1
|
Montanaro D, Vavla M, Frijia F, Coi A, Baratto A, Pasquariello R, Stefan C, Martinuzzi A. Metabolite profile in hereditary spastic paraplegia analyzed using magnetic resonance spectroscopy: a cross-sectional analysis in a longitudinal study. Front Neurosci 2024; 18:1416093. [PMID: 39193522 PMCID: PMC11347332 DOI: 10.3389/fnins.2024.1416093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/11/2024] [Indexed: 08/29/2024] Open
Abstract
Background Hereditary Spastic Paraplegias (HSP) are genetic neurodegenerative disorders affecting the corticospinal tract. No established neuroimaging biomarker is associated with this condition. Methods A total of 46 patients affected by HSP, genetically and clinically evaluated and tested with SPRS scores, and 46 healthy controls (HC) matched by age and gender underwent a single-voxel Magnetic Resonance Spectroscopy sampling (MRS) of bilateral pre-central and pre-frontal regions. MRS data were analyzed cross-sectionally (at T0 and T1) and longitudinally (T0 vs. T1). Results Statistically significant data showed that T0 mI/Cr in the pre-central areas of HSP patients was higher than in HC. In the left (L) pre-central area, NAA/Cr was significantly lower in HSP than in HC. In the right (R) pre-frontal area, NAA/Cr was significantly lower in HSP patients than in HC. HSP SPG4 subjects had significantly lower Cho/Cr concentrations in the L pre-central area compared to HC. Among the HSP subjects, non-SPG4 patients had significantly higher mI/Cr in the L pre-central area compared to SPG4 patients. In the R pre-frontal area, NAA/Cr was reduced, and ml/Cr was higher in non-SPG4 patients compared to SPG4 patients. Comparing "pure" and "complex" forms, NAA/Cr was higher in pHSP than in cHSP in the R pre-central and R pre-frontal areas. The longitudinal analysis, which involved fewer patients (n = 30), showed an increase in mI/Cr concentration in the L pre-frontal area among HSP subjects with respect to baseline. The patients had significantly higher SPRS scores at follow-up, with a significant positive correlation between SPRS scores and mI/Cr in the L pre-central area, while in bilateral pre-frontal areas, lower SPRS scores corresponded to higher NAA/Cr concentrations. To explore the discriminating power of MRS in correctly identifying HSP and controls, an inference tree methodology classified HSP subjects and controls with an overall accuracy of 73.9%, a sensitivity of 87.0%, and a specificity of 60.9%. Conclusion This pilot study indicates that brain MRS is a valuable approach that could potentially serve as an objective biomarker in HSP.
Collapse
Affiliation(s)
- Domenico Montanaro
- U.O. Dipartimentale e Servizio Autonomo di Risonanza Magnetica, Dipartimento di Neuroscienze dell’Età Evolutiva, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Marinela Vavla
- Child and Adolescent Neuropsychiatric Unit, Department of Women’s and Children’s Health, University Hospital of Padua, Padova, Italy
- Department of Neurorehabilitation, IRCCS E. Medea Scientific Institute, Conegliano, Italy
| | - Francesca Frijia
- Bioengineering Unit, Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Alessio Coi
- Unit of Epidemiology of Rare Diseases and Congenital Anomalies, Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Alessandra Baratto
- Department of Radiology, S. Maria dei Battuti Hospital- Conegliano, Treviso, Italy
| | - Rosa Pasquariello
- U.O. Dipartimentale e Servizio Autonomo di Risonanza Magnetica, Dipartimento di Neuroscienze dell’Età Evolutiva, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Cristina Stefan
- Department of Neurorehabilitation, IRCCS E. Medea Scientific Institute, Conegliano, Italy
| | - Andrea Martinuzzi
- Department of Neurorehabilitation, IRCCS E. Medea Scientific Institute, Conegliano, Italy
| |
Collapse
|
2
|
Cioffi E, Coppola G, Musumeci O, Gallone S, Silvestri G, Rossi S, Piemonte F, D'Amico J, Tessa A, Santorelli FM, Casali C. Hereditary spastic paraparesis type 46 (SPG46): new GBA2 variants in a large Italian case series and review of the literature. Neurogenetics 2024; 25:51-67. [PMID: 38334933 PMCID: PMC11076336 DOI: 10.1007/s10048-024-00749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Hereditary spastic paraparesis (HSP) is a group of central nervous system diseases primarily affecting the spinal upper motor neurons, with different inheritance patterns and phenotypes. SPG46 is a rare, early-onset and autosomal recessive HSP, linked to biallelic GBA2 mutations. About thirty families have been described worldwide, with different phenotypes like complicated HSP, recessive cerebellar ataxia or Marinesco-Sjögren Syndrome. Herein, we report five SPG46 patients harbouring five novel GBA2 mutations, the largest series described in Italy so far. Probands were enrolled in five different centres and underwent neurological examination, clinical cognitive assessment, column imaging for scoliosis assessment, ophthalmologic examination, brain imaging, GBA2 activity in peripheral blood cells and genetic testing. Their phenotype was consistent with HSP, with notable features like upper gaze palsy and movement disorders. We review demographic, genetic, biochemical and clinical information from all documented cases in the existing literature, focusing on the global distribution of cases, the features of the syndrome, its variable presentation, new potential identifying features and the significance of measuring GBA2 enzyme activity.
Collapse
Affiliation(s)
- Ettore Cioffi
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy.
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| | - Olimpia Musumeci
- Department of Experimental and Clinical Medicine, University of Messina, Messina, Italy
| | - Salvatore Gallone
- Department of Neuroscience and Mental Health, Neurologia 1, A.O.U. Città Della Salute E Della Scienza, 10126, Turin, Italy
| | - Gabriella Silvestri
- Dipartimento Di Neuroscienze, Sez. Neurologia, Facoltà Di Medicina E Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento Di Neuroscienze, Organi Di Senso E Torace, UOC Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Salvatore Rossi
- Dipartimento Di Neuroscienze, Sez. Neurologia, Facoltà Di Medicina E Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fiorella Piemonte
- Unit of Muscular and Neurodegenerative Diseases, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Jessica D'Amico
- Unit of Muscular and Neurodegenerative Diseases, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Alessandra Tessa
- IRCCS Stella Maris Foundation, Calambrone, Via Dei Giacinti 2, 56128, Pisa, Italy
| | | | - Carlo Casali
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| |
Collapse
|
3
|
Damiani D, Baggiani M, Della Vecchia S, Naef V, Santorelli FM. Pluripotent Stem Cells as a Preclinical Cellular Model for Studying Hereditary Spastic Paraplegias. Int J Mol Sci 2024; 25:2615. [PMID: 38473862 DOI: 10.3390/ijms25052615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Hereditary spastic paraplegias (HSPs) comprise a family of degenerative diseases mostly hitting descending axons of corticospinal neurons. Depending on the gene and mutation involved, the disease could present as a pure form with limb spasticity, or a complex form associated with cerebellar and/or cortical signs such as ataxia, dysarthria, epilepsy, and intellectual disability. The progressive nature of HSPs invariably leads patients to require walking canes or wheelchairs over time. Despite several attempts to ameliorate the life quality of patients that have been tested, current therapeutical approaches are just symptomatic, as no cure is available. Progress in research in the last two decades has identified a vast number of genes involved in HSP etiology, using cellular and animal models generated on purpose. Although unanimously considered invaluable tools for basic research, those systems are rarely predictive for the establishment of a therapeutic approach. The advent of induced pluripotent stem (iPS) cells allowed instead the direct study of morphological and molecular properties of the patient's affected neurons generated upon in vitro differentiation. In this review, we revisited all the present literature recently published regarding the use of iPS cells to differentiate HSP patient-specific neurons. Most studies have defined patient-derived neurons as a reliable model to faithfully mimic HSP in vitro, discovering original findings through immunological and -omics approaches, and providing a platform to screen novel or repurposed drugs. Thereby, one of the biggest hopes of current HSP research regards the use of patient-derived iPS cells to expand basic knowledge on the disease, while simultaneously establishing new therapeutic treatments for both generalized and personalized approaches in daily medical practice.
Collapse
Affiliation(s)
- Devid Damiani
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | - Matteo Baggiani
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | - Stefania Della Vecchia
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Valentina Naef
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| |
Collapse
|
4
|
Fink JK. The hereditary spastic paraplegias. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:59-88. [PMID: 37620092 DOI: 10.1016/b978-0-323-98817-9.00022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The hereditary spastic paraplegias (HSPs) are a group of more than 90 genetic disorders in which lower extremity spasticity and weakness are either the primary neurologic impairments ("uncomplicated HSP") or when accompanied by other neurologic deficits ("complicated HSP"), important features of the clinical syndrome. Various genetic types of HSP are inherited such as autosomal dominant, autosomal recessive, X-linked, and maternal (mitochondrial) traits. Symptoms that begin in early childhood may be nonprogressive and resemble spastic diplegic cerebral palsy. Symptoms that begin later, typically progress insidiously over a number of years. Genetic testing is able to confirm the diagnosis for many subjects. Insights from gene discovery indicate that abnormalities in diverse molecular processes underlie various forms of HSP, including disturbance in axon transport, endoplasmic reticulum morphogenesis, vesicle transport, lipid metabolism, and mitochondrial function. Pathologic studies in "uncomplicated" HSP have shown axon degeneration particularly involving the distal ends of corticospinal tracts and dorsal column fibers. Treatment is limited to symptom reduction including amelioration of spasticity, reducing urinary urgency, proactive physical therapy including strengthening, stretching, balance, and agility exercise.
Collapse
Affiliation(s)
- John K Fink
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
5
|
Iron-sensitive MR imaging of the primary motor cortex to differentiate hereditary spastic paraplegia from other motor neuron diseases. Eur Radiol 2022; 32:8058-8064. [PMID: 35593959 DOI: 10.1007/s00330-022-08865-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/15/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Hereditary spastic paraplegia (HSP) is a group of genetic neurodegenerative diseases characterised by upper motor neuron (UMN) impairment of the lower limbs. The differential diagnosis with primary lateral sclerosis (PLS) and amyotrophic lateral sclerosis (ALS) can be challenging. As microglial iron accumulation was reported in the primary motor cortex (PMC) of ALS cases, here we assessed the radiological appearance of the PMC in a cohort of HSP patients using iron-sensitive MR imaging and compared the PMC findings among HSP, PLS, and ALS patients. METHODS We included 3-T MRI scans of 23 HSP patients, 7 PLS patients with lower limb onset, 8 ALS patients with lower limb and prevalent UMN onset (UMN-ALS), and 84 ALS patients with any other clinical picture. The PMC was visually rated on 3D T2*-weighted images as having normal signal intensity, mild hypointensity, or marked hypointensity, and differences in the frequency distribution of signal intensity among the diseases were investigated. RESULTS The marked hypointensity in the PMC was visible in 3/22 HSP patients (14%), 7/7 PLS patients (100%), 6/8 UMN-ALS patients (75%), and 35/84 ALS patients (42%). The frequency distribution of normal signal intensity, mild hypointensity, and marked hypointensity in HSP patients was different than that in PLS, UMN-ALS, and ALS patients (p < 0.01 in all cases). CONCLUSIONS Iron-sensitive imaging of the PMC could provide useful information in the diagnostic work - up of adult patients with a lower limb onset UMN syndrome, as the cortical hypointensity often seen in PLS and ALS cases is apparently rare in HSP patients. KEY POINTS • The T2* signal intensity of the primary motor cortex was investigated in patients with HSP, PLS with lower limb onset, and ALS with lower limb and prevalent UMN onset (UMN-ALS) using a clinical 3-T MRI sequence. • Most HSP patients had normal signal intensity in the primary motor cortex (86%); on the contrary, all the PLS and the majority of UMN-ALS patients (75%) had marked cortical hypointensity. • The T2*-weighted imaging of the primary motor cortex could provide useful information in the differential diagnosis of sporadic adult-onset UMN syndromes.
Collapse
|
6
|
Melentev PA, Ryabova EV, Sarantseva SV. A Private History of Neurogenetics: The swiss cheese Gene and Its Orthologs. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421090076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Melentev PA, Ryabova EV, Surina NV, Zhmujdina DR, Komissarov AE, Ivanova EA, Boltneva NP, Makhaeva GF, Sliusarenko MI, Yatsenko AS, Mohylyak II, Matiytsiv NP, Shcherbata HR, Sarantseva SV. Loss of swiss cheese in Neurons Contributes to Neurodegeneration with Mitochondria Abnormalities, Reactive Oxygen Species Acceleration and Accumulation of Lipid Droplets in Drosophila Brain. Int J Mol Sci 2021; 22:8275. [PMID: 34361042 PMCID: PMC8347196 DOI: 10.3390/ijms22158275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Various neurodegenerative disorders are associated with human NTE/PNPLA6 dysfunction. Mechanisms of neuropathogenesis in these diseases are far from clearly elucidated. Hereditary spastic paraplegia belongs to a type of neurodegeneration associated with NTE/PNLPLA6 and is implicated in neuron death. In this study, we used Drosophila melanogaster to investigate the consequences of neuronal knockdown of swiss cheese (sws)-the evolutionarily conserved ortholog of human NTE/PNPLA6-in vivo. Adult flies with the knockdown show longevity decline, locomotor and memory deficits, severe neurodegeneration progression in the brain, reactive oxygen species level acceleration, mitochondria abnormalities and lipid droplet accumulation. Our results suggest that SWS/NTE/PNPLA6 dysfunction in neurons induces oxidative stress and lipid metabolism alterations, involving mitochondria dynamics and lipid droplet turnover in neurodegeneration pathogenesis. We propose that there is a complex mechanism in neurological diseases such as hereditary spastic paraplegia, which includes a stress reaction, engaging mitochondria, lipid droplets and endoplasmic reticulum interplay.
Collapse
Affiliation(s)
- Pavel A. Melentev
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Elena V. Ryabova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Nina V. Surina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Darya R. Zhmujdina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Artem E. Komissarov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Ekaterina A. Ivanova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (N.P.B.); (G.F.M.)
| | - Galina F. Makhaeva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (N.P.B.); (G.F.M.)
| | - Mariana I. Sliusarenko
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany; (M.I.S.); (A.S.Y.); (H.R.S.)
| | - Andriy S. Yatsenko
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany; (M.I.S.); (A.S.Y.); (H.R.S.)
| | - Iryna I. Mohylyak
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine; (I.I.M.); (N.P.M.)
| | - Nataliya P. Matiytsiv
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine; (I.I.M.); (N.P.M.)
| | - Halyna R. Shcherbata
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany; (M.I.S.); (A.S.Y.); (H.R.S.)
| | - Svetlana V. Sarantseva
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| |
Collapse
|
8
|
Fullam T, Statland J. Upper Motor Neuron Disorders: Primary Lateral Sclerosis, Upper Motor Neuron Dominant Amyotrophic Lateral Sclerosis, and Hereditary Spastic Paraplegia. Brain Sci 2021; 11:brainsci11050611. [PMID: 34064596 PMCID: PMC8151104 DOI: 10.3390/brainsci11050611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
Following the exclusion of potentially reversible causes, the differential for those patients presenting with a predominant upper motor neuron syndrome includes primary lateral sclerosis (PLS), hereditary spastic paraplegia (HSP), or upper motor neuron dominant ALS (UMNdALS). Differentiation of these disorders in the early phases of disease remains challenging. While no single clinical or diagnostic tests is specific, there are several developing biomarkers and neuroimaging technologies which may help distinguish PLS from HSP and UMNdALS. Recent consensus diagnostic criteria and use of evolving technologies will allow more precise delineation of PLS from other upper motor neuron disorders and aid in the targeting of potentially disease-modifying therapeutics.
Collapse
|
9
|
Lallemant-Dudek P, Durr A. Clinical and genetic update of hereditary spastic paraparesis. Rev Neurol (Paris) 2020; 177:550-556. [PMID: 32807405 DOI: 10.1016/j.neurol.2020.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
Hereditary spastic paraparesis is a group of inherited neurological diseases characterized by underlying wide genetic heterogeneity. It should be suspected if there is a positive familial history, a common genetic alteration (i.e. SPG4, the most overall frequent form), or association with other signs, such as cerebellar ataxia (i.e. SPG7), early cognitive impairment or even cognitive deficit (i.e. SPG11), or peripheral neuropathy (i.e. SACS). The natural history is known for certain genetic subgroups, with genotype-phenotype correlations partially explaining childhood or late onset. However, the search for genetic modifying factors, in addition to the causal pathogenic variant or environmental influencers, is still needed. Novel approaches to provide etiological treatment are in the pipeline for SPG11. Symptomatic treatments are available but would benefit from randomized controlled trials.
Collapse
Affiliation(s)
- P Lallemant-Dudek
- Paris Brain Institute (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France.
| | - A Durr
- Paris Brain Institute (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Genetics Department, Pitié-Salpêtrière University Hospital, Paris, France
| |
Collapse
|
10
|
Montanaro D, Vavla M, Frijia F, Aghakhanyan G, Baratto A, Coi A, Stefan C, Girardi G, Paparella G, De Cori S, Totaro P, Lombardo F, Piccoli G, Martinuzzi A. Multimodal MRI Longitudinal Assessment of White and Gray Matter in Different SPG Types of Hereditary Spastic Paraparesis. Front Neurosci 2020; 14:325. [PMID: 32581663 PMCID: PMC7287014 DOI: 10.3389/fnins.2020.00325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/19/2020] [Indexed: 01/18/2023] Open
Abstract
Hereditary spastic paraplegias (HSP) are a group of genetically and clinically heterogeneous neurologic disorders. Hereby we describe a relatively large group of patients (pts) affected by HSP studied at baseline (31 pts) and at follow-up (mean period 28.9 ± 8.4 months; 23 pts) with multimodal advanced MRI: high-resolution T1 images for voxel-based morphometry (VBM) analysis, magnetic resonance spectroscopy (MRS), and diffusion tensor imaging (DTI). An age-matched healthy control (HC) group underwent the same neuroimaging protocol in a time schedule matched with the HSP patients. At baseline, VBM showed gray matter (GM) reduction in HSP in the right pre-frontal cortex and bilaterally in the thalami. MRS at baseline depicted in HSP patients compared to the HC group reduction of NAA/Cr ratio in the right pre-frontal region, increase of Cho/Cr ratio in the right pre-central regions, and increase of mI/Cr ratio on the left pre-central area. At cross-sectional follow-up analysis and longitudinal evaluation, no VBM and MRS statistically significant results were obtained. Tract-based spatial statistics (TBSS) analysis showed widespread DTI brain white matter (WM) alterations in patients compared to HC at baseline, which are characterized by reduction of fractional anisotropy (FA) and increase of mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity, as confirmed on cross-analysis of the follow-up dataset. A longitudinal analysis with TBSS in HSP patients did not show significant variations, while upon applying region-based analysis we found increased FA and decreased MD and AD in specific brain WM fiber complex during follow-up. The changes were not correlated with the clinical presentation (pure vs complicated HSP), motor function, and motility indexes or history of specific treatments (botulinum toxin). In conclusion, the cross-sectional analysis of the multiparametric MRI data in our HSP patients confirmed the non-prominent involvement of the cortex in the primary motor regions but rather of other more associative areas. On the contrary, DTI demonstrated a widespread involvement of the brain WM, including the primary motor regions, which was confirmed at follow-up. The longitudinal analysis revealed an apparent inversion of tendency when considering the expected evolution of a neurodegenerative process: we detected an increase of FA and a decrease of MD and AD. These time-related modifications may suggest a repair attempt by the residual central WM fibers, which requires confirmation with a larger group of patients and with a longer time interval.
Collapse
Affiliation(s)
- Domenico Montanaro
- U.O.C. Risonanza Magnetica Specialistica e Neuroradiologia, Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
| | - M Vavla
- Severe Developmental Disabilities Unit, Scientific Institute, IRCCS Eugenio Medea, Conegliano, Italy
| | - F Frijia
- U.O.C Bioengineering and Clinical Technology, Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
| | - G Aghakhanyan
- Department of Translational Research on New Technologies in Medicine and Surgery, Regional Center of Nuclear Medicine, University of Pisa, Pisa, Italy
| | - A Baratto
- Department of Radiology S. Maria dei Battuti Hospital - Conegliano, ULSS2-Marca Trevigiana, Conegliano, Italy
| | - A Coi
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - C Stefan
- Acquired Neuropsychological Disease Rehabilitation Unit, Scientific Institute, IRCCS Eugenio Medea, Pieve di Soligo, Italy
| | - G Girardi
- Acquired Neuropsychological Disease Rehabilitation Unit, Scientific Institute, IRCCS Eugenio Medea, Pieve di Soligo, Italy
| | - G Paparella
- Acquired Neuropsychological Disease Rehabilitation Unit, Scientific Institute, IRCCS Eugenio Medea, Pieve di Soligo, Italy
| | - S De Cori
- U.O.C. Risonanza Magnetica Specialistica e Neuroradiologia, Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
| | - P Totaro
- U.O.C. Risonanza Magnetica Specialistica e Neuroradiologia, Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
| | - F Lombardo
- U.O.C. Risonanza Magnetica Specialistica e Neuroradiologia, Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
| | - G Piccoli
- Department of Radiology S. Maria dei Battuti Hospital - Conegliano, ULSS2-Marca Trevigiana, Conegliano, Italy
| | - Andrea Martinuzzi
- Severe Developmental Disabilities Unit, Scientific Institute, IRCCS Eugenio Medea, Conegliano, Italy
| |
Collapse
|
11
|
Guglielmi A. A complete overview of REEP1: old and new insights on its role in hereditary spastic paraplegia and neurodegeneration. Rev Neurosci 2020; 31:351-362. [PMID: 31913854 DOI: 10.1515/revneuro-2019-0083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/08/2019] [Indexed: 01/09/2023]
Abstract
At the end of 19th century, Adolf von Strümpell and Sigmund Freud independently described the symptoms of a new pathology now known as hereditary spastic paraplegia (HSP). HSP is part of the group of genetic neurodegenerative diseases usually associated with slow progressive pyramidal syndrome, spasticity, weakness of the lower limbs, and distal-end degeneration of motor neuron long axons. Patients are typically characterized by gait symptoms (with or without other neurological disorders), which can appear both in young and adult ages depending on the different HSP forms. The disease prevalence is at 1.3-9.6 in 100 000 individuals in different areas of the world, making HSP part of the group of rare neurodegenerative diseases. Thus far, there are no specific clinical and paraclinical tests, and DNA analysis is still the only strategy to obtain a certain diagnosis. For these reasons, it is mandatory to extend the knowledge on genetic causes, pathology mechanism, and disease progression to give clinicians more tools to obtain early diagnosis, better therapeutic strategies, and examination tests. This review gives an overview of HSP pathologies and general insights to a specific HSP subtype called spastic paraplegia 31 (SPG31), which rises after mutation of REEP1 gene. In fact, recent findings discovered an interesting endoplasmic reticulum antistress function of REEP1 and a role of this protein in preventing τ accumulation in animal models. For this reason, this work tries to elucidate the main aspects of REEP1, which are described in the literature, to better understand its role in SPG31 HSP and other pathologies.
Collapse
Affiliation(s)
- Alessio Guglielmi
- Neurobiology Laboratory, International Centre of Genetic Engineering and Biotechnology, I-34149 Trieste, Italy
| |
Collapse
|
12
|
Walusinski O. A historical approach to hereditary spastic paraplegia. Rev Neurol (Paris) 2020; 176:225-234. [PMID: 31911003 DOI: 10.1016/j.neurol.2019.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 11/17/2022]
Abstract
Hereditary spastic paraplegia (HSP) is a group of rare neurological disorders, characterised by their extreme heterogeneity in both their clinical manifestations and genetic origins. Although Charles-Prosper Ollivier d'Angers (1796-1845) sketched out a suggestive description in 1827, it was Heinrich Erb (1840-1921) who described the clinical picture, in 1875, for "spastic spinal paralysis". Jean-Martin Charcot (1825-1893) began teaching the disorder as a clinical entity this same year. Adolf von Strümpell (1853-1925) recognised its hereditary nature in 1880 and Maurice Lorrain (1867-1956) gained posthumous fame for adding his name to that of Strümpell and forming the eponym after his 1898 thesis, the first review covering twenty-nine affected families. He benefited from the knowledge accumulated over a dozen years on this pathology by his teacher, Fulgence Raymond (1844-1910). Here I present a history across two centuries, leading to the clinical, anatomopathological, and genetic description of hereditary spastic paraplegia which today enables a better understanding of the causative cellular dysfunctions and makes it possible to envisage effective treatment.
Collapse
Affiliation(s)
- O Walusinski
- Private practice, 20, rue de Chartres, 28160 Brou, France.
| |
Collapse
|
13
|
List J, Kohl Z, Winkler J, Marxreiter F, Doerfler A, Schmidt MA. Ascending Axonal Degeneration of the Corticospinal Tract in Pure Hereditary Spastic Paraplegia: A Cross-Sectional DTI Study. Brain Sci 2019; 9:brainsci9100268. [PMID: 31601037 PMCID: PMC6827077 DOI: 10.3390/brainsci9100268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/03/2019] [Accepted: 10/05/2019] [Indexed: 12/11/2022] Open
Abstract
Objective: To identify structural white matter alterations in patients with pure hereditary spastic paraplegia (HSP) using high angular resolution diffusion tensor imaging (DTI). Methods: We examined 37 individuals with high resolution DTI, 20 patients with pure forms of hereditary spastic paraplegia and 17 age and gender matched healthy controls. DTI was performed using a 3 T clinical scanner with whole brain tract-based spatial statistical (TBSS) analysis of the obtained fractional anisotropy (FA) data as well as a region-of-interest (ROI)-based analysis of affected tracts including the cervical spinal cord. We further conducted correlation analyses between DTI data and clinical characteristics. Results: TBSS analysis in HSP patients showed significantly decreased fractional anisotropy of the corpus callosum and the corticospinal tract compared to healthy controls. ROI-based analysis confirmed significantly lower FA in HSP compared to controls in the internal capsule (0.77 vs. 0.80, p = 0.048), the corpus callosum (0.84 vs. 0.87, p = 0.048) and the cervical spinal cord (0.72 vs. 0.79, p = 0.003). FA values of the cervical spinal cord significantly correlated with disease duration. Conclusion: DTI metrics of the corticospinal tract from the internal capsule to the cervical spine suggest microstructural damage and axonal degeneration of motor neurons. The CST at the level of the cervical spinal cord is thereby more severely affected than the intracranial part of the CST, suggesting an ascending axonal degeneration of the CST. Since there is a significant correlation with disease duration, FA may serve as a future progression marker for assessment of the disease course in HSP.
Collapse
Affiliation(s)
- Julia List
- Departments of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Zacharias Kohl
- Departments of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Juergen Winkler
- Departments of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Franz Marxreiter
- Departments of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Arnd Doerfler
- Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Manuel A Schmidt
- Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| |
Collapse
|
14
|
BULBOACA 1,2, CA, BLIDARU M, FESTILA 4, D, BOARESCU PM, STANESCU I. Pallidopyramidal Syndrome and Hereditary Spastic Paraplegia common features and diagnostic approach and therapeutic considerations. BALNEO RESEARCH JOURNAL 2019. [DOI: 10.12680/balneo.2019.267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The neurological diagnosis, can be, in some situations, a challenging one. Clinical presentation for neurological disease, which has no imagistic diagnosis criteria, can develop during several month or years. Therefore, the first evaluation of the patient with neurological symptoms is not always conclusive. Pallidopyramidal syndrome and hereditary spastic paraplegia (HSP) can present common features and diagnostic approach has to be careful. genetic assessment is the gold diagnosis method in some cases. Therapeutic strategies, following a correct diagnosis has to be addressed to improvement the patient's quality of life by rehabilitation methods and medication targeting the pathophysiological processes involvement. The aim of this paper is to discuss the clinical evolution and the diagnosis strategies in hereditary spastic paraplegia.
Collapse
Affiliation(s)
- Corneliu Angelo BULBOACA 1,2,
- Department of Neurology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania 2Clinical Rehabilitation Hospital, Cluj-Napoca, Romania
| | - Mihai BLIDARU
- Department of Pathophysiology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Dana FESTILA 4,
- Department of Orthodontics, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Paul Mihai BOARESCU
- Department of Pathophysiology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Ioana STANESCU
- Department of Neurology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania 2Clinical Rehabilitation Hospital, Cluj-Napoca, Romania
| |
Collapse
|
15
|
Song L, Rijal R, Karow M, Stumpf M, Hahn O, Park L, Insall R, Schröder R, Hofmann A, Clemen CS, Eichinger L. Expression of N471D strumpellin leads to defects in the endolysosomal system. Dis Model Mech 2018; 11:dmm033449. [PMID: 30061306 PMCID: PMC6177004 DOI: 10.1242/dmm.033449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
Hereditary spastic paraplegias (HSPs) are genetically diverse and clinically characterised by lower limb weakness and spasticity. The N471D and several other point mutations of human strumpellin (Str; also known as WASHC5), a member of the Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) complex, have been shown to cause a form of HSP known as spastic paraplegia 8 (SPG8). To investigate the molecular functions of wild-type (WT) and N417D Str, we generated Dictyostelium Str- cells and ectopically expressed StrWT-GFP or StrN471D-GFP in Str- and WT cells. Overexpression of both proteins apparently caused a defect in cell division, as we observed a clear increase in multinucleate cells. Real-time PCR analyses revealed no transcriptional changes in WASH complex subunits in Str- cells, but western blots showed a twofold decrease in the SWIP subunit. GFP-trap experiments in conjunction with mass-spectrometric analysis revealed many previously known, as well as new, Str-interacting proteins, and also proteins that no longer bind to StrN471D At the cellular level, Str- cells displayed defects in cell growth, phagocytosis, macropinocytosis, exocytosis and lysosomal function. Expression of StrWT-GFP in Str- cells rescued all observed defects. In contrast, expression of StrN471D-GFP could not rescue lysosome morphology and exocytosis of indigestible material. Our results underscore a key role for the WASH complex and its core subunit, Str, in the endolysosomal system, and highlight the fundamental importance of the Str N471 residue for maintaining lysosome morphology and dynamics. Our data indicate that the SPG8-causing N471D mutation leads to a partial loss of Str function in the endolysosomal system. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Lin Song
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Ramesh Rijal
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
- Department of Biology, Texas A&M University, College Station, TX 3258, USA
| | - Malte Karow
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Maria Stumpf
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Oliver Hahn
- Max Planck Institute for Biology of Ageing, Biological Mechanisms of Ageing, 50931 Cologne, Germany
| | - Laura Park
- CR-UK Beatson Institute, Institute of Cancer Sciences, Glasgow University, Glasgow G12 8QQ, UK
| | - Robert Insall
- CR-UK Beatson Institute, Institute of Cancer Sciences, Glasgow University, Glasgow G12 8QQ, UK
| | - Rolf Schröder
- Institute of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Andreas Hofmann
- Structural Chemistry Program, Eskitis Institute, Griffith University, N75 Don Young Road, Nathan, QLD 4111, Australia
- Faculty of Veterinary Science, The University of Melbourne, Parkville, VIC 3030, Australia
| | - Christoph S Clemen
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Ludwig Eichinger
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
16
|
Pehrson C, Hertz JM, Wirenfeldt M, Stenager E, Wermuth L, Winther Kristensen B. Hereditary spastic paraplegia type 8: Neuropathological findings. Brain Pathol 2018; 28:292-294. [PMID: 28181327 DOI: 10.1111/bpa.12494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Caroline Pehrson
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Jens Michael Hertz
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Martin Wirenfeldt
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Egon Stenager
- MS-Clinic of Southern Jutland (Sønderborg, Esbjerg, Kolding), Department of Neurology, Sygehus Sønderjylland, Denmark and Institute of Regional Research, University of Southern Denmark, Denmark
| | - Lene Wermuth
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Bjarne Winther Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
17
|
Faber I, Pereira ER, Martinez ARM, França M, Teive HAG. Hereditary spastic paraplegia from 1880 to 2017: an historical review. ARQUIVOS DE NEURO-PSIQUIATRIA 2018; 75:813-818. [PMID: 29236826 DOI: 10.1590/0004-282x20170160] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/24/2017] [Indexed: 01/29/2023]
Abstract
The authors have constructed a brief timeline of major clinical research related to hereditary spastic paraplegia (HSP). This timeline summarizes the evolution of HSP research, from the first clinical descriptions by Adolf von Strümpell in 1880 to the present day, with the transformation of these diseases into a rapidly-growing and heterogeneous group of neurogenetic diseases.
Collapse
Affiliation(s)
- Ingrid Faber
- Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Departamento de Neurologia, Campinas SP, Brasil
| | - Eduardo Rafael Pereira
- Universidade Federal do Paraná, Hospital de Clínicas, Departamento de Medicina Interna, Serviço de Neurologia, Setor de Distúrbios do Movimento, Curitiba PR, Brasil
| | - Alberto R M Martinez
- Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Departamento de Neurologia, Campinas SP, Brasil
| | - Marcondes França
- Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Departamento de Neurologia, Campinas SP, Brasil
| | - Hélio Afonso Ghizoni Teive
- Universidade Federal do Paraná, Hospital de Clínicas, Departamento de Medicina Interna, Serviço de Neurologia, Setor de Distúrbios do Movimento, Curitiba PR, Brasil
| |
Collapse
|
18
|
Abstract
The hereditary spastic paraplegias (HSPs) are a heterogeneous group of neurologic disorders with the common feature of prominent lower-extremity spasticity, resulting from a length-dependent axonopathy of corticospinal upper motor neurons. The HSPs exist not only in "pure" forms but also in "complex" forms that are associated with additional neurologic and extraneurologic features. The HSPs are among the most genetically diverse neurologic disorders, with well over 70 distinct genetic loci, for which about 60 mutated genes have already been identified. Numerous studies elucidating the molecular pathogenesis underlying HSPs have highlighted the importance of basic cellular functions - especially membrane trafficking, mitochondrial function, organelle shaping and biogenesis, axon transport, and lipid/cholesterol metabolism - in axon development and maintenance. An encouragingly small number of converging cellular pathogenic themes have been identified for the most common HSPs, and some of these pathways present compelling targets for future therapies.
Collapse
Affiliation(s)
- Craig Blackstone
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
19
|
Jennings S, Chenevert M, Liu L, Mottamal M, Wojcik EJ, Huckaba TM. Characterization of kinesin switch I mutations that cause hereditary spastic paraplegia. PLoS One 2017; 12:e0180353. [PMID: 28678816 PMCID: PMC5498027 DOI: 10.1371/journal.pone.0180353] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/14/2017] [Indexed: 11/18/2022] Open
Abstract
Kif5A is a neuronally-enriched isoform of the Kinesin-1 family of cellular transport motors. 23 separate mutations in the motor domain of Kif5A have been identified in patients with the complicated form of hereditary spastic paraplegia (HSP). We performed in vitro assays on dimeric recombinant Kif5A with HSP-causing mutations in the Switch I domain, which participates in the coordination and hydrolysis of ATP by kinesin. We observed a variety of significantly reduced catalytic and mechanical activities as a result of each mutation, with the shared phenotype from each that motility was significantly reduced. Substitution of Mn2+ for Mg2+ in our reaction buffers provides a dose-dependent rescue in both the catalytic and ensemble mechanical properties of the S203C mutant. This work provides mechanistic insight into the cause of HSP in patients with these mutations and points to future experiments to further dissect the root cause of this disease.
Collapse
Affiliation(s)
- Scott Jennings
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | - Madeline Chenevert
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | - Liqiong Liu
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Madhusoodanan Mottamal
- RCMI Molecular Modeling Core, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | - Edward J. Wojcik
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Thomas M. Huckaba
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
20
|
Lavie J, Serrat R, Bellance N, Courtand G, Dupuy JW, Tesson C, Coupry I, Brice A, Lacombe D, Durr A, Stevanin G, Darios F, Rossignol R, Goizet C, Bénard G. Mitochondrial morphology and cellular distribution are altered in SPG31 patients and are linked to DRP1 hyperphosphorylation. Hum Mol Genet 2017; 26:674-685. [PMID: 28007911 DOI: 10.1093/hmg/ddw425] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/12/2016] [Indexed: 01/07/2023] Open
Abstract
Hereditary spastic paraplegia, SPG31, is a rare neurological disorder caused by mutations in REEP1 gene encoding the microtubule-interacting protein, REEP1. The mechanism by which REEP1-dependent processes are linked with the disease is unclear. REEP1 regulates the morphology and trafficking of various organelles via interaction with the microtubules. In this study, we collected primary fibroblasts from SPG31 patients to investigate their mitochondrial morphology. We observed that the mitochondrial morphology in patient cells was highly tubular compared with control cells. We provide evidence that these morphological alterations are caused by the inhibition of mitochondrial fission protein, DRP1, due to the hyperphosphorylation of its serine 637 residue. This hyperphosphorylation is caused by impaired interactions between REEP1 and mitochondrial phosphatase PGAM5. Genetically or pharmacologically induced decrease of DRP1-S637 phosphorylation restores mitochondrial morphology in patient cells. Furthermore, ectopic expression of REEP1 carrying pathological mutations in primary neuronal culture targets REEP1 to the mitochondria. Mutated REEP1 proteins sequester mitochondria to the perinuclear region of the neurons and therefore, hamper mitochondrial transport along the axon. Considering the established role of mitochondrial distribution and morphology in neuronal health, our results support the involvement of a mitochondrial dysfunction in SPG31 pathology.
Collapse
Affiliation(s)
- Julie Lavie
- INSERM U1211, Laboratoire Maladies Rares: Génétique et Métabolisme. Hôpital Pellegrin, 33000 Bordeaux, France.,University of Bordeaux, 33077 Bordeaux, France
| | - Román Serrat
- University of Bordeaux, 33077 Bordeaux, France.,INSERM U1215, NeuroCentre Magendie, 33077 Bordeaux, France
| | - Nadège Bellance
- INSERM U1211, Laboratoire Maladies Rares: Génétique et Métabolisme. Hôpital Pellegrin, 33000 Bordeaux, France.,University of Bordeaux, 33077 Bordeaux, France
| | - Gilles Courtand
- University of Bordeaux, 33077 Bordeaux, France.,INCIA, Université de Bordeaux, CNRS UMR5287, Bordeaux, France
| | - Jean-William Dupuy
- University of Bordeaux, 33077 Bordeaux, France.,Plateforme Protéome, Centre de Génomique Fonctionnelle, F-33000 Bordeaux, France
| | - Christelle Tesson
- INSERM U1127, CNRS UMR 7225, UPMC Université Paris 06 UMR S1127, Sorbonne Université Institut du Cerveau et de la Moelle épinière, ICM F-75013, Paris, France.,Ecole Pratique des Hautes Etudes, PSL Research University, 75014 Paris, France
| | - Isabelle Coupry
- INSERM U1211, Laboratoire Maladies Rares: Génétique et Métabolisme. Hôpital Pellegrin, 33000 Bordeaux, France.,University of Bordeaux, 33077 Bordeaux, France
| | - Alexis Brice
- INSERM U1127, CNRS UMR 7225, UPMC Université Paris 06 UMR S1127, Sorbonne Université Institut du Cerveau et de la Moelle épinière, ICM F-75013, Paris, France
| | - Didier Lacombe
- INSERM U1211, Laboratoire Maladies Rares: Génétique et Métabolisme. Hôpital Pellegrin, 33000 Bordeaux, France.,University of Bordeaux, 33077 Bordeaux, France
| | - Alexandra Durr
- INSERM U1127, CNRS UMR 7225, UPMC Université Paris 06 UMR S1127, Sorbonne Université Institut du Cerveau et de la Moelle épinière, ICM F-75013, Paris, France
| | - Giovanni Stevanin
- INSERM U1127, CNRS UMR 7225, UPMC Université Paris 06 UMR S1127, Sorbonne Université Institut du Cerveau et de la Moelle épinière, ICM F-75013, Paris, France.,Ecole Pratique des Hautes Etudes, PSL Research University, 75014 Paris, France
| | - Fréderic Darios
- INSERM U1127, CNRS UMR 7225, UPMC Université Paris 06 UMR S1127, Sorbonne Université Institut du Cerveau et de la Moelle épinière, ICM F-75013, Paris, France
| | - Rodrigue Rossignol
- INSERM U1211, Laboratoire Maladies Rares: Génétique et Métabolisme. Hôpital Pellegrin, 33000 Bordeaux, France.,University of Bordeaux, 33077 Bordeaux, France
| | - Cyril Goizet
- INSERM U1211, Laboratoire Maladies Rares: Génétique et Métabolisme. Hôpital Pellegrin, 33000 Bordeaux, France.,University of Bordeaux, 33077 Bordeaux, France
| | - Giovanni Bénard
- INSERM U1211, Laboratoire Maladies Rares: Génétique et Métabolisme. Hôpital Pellegrin, 33000 Bordeaux, France.,University of Bordeaux, 33077 Bordeaux, France
| |
Collapse
|
21
|
Saberi S, Stauffer JE, Schulte DJ, Ravits J. Neuropathology of Amyotrophic Lateral Sclerosis and Its Variants. Neurol Clin 2016; 33:855-76. [PMID: 26515626 DOI: 10.1016/j.ncl.2015.07.012] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neuropathologic molecular signature common to almost all sporadic amyotrophic lateral sclerosis (ALS) and most familial ALS is TDP-43 immunoreactive neuronal cytoplasmic inclusions. The neuropathologic and molecular neuropathologic features of ALS variants, primarily lateral sclerosis and progressive muscular atrophy, are less certain but also seem to share the primary features of ALS. Genetic causes, including mutations in SOD1, TDP-43, FUS, and C9orf72, all have distinctive molecular neuropathologic signatures. Neuropathology will continue to play an increasingly key role in solving the puzzle of ALS pathogenesis.
Collapse
Affiliation(s)
- Shahram Saberi
- Department of Neurosciences, ALS Translational Research, University of California (San Diego), 9500 Gilman Drive, MC0624, La Jolla, CA 92093, USA
| | - Jennifer E Stauffer
- Department of Neurosciences, ALS Translational Research, University of California (San Diego), 9500 Gilman Drive, MC0624, La Jolla, CA 92093, USA
| | - Derek J Schulte
- Department of Neurosciences, ALS Translational Research, University of California (San Diego), 9500 Gilman Drive, MC0624, La Jolla, CA 92093, USA
| | - John Ravits
- Department of Neurosciences, ALS Translational Research, University of California (San Diego), 9500 Gilman Drive, MC0624, La Jolla, CA 92093, USA.
| |
Collapse
|
22
|
Coignion C, Banneau G, Goizet C. Paraplegie spastiche ereditarie. Neurologia 2016. [DOI: 10.1016/s1634-7072(16)77572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
23
|
Denora PS, Smets K, Zolfanelli F, Ceuterick-de Groote C, Casali C, Deconinck T, Sieben A, Gonzales M, Zuchner S, Darios F, Peeters D, Brice A, Malandrini A, De Jonghe P, Santorelli FM, Stevanin G, Martin JJ, El Hachimi KH. Motor neuron degeneration in spastic paraplegia 11 mimics amyotrophic lateral sclerosis lesions. Brain 2016; 139:1723-34. [PMID: 27016404 PMCID: PMC5839621 DOI: 10.1093/brain/aww061] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/31/2016] [Indexed: 12/12/2022] Open
Abstract
The most common form of autosomal recessive hereditary spastic paraplegia is caused by
mutations in the SPG11/KIAA1840 gene on chromosome 15q.
The nature of the vast majority of SPG11 mutations found to date suggests
a loss-of-function mechanism of the encoded protein, spatacsin. The SPG11 phenotype is, in
most cases, characterized by a progressive spasticity with neuropathy, cognitive
impairment and a thin corpus callosum on brain MRI. Full neuropathological
characterization has not been reported to date despite the description of >100
SPG11 mutations. We describe here the clinical and pathological
features observed in two unrelated females, members of genetically ascertained SPG11
families originating from Belgium and Italy, respectively. We confirm the presence of
lesions of motor tracts in medulla oblongata and spinal cord associated with other lesions
of the central nervous system. Interestingly, we report for the first time pathological
hallmarks of SPG11 in neurons that include intracytoplasmic granular lysosome-like
structures mainly in supratentorial areas, and others in subtentorial areas that are
partially reminiscent of those observed in amyotrophic lateral sclerosis, such as
ubiquitin and p62 aggregates, except that they are never labelled with anti-TDP-43 or
anti-cystatin C. The neuropathological overlap with amyotrophic lateral sclerosis,
associated with some shared clinical manifestations, opens up new fields of investigation
in the physiopathological continuum of motor neuron degeneration.
Collapse
Affiliation(s)
- Paola S Denora
- 1 Ecole Pratique des Hautes Etudes, EPHE, PSL université, laboratoire de neurogénétique, F-75013, Paris, France 2 Inserm, U1127, F-75013, Paris, France 3 CNRS, UMR7225, F-75013, Paris, France 4 Sorbonne Universités, UPMC Univ Paris 06, UMR_S1127, Institut du Cerveau et de la Moelle épinière - ICM, Pitié-Salpêtrière Hospital, F-75013, Paris, France 5 Department of Genetics and Rare Diseases, IRCCS Bambino Gesu' Children Hospital, Rome, Italy
| | - Katrien Smets
- 6 Neurogenetics Group, VIB-Department of Molecular Genetics, University of Antwerp, Belgium 7 Laboratories of Neurogenetics, Institute Born-Bunge, University of Antwerp, Belgium 8 Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | | | | | - Carlo Casali
- 11 Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University, Polo Pontino Rome, Italy
| | - Tine Deconinck
- 6 Neurogenetics Group, VIB-Department of Molecular Genetics, University of Antwerp, Belgium 7 Laboratories of Neurogenetics, Institute Born-Bunge, University of Antwerp, Belgium
| | - Anne Sieben
- 10 Institute Born-Bunge, University of Antwerp, Belgium 12 Department of Neurology, University Hospital Gent, Belgium
| | - Michael Gonzales
- 13 Department of Human Genetics and Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Stephan Zuchner
- 13 Department of Human Genetics and Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Frédéric Darios
- 2 Inserm, U1127, F-75013, Paris, France 3 CNRS, UMR7225, F-75013, Paris, France 4 Sorbonne Universités, UPMC Univ Paris 06, UMR_S1127, Institut du Cerveau et de la Moelle épinière - ICM, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| | - Dirk Peeters
- 14 Department of Neurology, AZ Groeninge, Kortrijk, Belgium
| | - Alexis Brice
- 2 Inserm, U1127, F-75013, Paris, France 3 CNRS, UMR7225, F-75013, Paris, France 4 Sorbonne Universités, UPMC Univ Paris 06, UMR_S1127, Institut du Cerveau et de la Moelle épinière - ICM, Pitié-Salpêtrière Hospital, F-75013, Paris, France 15 APHP, Département de Génétique, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| | - Alessandro Malandrini
- 16 Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Peter De Jonghe
- 6 Neurogenetics Group, VIB-Department of Molecular Genetics, University of Antwerp, Belgium 7 Laboratories of Neurogenetics, Institute Born-Bunge, University of Antwerp, Belgium 8 Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Filippo M Santorelli
- 17 Molecular Medicine Laboratory, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Giovanni Stevanin
- 1 Ecole Pratique des Hautes Etudes, EPHE, PSL université, laboratoire de neurogénétique, F-75013, Paris, France 2 Inserm, U1127, F-75013, Paris, France 3 CNRS, UMR7225, F-75013, Paris, France 4 Sorbonne Universités, UPMC Univ Paris 06, UMR_S1127, Institut du Cerveau et de la Moelle épinière - ICM, Pitié-Salpêtrière Hospital, F-75013, Paris, France 15 APHP, Département de Génétique, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| | | | - Khalid H El Hachimi
- 1 Ecole Pratique des Hautes Etudes, EPHE, PSL université, laboratoire de neurogénétique, F-75013, Paris, France 2 Inserm, U1127, F-75013, Paris, France 3 CNRS, UMR7225, F-75013, Paris, France 4 Sorbonne Universités, UPMC Univ Paris 06, UMR_S1127, Institut du Cerveau et de la Moelle épinière - ICM, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| |
Collapse
|
24
|
Julien C, Lissouba A, Madabattula S, Fardghassemi Y, Rosenfelt C, Androschuk A, Strautman J, Wong C, Bysice A, O'sullivan J, Rouleau GA, Drapeau P, Parker JA, Bolduc FV. Conserved pharmacological rescue of hereditary spastic paraplegia-related phenotypes across model organisms. Hum Mol Genet 2016; 25:1088-99. [PMID: 26744324 PMCID: PMC4764191 DOI: 10.1093/hmg/ddv632] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 11/13/2015] [Accepted: 12/29/2015] [Indexed: 01/10/2023] Open
Abstract
Hereditary spastic paraplegias (HSPs) are a group of neurodegenerative diseases causing progressive gait dysfunction. Over 50 genes have now been associated with HSP. Despite the recent explosion in genetic knowledge, HSP remains without pharmacological treatment. Loss-of-function mutation of the SPAST gene, also known as SPG4, is the most common cause of HSP in patients. SPAST is conserved across animal species and regulates microtubule dynamics. Recent studies have shown that it also modulates endoplasmic reticulum (ER) stress. Here, utilizing null SPAST homologues in C. elegans, Drosophila and zebrafish, we tested FDA-approved compounds known to modulate ER stress in order to ameliorate locomotor phenotypes associated with HSP. We found that locomotor defects found in all of our spastin models could be partially rescued by phenazine, methylene blue, N-acetyl-cysteine, guanabenz and salubrinal. In addition, we show that established biomarkers of ER stress levels correlated with improved locomotor activity upon treatment across model organisms. Our results provide insights into biomarkers and novel therapeutic avenues for HSP.
Collapse
Affiliation(s)
| | | | - Surya Madabattula
- Institute for Neuroscience and Mental Health and Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada and
| | - Yasmin Fardghassemi
- CRCHUM and Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
| | - Cory Rosenfelt
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada and
| | - Alaura Androschuk
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada and
| | - Joel Strautman
- Institute for Neuroscience and Mental Health and Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada and
| | - Clement Wong
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada and
| | - Andrew Bysice
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada and
| | - Julia O'sullivan
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada and
| | - Guy A Rouleau
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec, Canada
| | | | | | - François V Bolduc
- Institute for Neuroscience and Mental Health and Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada and
| |
Collapse
|
25
|
Geevasinga N, Menon P, Sue CM, Kumar KR, Ng K, Yiannikas C, Kiernan MC, Vucic S. Cortical excitability changes distinguish the motor neuron disease phenotypes from hereditary spastic paraplegia. Eur J Neurol 2015; 22:826-31, e57-8. [PMID: 25683471 DOI: 10.1111/ene.12669] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/15/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE Cortical hyperexcitability has been identified as an important pathogenic mechanism in motor neuron disease (MND). The issue as to whether cortical hyperexcitability is a common process across the MND phenotypes, including amyotrophic lateral sclerosis (ALS) and primary lateral sclerosis (PLS), remains unresolved. Separately, the clinical distinction between PLS and 'mimic disorders' such as hereditary spastic paraparesis (HSP) may be difficult, potentially delaying diagnosis. Consequently, the aim of the present study was to determine the nature and spectrum of cortical excitability changes across the MND phenotypes, and to determine whether the presence of cortical dysfunction distinguishes PLS from HSP. METHODS Cortical excitability studies were undertaken on a cohort of 14 PLS, 82 ALS and 13 HSP patients with mutations in the spastin gene. RESULTS Cortical hyperexcitability, as heralded by reduction of short interval intracortical inhibition (PLS 0.26%, -3.8% to 1.4%; ALS -0.15%, -3.6% to 7.0%; P < 0.01) and cortical silent period duration (CSPPLS 172.2 ± 5.4 ms; CSPALS 178.1 ± 5.1 ms; P < 0.001), along with an increase in intracortical facilitation was evident in ALS and PLS phenotypes, although appeared more frequently in ALS. Inexcitability of the motor cortex was more frequent in PLS (PLS 71%, ALS 24%, P < 0.0001). Cortical excitability was preserved in HSP. CONCLUSIONS Cortical dysfunction appears to be an intrinsic process across the MND phenotypes, with cortical inexcitability predominating in PLS and cortical hyperexcitability predominating in ALS. Importantly, cortical excitability was preserved in HSP, thereby suggesting that the presence of cortical dysfunction could help differentiate PLS from HSP in a clinical setting.
Collapse
Affiliation(s)
- N Geevasinga
- Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Renvoisé B, Blackstone C. Hereditary Spastic Paraplegias. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00069-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
27
|
|
28
|
Margetis K, Korfias S, Boutos N, Gatzonis S, Themistocleous M, Siatouni A, Dalivigka Z, Flaskas T, Stranjalis G, Boviatsis E, Sakas D. Intrathecal baclofen therapy for the symptomatic treatment of hereditary spastic paraplegia. Clin Neurol Neurosurg 2014; 123:142-5. [DOI: 10.1016/j.clineuro.2014.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 05/11/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
|
29
|
Aghakhanyan G, Martinuzzi A, Frijia F, Vavla M, Hlavata H, Baratto A, Martino N, Paparella G, Montanaro D. Brain white matter involvement in hereditary spastic paraplegias: analysis with multiple diffusion tensor indices. AJNR Am J Neuroradiol 2014; 35:1533-8. [PMID: 24788132 DOI: 10.3174/ajnr.a3897] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND PURPOSE The hereditary spastic paraplegias are a group of genetically heterogeneous neurodegenerative disorders, characterized by progressive spasticity and weakness of the lower limbs. Although conventional brain MR imaging findings are normal in patients with pure hereditary spastic paraplegia, microstructural alteration in the cerebral WM can be revealed with DTI. Concomitant investigation of multiple intrinsic diffusivities may shed light on the neurobiologic substrate of the WM degeneration pattern in patients with pure hereditary spastic paraplegia across the whole brain. MATERIALS AND METHODS Tract-based spatial statistics analysis was performed to compare fractional anisotropy and mean, axial, and radial diffusivities of the WM skeleton in a group of 12 patients with pure hereditary spastic paraplegia and 12 healthy volunteers. Data were analyzed counting age and sex as nuisance covariates. The threshold-free cluster-enhancement option was applied, and the family-wise error rate was controlled by using permutation tests for nonparametric statistics. RESULTS In pure hereditary spastic paraplegia, group widespread fractional anisotropy decreases and radial diffusivity and mean diffusivity increases (P < .05, corrected) were found. No voxelwise difference was observed for the axial diffusivity map. Percentage of voxels within the WM skeleton that passed the significance threshold were 51%, 41.6%, and 11.9%, respectively, for radial diffusivity, fractional anisotropy, and mean diffusivity clusters. An anteroposterior pattern with preferential decrease of fractional anisotropy in the frontal circuitry was detected. CONCLUSIONS In patients with pure hereditary spastic paraplegia, alterations in multiple DTI indices were found. Radial diffusivity seems more sensitive to hereditary spastic paraplegia-related WM pathology and, in line with the lack of axial diffusivity changes, might indicate a widespread loss of myelin integrity. A decrease of fractional anisotropy alone in the frontal circuitry may reflect subtle disruption of the frontal connections.
Collapse
Affiliation(s)
- G Aghakhanyan
- From the Institute of Life Sciences (G.A.), Scuola Superiore Sant'Anna, Pisa, ItalyNeuroradiology Unit (G.A., F.F., H.H., D.M.), Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
| | - A Martinuzzi
- Medea Scientific Institute (A.M., M.V., G.P.), Conegliano and Bosisio Parini, Treviso, Italy
| | - F Frijia
- Neuroradiology Unit (G.A., F.F., H.H., D.M.), Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
| | - M Vavla
- Medea Scientific Institute (A.M., M.V., G.P.), Conegliano and Bosisio Parini, Treviso, Italy
| | - H Hlavata
- Neuroradiology Unit (G.A., F.F., H.H., D.M.), Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
| | - A Baratto
- Radiology Unit (A.B., N.M.), MRI Unit, ULSS7, Conegliano, Treviso, Italy
| | - N Martino
- Radiology Unit (A.B., N.M.), MRI Unit, ULSS7, Conegliano, Treviso, Italy
| | - G Paparella
- Medea Scientific Institute (A.M., M.V., G.P.), Conegliano and Bosisio Parini, Treviso, Italy
| | - D Montanaro
- Neuroradiology Unit (G.A., F.F., H.H., D.M.), Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
| |
Collapse
|
30
|
Babin PJ, Goizet C, Raldúa D. Zebrafish models of human motor neuron diseases: advantages and limitations. Prog Neurobiol 2014; 118:36-58. [PMID: 24705136 DOI: 10.1016/j.pneurobio.2014.03.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/11/2014] [Accepted: 03/14/2014] [Indexed: 01/08/2023]
Abstract
Motor neuron diseases (MNDs) are an etiologically heterogeneous group of disorders of neurodegenerative origin, which result in degeneration of lower (LMNs) and/or upper motor neurons (UMNs). Neurodegenerative MNDs include pure hereditary spastic paraplegia (HSP), which involves specific degeneration of UMNs, leading to progressive spasticity of the lower limbs. In contrast, spinal muscular atrophy (SMA) involves the specific degeneration of LMNs, with symmetrical muscle weakness and atrophy. Amyotrophic lateral sclerosis (ALS), the most common adult-onset MND, is characterized by the degeneration of both UMNs and LMNs, leading to progressive muscle weakness, atrophy, and spasticity. A review of the comparative neuroanatomy of the human and zebrafish motor systems showed that, while the zebrafish was a homologous model for LMN disorders, such as SMA, it was only partially relevant in the case of UMN disorders, due to the absence of corticospinal and rubrospinal tracts in its central nervous system. Even considering the limitation of this model to fully reproduce the human UMN disorders, zebrafish offer an excellent alternative vertebrate model for the molecular and genetic dissection of MND mechanisms. Its advantages include the conservation of genome and physiological processes and applicable in vivo tools, including easy imaging, loss or gain of function methods, behavioral tests to examine changes in motor activity, and the ease of simultaneous chemical/drug testing on large numbers of animals. This facilitates the assessment of the environmental origin of MNDs, alone or in combination with genetic traits and putative modifier genes. Positive hits obtained by phenotype-based small-molecule screening using zebrafish may potentially be effective drugs for treatment of human MNDs.
Collapse
Affiliation(s)
- Patrick J Babin
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Talence, France.
| | - Cyril Goizet
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Talence, France; CHU Bordeaux, Hôpital Pellegrin, Service de Génétique Médicale, Bordeaux, France
| | | |
Collapse
|
31
|
Hand muscles corticomotor excitability in hereditary spastic paraparesis type 4. Neurol Sci 2014; 35:1287-91. [PMID: 24648003 DOI: 10.1007/s10072-014-1707-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 02/27/2014] [Indexed: 10/25/2022]
Abstract
Transcranial magnetic stimulation (TMS) studies on the pathways to the upper limbs have revealed inconsistent results in patients harboring mutations in SPAST/SPG4 gene, responsible for the commonest form of hereditary spastic paraplegia (HSP). This paper is addressed to study the corticomotor excitability of the pathways to the upper limbs in SPG4 subjects. We assessed the corticomotor excitability of hand muscles in 12 subjects belonging to 7 unrelated SPG4 families and in 12 control subjects by stimulus-response curve [input-output (I-O) curve]. All the parameters of the recruitment curve (threshold, V50, slope and plateau) did not differ significantly from those of the controls. Presence of upper limb hyper-reflexia did not influence the results of I-O curve. Considering the multiplicity of possible genes/loci accounting for pure HSPs, performing TMS analyses could be helpful in differential diagnosis of pure HSPs in the absence of other clinical or neuroimaging tools.
Collapse
|
32
|
Karle KN, Schüle R, Klebe S, Otto S, Frischholz C, Liepelt-Scarfone I, Schöls L. Electrophysiological characterisation of motor and sensory tracts in patients with hereditary spastic paraplegia (HSP). Orphanet J Rare Dis 2013; 8:158. [PMID: 24107482 PMCID: PMC3852552 DOI: 10.1186/1750-1172-8-158] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/05/2013] [Indexed: 12/11/2022] Open
Abstract
Background Hereditary spastic paraplegias (HSPs) are characterised by lower limb spasticity due to degeneration of the corticospinal tract. We set out for an electrophysiological characterisation of motor and sensory tracts in patients with HSP. Methods We clinically and electrophysiologically examined a cohort of 128 patients with genetically confirmed or clinically probable HSP. Motor evoked potentials (MEPs) to arms and legs, somato-sensory evoked potentials of median and tibial nerves, and nerve conduction studies of tibial, ulnar, sural, and radial nerves were assessed. Results Whereas all patients showed clinical signs of spastic paraparesis, MEPs were normal in 27% of patients and revealed a broad spectrum with axonal or demyelinating features in the others. This heterogeneity can at least in part be explained by different underlying genotypes, hinting for distinct pathomechanisms in HSP subtypes. In the largest subgroup, SPG4, an axonal type of damage was evident. Comprehensive electrophysiological testing disclosed a more widespread affection of long fibre tracts involving peripheral nerves and the sensory system in 40%, respectively. Electrophysiological abnormalities correlated with the severity of clinical symptoms. Conclusions Whereas HSP is primarily considered as an upper motoneuron disorder, our data suggest a more widespread affection of motor and sensory tracts in the central and peripheral nervous system as a common finding in HSP. The distribution patterns of electrophysiological abnormalities were associated with distinct HSP genotypes and could reflect different underlying pathomechanisms. Electrophysiological measures are independent of symptomatic treatment and may therefore serve as a reliable biomarker in upcoming HSP trials.
Collapse
Affiliation(s)
- Kathrin N Karle
- Department of Neurology, Eberhard Karls-University Tübingen, Tübingen 72076, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathol 2013; 126:307-28. [PMID: 23897027 DOI: 10.1007/s00401-013-1115-8] [Citation(s) in RCA: 342] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 03/25/2013] [Accepted: 04/02/2013] [Indexed: 12/11/2022]
Abstract
Hereditary spastic paraplegia (HSP) is a syndrome designation describing inherited disorders in which lower extremity weakness and spasticity are the predominant symptoms. There are more than 50 genetic types of HSP. HSP affects individuals of diverse ethnic groups with prevalence estimates ranging from 1.2 to 9.6 per 100,000. Symptoms may begin at any age. Gait impairment that begins after childhood usually worsens very slowly over many years. Gait impairment that begins in infancy and early childhood may not worsen significantly. Postmortem studies consistently identify degeneration of corticospinal tract axons (maximal in the thoracic spinal cord) and degeneration of fasciculus gracilis fibers (maximal in the cervico-medullary region). HSP syndromes thus appear to involve motor-sensory axon degeneration affecting predominantly (but not exclusively) the distal ends of long central nervous system (CNS) axons. In general, proteins encoded by HSP genes have diverse functions including (1) axon transport (e.g. SPG30/KIF1A, SPG10/KIF5A and possibly SPG4/Spastin); (2) endoplasmic reticulum morphology (e.g. SPG3A/Atlastin, SPG4/Spastin, SPG12/reticulon 2, and SPG31/REEP1, all of which interact); (3) mitochondrial function (e.g. SPG13/chaperonin 60/heat-shock protein 60, SPG7/paraplegin; and mitochondrial ATP6); (4) myelin formation (e.g. SPG2/Proteolipid protein and SPG42/Connexin 47); (5) protein folding and ER-stress response (SPG6/NIPA1, SPG8/K1AA0196 (Strumpellin), SGP17/BSCL2 (Seipin), "mutilating sensory neuropathy with spastic paraplegia" owing to CcT5 mutation and presumably SPG18/ERLIN2); (6) corticospinal tract and other neurodevelopment (e.g. SPG1/L1 cell adhesion molecule and SPG22/thyroid transporter MCT8); (7) fatty acid and phospholipid metabolism (e.g. SPG28/DDHD1, SPG35/FA2H, SPG39/NTE, SPG54/DDHD2, and SPG56/CYP2U1); and (8) endosome membrane trafficking and vesicle formation (e.g. SPG47/AP4B1, SPG48/KIAA0415, SPG50/AP4M1, SPG51/AP4E, SPG52/AP4S1, and VSPG53/VPS37A). The availability of animal models (including bovine, murine, zebrafish, Drosophila, and C. elegans) for many types of HSP permits exploration of disease mechanisms and potential treatments. This review highlights emerging concepts of this large group of clinically similar disorders.
Collapse
|
34
|
Alteration of ganglioside biosynthesis responsible for complex hereditary spastic paraplegia. Am J Hum Genet 2013; 93:118-23. [PMID: 23746551 DOI: 10.1016/j.ajhg.2013.05.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 11/23/2022] Open
Abstract
Hereditary spastic paraplegias (HSPs) form a heterogeneous group of neurological disorders. A whole-genome linkage mapping effort was made with three HSP-affected families from Spain, Portugal, and Tunisia and it allowed us to reduce the SPG26 locus interval from 34 to 9 Mb. Subsequently, a targeted capture was made to sequence the entire exome of affected individuals from these three families, as well as from two additional autosomal-recessive HSP-affected families of German and Brazilian origins. Five homozygous truncating (n = 3) and missense (n = 2) mutations were identified in B4GALNT1. After this finding, we analyzed the entire coding region of this gene in 65 additional cases, and three mutations were identified in two subjects. All mutated cases presented an early-onset spastic paraplegia, with frequent intellectual disability, cerebellar ataxia, and peripheral neuropathy as well as cortical atrophy and white matter hyperintensities on brain imaging. B4GALNT1 encodes β-1,4-N-acetyl-galactosaminyl transferase 1 (B4GALNT1), involved in ganglioside biosynthesis. These findings confirm the increasing interest of lipid metabolism in HSPs. Interestingly, although the catabolism of gangliosides is implicated in a variety of neurological diseases, SPG26 is only the second human disease involving defects of their biosynthesis.
Collapse
|
35
|
TDP-43 pathology in a case of hereditary spastic paraplegia with a NIPA1/SPG6 mutation. Acta Neuropathol 2012; 124:285-91. [PMID: 22302102 DOI: 10.1007/s00401-012-0947-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/24/2012] [Indexed: 12/12/2022]
Abstract
Mutations in NIPA1 (non-imprinted in Prader-Willi/Angelman syndrome) have been described as a cause of autosomal dominant hereditary spastic paraplegia (HSP) known as SPG6 (spastic paraplegia-6). We present the first neuropathological description of a patient with a NIPA1 mutation, and clinical phenotype of complicated HSP with motor neuron disease-like syndrome and cognitive decline. Postmortem examination revealed degeneration of lateral corticospinal tracts and dorsal columns with motor neuron loss. TDP-43 immunostaining showed widespread spinal cord and cerebral skein-like and round neuronal cytoplasmic inclusions. We ruled out NIPA1 mutations in 419 additional cases of motor neuron disease. These findings suggest that hereditary spastic paraplegia due to NIPA1 mutations could represent a TDP-43 proteinopathy.
Collapse
|
36
|
Bladder dysfunction in hereditary spastic paraplegia: a clinical and urodynamic evaluation. Spinal Cord 2012; 50:558-62. [DOI: 10.1038/sc.2011.193] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Sulek A, Elert E, Rajkiewicz M, Zdzienicka E, Stepniak I, Krysa W, Zaremba J. Screening for the hereditary spastic paraplaegias SPG4 and SPG3A with the multiplex ligation-dependent probe amplification technique in a large population of affected individuals. Neurol Sci 2011; 34:239-42. [DOI: 10.1007/s10072-011-0899-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 12/13/2011] [Indexed: 11/28/2022]
|
38
|
Kumar KR, Sue CM, Burke D, Ng K. Peripheral neuropathy in hereditary spastic paraplegia due to spastin (SPG4) mutation--a neurophysiological study using excitability techniques. Clin Neurophysiol 2011; 123:1454-9. [PMID: 22192498 DOI: 10.1016/j.clinph.2011.11.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 11/15/2011] [Accepted: 11/22/2011] [Indexed: 10/14/2022]
Abstract
OBJECTIVE To identify peripheral nerve abnormalities in hereditary spastic paraplegia (HSP) due to mutations in the spastin gene (spastic paraplegia 4, SPG4) using standard nerve conduction (NCS) and novel tests of axonal excitability. METHODS Eleven patients with known mutations in spastin were assessed with NCS for the upper and lower limbs, and axonal excitability testing on the median nerve. RESULTS Standard nerve conduction studies revealed a sensorimotor neuropathy in two patients. Excitability studies on median motor axons showed an isolated abnormality (increased strength-duration time constant), but those on sensory axons were normal in nine patients with normal routine nerve conduction studies. CONCLUSIONS Peripheral neuropathy occurs in HSP patients with SPG4 mutations, but axonal excitability studies provide limited additional evidence for subclinical peripheral nerve dysfunction, and add little further to standard nerve conduction studies. SIGNIFICANCE The features of HSP due to SPG4 mutations include sensorimotor polyneuropathy. The value of excitability studies is limited in individual patients.
Collapse
Affiliation(s)
- Kishore R Kumar
- Department of Neurology and Clinical Neurophysiology, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | | | | | | |
Collapse
|
39
|
Goizet C, Depienne C, Benard G, Boukhris A, Mundwiller E, Solé G, Coupry I, Pilliod J, Martin-Négrier ML, Fedirko E, Forlani S, Cazeneuve C, Hannequin D, Charles P, Feki I, Pinel JF, Ouvrard-Hernandez AM, Lyonnet S, Ollagnon-Roman E, Yaouanq J, Toutain A, Dussert C, Fontaine B, Leguern E, Lacombe D, Durr A, Rossignol R, Brice A, Stevanin G. REEP1 mutations in SPG31: Frequency, mutational spectrum, and potential association with mitochondrial morpho-functional dysfunction. Hum Mutat 2011; 32:1118-27. [DOI: 10.1002/humu.21542] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 05/17/2011] [Indexed: 12/19/2022]
|
40
|
Murmu RP, Martin E, Rastetter A, Esteves T, Muriel MP, El Hachimi KH, Denora PS, Dauphin A, Fernandez JC, Duyckaerts C, Brice A, Darios F, Stevanin G. Cellular distribution and subcellular localization of spatacsin and spastizin, two proteins involved in hereditary spastic paraplegia. Mol Cell Neurosci 2011; 47:191-202. [DOI: 10.1016/j.mcn.2011.04.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 04/14/2011] [Indexed: 11/26/2022] Open
|
41
|
Clemen CS, Tangavelou K, Strucksberg KH, Just S, Gaertner L, Regus-Leidig H, Stumpf M, Reimann J, Coras R, Morgan RO, Fernandez MP, Hofmann A, Müller S, Schoser B, Hanisch FG, Rottbauer W, Blümcke I, von Hörsten S, Eichinger L, Schröder R. Strumpellin is a novel valosin-containing protein binding partner linking hereditary spastic paraplegia to protein aggregation diseases. ACTA ACUST UNITED AC 2010; 133:2920-41. [PMID: 20833645 DOI: 10.1093/brain/awq222] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mutations of the human valosin-containing protein gene cause autosomal-dominant inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia. We identified strumpellin as a novel valosin-containing protein binding partner. Strumpellin mutations have been shown to cause hereditary spastic paraplegia. We demonstrate that strumpellin is a ubiquitously expressed protein present in cytosolic and endoplasmic reticulum cell fractions. Overexpression or ablation of wild-type strumpellin caused significantly reduced wound closure velocities in wound healing assays, whereas overexpression of the disease-causing strumpellin N471D mutant showed no functional effect. Strumpellin knockdown experiments in human neuroblastoma cells resulted in a dramatic reduction of axonal outgrowth. Knockdown studies in zebrafish revealed severe cardiac contractile dysfunction, tail curvature and impaired motility. The latter phenotype is due to a loss of central and peripheral motoneuron formation. These data imply a strumpellin loss-of-function pathogenesis in hereditary spastic paraplegia. In the human central nervous system strumpellin shows a presynaptic localization. We further identified strumpellin in pathological protein aggregates in inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia, various myofibrillar myopathies and in cortical neurons of a Huntington's disease mouse model. Beyond hereditary spastic paraplegia, our findings imply that mutant forms of strumpellin and valosin-containing protein may have a concerted pathogenic role in various protein aggregate diseases.
Collapse
Affiliation(s)
- Christoph S Clemen
- Institute of Biochemistry I, University of Cologne, Joseph-Stelzmann-Street 52, Cologne, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
A new locus (SPG46) maps to 9p21.2-q21.12 in a Tunisian family with a complicated autosomal recessive hereditary spastic paraplegia with mental impairment and thin corpus callosum. Neurogenetics 2010; 11:441-8. [PMID: 20593214 DOI: 10.1007/s10048-010-0249-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 06/14/2010] [Indexed: 10/19/2022]
Abstract
Hereditary spastic paraplegia (HSP) with thin corpus callosum (TCC) and mental impairment is a frequent subtype of complicated HSP, often inherited as an autosomal recessive (AR) trait. It is clear from molecular genetic analyses that there are several underlying causes of this syndrome, with at least six genetic loci identified to date. However, SPG11 and SPG15 are the two major genes for this entity. To map the responsible gene in a large AR-HSP-TCC family of Tunisian origin, we investigated a consanguineous family with a diagnosis of AR-HSP-TCC excluded for linkage to the SPG7, SPG11, SPG15, SPG18, SPG21, and SPG32 loci. A genome-wide scan was undertaken using 6,090 SNP markers covering all chromosomes. The phenotypic presentation in five patients was suggestive of a complex HSP that associated an early-onset spastic paraplegia with mild handicap, mental deterioration, congenital cataract, cerebellar signs, and TCC. The genome-wide search identified a single candidate region on chromosome 9, exceeding the LOD score threshold of +3. Fine mapping using additional markers narrowed the candidate region to a 45.1-Mb interval (15.4 cM). Mutations in three candidate genes were excluded. The mapping of a novel AR-HSP-TCC locus further demonstrates the extensive genetic heterogeneity of this condition. We propose that testing for this locus should be performed, after exclusion of mutations in SPG11 and SPG15 genes, in AR-HSP-TCC families, especially when cerebellar ataxia and cataract are present.
Collapse
|
43
|
Is oxidative damage in operation in patients with hereditary spastic paraparesis? Brain Dev 2010; 32:130-6. [PMID: 19217230 DOI: 10.1016/j.braindev.2008.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 12/01/2008] [Accepted: 12/19/2008] [Indexed: 11/21/2022]
Abstract
Oxidative stress resulting from increased free radical production and/or defects in antioxidant defences may be the cause of various neurodegenerative disorders. In this study, the roles of oxygen free radicals, nitric oxide, superoxide dismutase, vitamin E and vitamin C were investigated in pure and complicated hereditary spastic paraparesis (HSP) patients. The results showed that plasma SOD, vitamin E and nitric oxide levels were significantly low in HSP patients. These findings indicate the influence of oxidative damage in the degenerative process of HSP.
Collapse
|
44
|
Koritnik B, Azam S, Knific J, Zidar J. Functional changes of the cortical motor system in hereditary spastic paraparesis. Acta Neurol Scand 2009; 120:182-90. [PMID: 19133862 DOI: 10.1111/j.1600-0404.2008.01143.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Hereditary spastic paraparesis (HSP) is a heterogeneous group of disorders characterized by progressive bilateral lower limb spasticity. Functional imaging studies in patients with corticospinal tract involvement have shown reorganization of motor circuitry. Our study investigates functional changes in sensorimotor brain areas in patients with HSP. METHODS Twelve subjects with HSP and 12 healthy subjects were studied. Functional magnetic resonance imaging (fMRI) was used to measure brain activation during right-hand finger tapping. Image analysis was performed using general linear model and regions of interest (ROI)-based approach. Weighted laterality indices (wLI) and anterior/posterior indicies (wAI and wPI) were calculated for predefined ROIs. RESULTS AND DISCUSSION Comparing patients and controls at the same finger-tapping rate (1.8 Hz), there was increased fMRI activation in patients' bilateral posterior parietal cortex and left primary sensorimotor cortex. No differences were found when comparing patients and controls at 80% of their individual maximum tapping rates. wLI of the primary sensorimotor cortex was significantly lower in patients. Subjects with HSP also showed a relative increase in the activation of the posterior parietal and premotor areas compared with that of the primary sensorimotor cortex. Our findings demonstrate an altered pattern of cortical activation in subjects with HSP during motor task. The increased activation probably reflects reorganization of the cortical motor system.
Collapse
Affiliation(s)
- B Koritnik
- Institute of Clinical Neurophysiology, Division of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia.
| | | | | | | |
Collapse
|
45
|
Boukhris A, Stevanin G, Feki I, Denora P, Elleuch N, Miladi MI, Goizet C, Truchetto J, Belal S, Brice A, Mhiri C. Tunisian hereditary spastic paraplegias: clinical variability supported by genetic heterogeneity. Clin Genet 2009; 75:527-36. [PMID: 19438933 DOI: 10.1111/j.1399-0004.2009.01176.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hereditary spastic paraplegias (HSP) constitute a clinically and genetically heterogeneous group of neurodegenerative disorders characterized by slowly progressive spasticity of the lower extremities. We performed the first clinical, epidemiological and genetic study of HSP in Southern Tunisia. We investigated 88 patients belonging to 38 unrelated Tunisian HSP families. We could establish the minimal prevalence of HSP in the district of Sfax at 5.75/100,000. Thirty-one percent of the families had a pure HSP, whereas 69% had a complicated form. The mode of inheritance was almost exclusively compatible with an autosomal recessive trait (97%, 37/38). Taking into account previously published results and new data generated in this work, genetic studies revealed significant or putative linkage to known HSP loci in 13 families (34.2%) to either SPG11 (7/38, 18.4%), SPG15 (4/38, 10.5%) or to SPG4 and SPG5 in one family each. The linkage results could be validated through the identification of two recurrent truncating mutations (R2034X and M245VfsX246) in the SPG11 gene, three different mutations (Q493X, F683LfsX685 and the novel S2004T/r.?) in the SPG15 gene, the recurrent R499C mutation in the SPG4 gene as well as the new R112X mutation in the SPG5 gene. SPG11 and SPG15 are the major responsible HSP genes in Tunisia.
Collapse
Affiliation(s)
- A Boukhris
- Department of Neurology, Habib Bourguiba University Hospital, Sfax, Tunisia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Erichsen A, Server A, Landrø N, Sandvik L, Tallaksen C. Proton magnetic resonance spectroscopy and cognition in patients with spastin mutations. J Neurol Sci 2009; 277:124-9. [DOI: 10.1016/j.jns.2008.10.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 09/26/2008] [Accepted: 10/31/2008] [Indexed: 11/16/2022]
|
47
|
List of references. Acta Neurol Scand 2009. [DOI: 10.1111/j.1600-0404.1986.tb02589.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Shoukier M, Neesen J, Sauter SM, Argyriou L, Doerwald N, Pantakani DVK, Mannan AU. Expansion of mutation spectrum, determination of mutation cluster regions and predictive structural classification of SPAST mutations in hereditary spastic paraplegia. Eur J Hum Genet 2008; 17:187-94. [PMID: 18701882 DOI: 10.1038/ejhg.2008.147] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The SPAST gene encoding for spastin plays a central role in the genetically heterogeneous group of diseases termed hereditary spastic paraplegia (HSP). In this study, we attempted to expand and refine the genetic and phenotypic characteristics of SPAST associated HSP by examining a large cohort of HSP patients/families. Screening of 200 unrelated HSP cases for mutations in the SPAST gene led to detection of 57 mutations (28.5%), of which 47 were distinct and 29 were novel mutations. The distribution analysis of known SPAST mutations over the structural domains of spastin led to the identification of several regions where the mutations were clustered. Mainly, the clustering was observed in the AAA (ATPases associated with diverse cellular activities) domain; however, significant clustering was also observed in the MIT (microtubule interacting and trafficking), MTBD (microtubule-binding domain) and an N-terminal region (228-269 residues). Furthermore, we used a previously generated structural model of spastin as a framework to classify the missense mutations in the AAA domain from the HSP patients into different structural/functional groups. Our data also suggest a tentative genotype-phenotype correlation and indicate that the missense mutations could cause an earlier onset of the disease.
Collapse
Affiliation(s)
- Moneef Shoukier
- Institute of Human Genetics, University of Goettingen, Goettingen, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Serranová T, Valls-Solé J, Muñoz E, Genís D, Jech R, Seeman P. Abnormal corticospinal tract modulation of the soleus H reflex in patients with pure spastic paraparesis. Neurosci Lett 2008; 437:15-9. [DOI: 10.1016/j.neulet.2008.03.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 03/09/2008] [Accepted: 03/25/2008] [Indexed: 11/30/2022]
|