMC8989266 DOI: 10.3389/fcell.2022.858286] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/07/2022] [Indexed: 12/17/2022] Open
Abstract
The Mitofusin 2 protein (MFN2), encoded by the MFN2 gene, was first described for its role in mediating mitochondrial fusion. However, MFN2 is now recognized to play additional roles in mitochondrial autophagy (mitophagy), mitochondrial motility, lipid transfer, and as a tether to other organelles including the endoplasmic reticulum (ER) and lipid droplets. The tethering role of MFN2 is an important mediator of mitochondrial-ER contact sites (MERCs), which themselves have many important functions that regulate mitochondria, including calcium homeostasis and lipid metabolism. Exemplifying the importance of MFN2, pathogenic variants in MFN2 are established to cause the peripheral neuropathy Charcot-Marie-Tooth Disease Subtype 2A (CMT2A). However, the mechanistic basis for disease is not clear. Moreover, additional pathogenic phenotypes such as lipomatosis, distal myopathy, optic atrophy, and hearing loss, can also sometimes be present in patients with CMT2A. Given these variable patient phenotypes, and the many cellular roles played by MFN2, the mechanistic underpinnings of the cellular impairments by which MFN2 dysfunction leads to disease are likely to be complex. Here, we will review what is known about the various functions of MFN2 that are impaired by pathogenic variants causing CMT2A, with a specific emphasis on the ties between MFN2 variants and MERCs.
Collapse
Affiliation(s)
- Mashiat Zaman
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Timothy E Shutt
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Schiavon CR, Shadel GS, Manor U. Impaired Mitochondrial Mobility in Charcot-Marie-Tooth Disease. Front Cell Dev Biol 2021; 9:624823. [PMID: 33598463 PMCID: PMC7882694 DOI: 10.3389/fcell.2021.624823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a progressive, peripheral neuropathy and the most commonly inherited neurological disorder. Clinical manifestations of CMT mutations are typically limited to peripheral neurons, the longest cells in the body. Currently, mutations in at least 80 different genes are associated with CMT and new mutations are regularly being discovered. A large portion of the proteins mutated in axonal CMT have documented roles in mitochondrial mobility, suggesting that organelle trafficking defects may be a common underlying disease mechanism. This review will focus on the potential role of altered mitochondrial mobility in the pathogenesis of axonal CMT, highlighting the conceptional challenges and potential experimental and therapeutic opportunities presented by this "impaired mobility" model of the disease.
Collapse
Affiliation(s)
- Cara R. Schiavon
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Gerald S. Shadel
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
3
|
A three-year follow-up study evaluating clinical utility of exome sequencing and diagnostic potential of reanalysis. NPJ Genom Med 2020; 5:37. [PMID: 32963807 PMCID: PMC7484757 DOI: 10.1038/s41525-020-00144-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/14/2020] [Indexed: 01/05/2023] Open
Abstract
Exome sequencing (ES) has become one of the important diagnostic tools in clinical genetics with a reported diagnostic rate of 25–58%. Many studies have illustrated the diagnostic and immediate clinical impact of ES. However, up to 75% of individuals remain undiagnosed and there is scarce evidence supporting clinical utility beyond a follow-up period of >1 year. This is a 3-year follow-up analysis to our previous publication by Mak et al. (NPJ Genom. Med. 3:19, 2018), to evaluate the long-term clinical utility of ES and the diagnostic potential of exome reanalysis. The diagnostic yield of the initial study was 41% (43/104). Exome reanalysis in 46 undiagnosed individuals has achieved 12 new diagnoses. The additional yield compared with the initial analysis was at least 12% (increased from 41% to at least 53%). After a median follow-up period of 3.4 years, change in clinical management was observed in 72.2% of the individuals (26/36), leading to positive change in clinical outcome in four individuals (11%). There was a minimum healthcare cost saving of HKD$152,078 (USD$19,497; €17,282) annually for these four individuals. There were a total of six pregnancies from five families within the period. Prenatal diagnosis was performed in four pregnancies; one fetus was affected and resulted in termination. None of the parents underwent preimplantation genetic diagnosis. This 3-year follow-up study demonstrated the long-term clinical utility of ES at individual, familial and health system level, and the promising diagnostic potential of subsequent reanalysis. This highlights the benefits of implementing ES and regular reanalysis in the clinical setting.
Collapse
|
4
|
Kanemaru K, Ogawa G, Mochizuki H, Nakazato M, Shiomi K. A Sporadic Case of Charcot-Marie-Tooth Disease Type 2 with Left Vocal Fold Palsy due to Mitofusin 2 Mutation. Intern Med 2019; 58:2091-2093. [PMID: 30996168 PMCID: PMC6701995 DOI: 10.2169/internalmedicine.2318-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
A 33-year-old Japanese woman was referred for hoarseness. She had been diagnosed with Charcot-Marie-Tooth disease at age 3 and bilateral optic atrophy at age 15. Laryngoscopy revealed left vocal fold palsy. These findings suggested Charcot-Marie-Tooth disease type 2; the diagnosis was confirmed by a mitofusin 2 mutation analysis. Her symptoms remained stable for almost 10 years. Although vocal fold palsy and optic atrophy have been previously reported in patients with mitofusin 2 mutations, detailed clinical information and clinical course have never been documented. These data might contribute to the elucidation of the pathological conditions associated with mitofusin 2 mutations.
Collapse
Affiliation(s)
- Kazuki Kanemaru
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Go Ogawa
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Hitoshi Mochizuki
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Masamitsu Nakazato
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Kazutake Shiomi
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| |
Collapse
|
5
|
Dankwa L, Richardson J, Motley WW, Scavina M, Courel S, Bardakjian T, Züchner S, Scherer SS. A novel MFN2 mutation causes variable clinical severity in a multi-generational CMT2 family. Neuromuscul Disord 2019; 29:134-137. [PMID: 30642740 PMCID: PMC6415944 DOI: 10.1016/j.nmd.2018.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 01/24/2023]
Abstract
Dominant mutations in MFN2 cause a range of phenotypes, including severe, early-onset axonal neuropathy, "classical CMT2", and late-onset axonal neuropathy. We found a novel MFN2 mutation - c.283A>G (p.Arg95Gly) - that results in an axonal neuropathy with variable clinical severity in a multigenerational family. In affected family members, electromyography showed moderate to severe, chronic denervation in distal muscles. Such variable clinical severity highlights the need to do careful assessments of at risk individuals when assessing MFN2 variants.
Collapse
Affiliation(s)
- Lois Dankwa
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica Richardson
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William W Motley
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Mena Scavina
- Department of Neurology, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Steve Courel
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA
| | - Tanya Bardakjian
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephan Züchner
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA
| | - Steven S Scherer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Chandhok G, Lazarou M, Neumann B. Structure, function, and regulation of mitofusin-2 in health and disease. Biol Rev Camb Philos Soc 2017; 93:933-949. [PMID: 29068134 PMCID: PMC6446723 DOI: 10.1111/brv.12378] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 12/12/2022]
Abstract
Mitochondria are highly dynamic organelles that constantly migrate, fuse, and divide to regulate their shape, size, number, and bioenergetic function. Mitofusins (Mfn1/2), optic atrophy 1 (OPA1), and dynamin-related protein 1 (Drp1), are key regulators of mitochondrial fusion and fission. Mutations in these molecules are associated with severe neurodegenerative and non-neurological diseases pointing to the importance of functional mitochondrial dynamics in normal cell physiology. In recent years, significant progress has been made in our understanding of mitochondrial dynamics, which has raised interest in defining the physiological roles of key regulators of fusion and fission and led to the identification of additional functions of Mfn2 in mitochondrial metabolism, cell signalling, and apoptosis. In this review, we summarize the current knowledge of the structural and functional properties of Mfn2 as well as its regulation in different tissues, and also discuss the consequences of aberrant Mfn2 expression.
Collapse
Affiliation(s)
- Gursimran Chandhok
- Department of Anatomy and Developmental Biology, and Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Michael Lazarou
- Department of Biochemistry and Molecular Biology, and Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Brent Neumann
- Department of Anatomy and Developmental Biology, and Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
7
|
Ando M, Hashiguchi A, Okamoto Y, Yoshimura A, Hiramatsu Y, Yuan J, Higuchi Y, Mitsui J, Ishiura H, Umemura A, Maruyama K, Matsushige T, Morishita S, Nakagawa M, Tsuji S, Takashima H. Clinical and genetic diversities of Charcot-Marie-Tooth disease with MFN2 mutations in a large case study. J Peripher Nerv Syst 2017; 22:191-199. [PMID: 28660751 PMCID: PMC5697682 DOI: 10.1111/jns.12228] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 11/28/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) constitutes a heterogeneous group affecting motor and sensory neurons in the peripheral nervous system. MFN2 mutations are the most common cause of axonal CMT. We describe the clinical and mutational spectra of CMT patients harboring MFN2 mutations in Japan. We analyzed 1,334 unrelated patients with clinically suspected CMT referred by neurological and neuropediatric departments throughout Japan. We conducted mutation screening using a DNA microarray, targeted resequencing, and whole-exome sequencing. We identified pathogenic or likely pathogenic MFN2 variants from 79 CMT patients, comprising 44 heterozygous and 1 compound heterozygous variants. A total of 15 novel variants were detected. An autosomal dominant family history was determined in 43 cases, and the remaining 36 cases were reported as sporadic with no family history. The mean onset age of CMT in these patients was 12 ± 14 (range 0-59) years. We observed neuropathic symptoms in all patients. Some had optic atrophy, vocal cord paralysis, or spasticity. We detected a compound heterozygous MFN2 mutation in a patient with a severe phenotype and the co-occurrence of MFN2 and PMP22 mutations in a patient with an uncommon phenotype. MFN2 is the most frequent causative gene of CMT2 in Japan. We present 15 novel variants and broad clinical and mutational spectra of Japanese MFN2-related CMT patients. Regardless of the onset age and inheritance pattern, MFN2 gene analysis should be performed. Combinations of causative genes should be considered to explain the phenotypic diversity.
Collapse
Affiliation(s)
- Masahiro Ando
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yu Hiramatsu
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Junhui Yuan
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayako Umemura
- Department of Pediatric Neurology, Aichi Prefectural Colony Central Hospital, Aichi, Japan
| | - Koichi Maruyama
- Department of Pediatric Neurology, Aichi Prefectural Colony Central Hospital, Aichi, Japan
| | - Takeshi Matsushige
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Masanori Nakagawa
- Department of Neurology, North Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
8
|
Bergamin G, Boaretto F, Briani C, Pegoraro E, Cacciavillani M, Martinuzzi A, Muglia M, Vettori A, Vazza G, Mostacciuolo ML. Mutation analysis of MFN2, GJB1, MPZ and PMP22 in Italian patients with axonal Charcot-Marie-Tooth disease. Neuromolecular Med 2014; 16:540-50. [PMID: 24819634 DOI: 10.1007/s12017-014-8307-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 04/19/2014] [Indexed: 01/08/2023]
Abstract
Charcot-Marie-Tooth (CMT) diseases include a group of clinically heterogeneous inherited neuropathies subdivided into demyelinating (CMT1), axonal (CMT2) and intermediate CMT forms. CMTs are associated with different genes, although mutations in some of these genes may cause both clinical pictures. To date, more than 50 CMT genes have been identified, but more than half of the cases are due to mutations in MFN2, MPZ, GJB1 and PMP22. The aim of this study was to estimate the frequency of disease mutations of these four genes in the axonal form of CMT in order to evaluate their effectiveness in the molecular diagnosis of CMT2 patients. A cohort of 38 CMT2 Italian subjects was screened for mutations in the MFN2, MPZ and GJB1 genes by direct sequencing and for PMP22 rearrangements using the MLPA technique. Overall, we identified 15 mutations, 8 of which were novel: 11 mutations (28.9 %) were in the MFN2 gene, 2 (5.3 %) in MPZ and 2 (5.3 %) in PMP22. No mutations were found in GJB1. Two patients showed rearrangements in the PMP22 gene, which is commonly associated with CMT1 or HNPP phenotypes thus usually not tested in CMT2 patients. By including this gene in the analysis, we reached a molecular diagnosis rate of 39.5 %, which is one of the highest reported in the literature. Our findings confirm the MFN2 gene as the most common cause of CMT2 and suggest that PMP22 rearrangements should be considered in the molecular diagnosis of CMT2 patients.
Collapse
|
9
|
Abstract
SIGNIFICANCE Mitochondrial dynamics describes the continuous change in the position, size, and shape of mitochondria within cells. The morphological and functional complexity of neurons, the remarkable length of their processes, and the rapid changes in metabolic requirements arising from their intrinsic excitability render these cells particularly dependent on effective mitochondrial function and positioning. The rules that govern these changes and their functional significance are not fully understood, yet the dysfunction of mitochondrial dynamics has been implicated as a pathogenetic factor in a number of diseases, including disorders of the central and peripheral nervous systems. RECENT ADVANCES In recent years, a number of mutations of genes encoding proteins that play important roles in mitochondrial dynamics and function have been discovered in patients with Charcot-Marie-Tooth (CMT) disease, a hereditary peripheral neuropathy. These findings have directly linked mitochondrial pathology to the pathology of peripheral nerve and have identified certain aspects of mitochondrial dynamics as potential early events in the pathogenesis of CMT. In addition, mitochondrial dysfunction has now been implicated in the pathogenesis of noninherited neuropathies, including diabetic and inflammatory neuropathies. CRITICAL ISSUES The role of mitochondria in peripheral nerve diseases has been mostly examined in vitro, and less so in animal models. FUTURE DIRECTIONS This review examines available evidence for the role of mitochondrial dynamics in the pathogenesis of peripheral neuropathies, their relevance in human diseases, and future challenges for research in this field.
Collapse
Affiliation(s)
- Marija Sajic
- Department of Neuroinflammation, UCL Institute of Neurology , Queen Square, London, United Kingdom
| |
Collapse
|