1
|
Park C, Yoon H. The effectiveness of core stabilization exercise using ultrasound biofeedback on motor function, balance control, gait speed and activities of daily living in stroke patients. Technol Health Care 2024; 32:477-486. [PMID: 38759070 PMCID: PMC11191446 DOI: 10.3233/thc-248042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
BACKGROUND Patients with hemiparetic stroke experience diminished motor function, dynamic balance, and gait speed, which influence their activities of daily living (ADL). OBJECTIVE This study aimed to determine the therapeutic effects of ultrasound biofeedback core exercise (UBCE) on Fugl-Meyer assessment (FMA), Time up and go (TUG), 10-meter walking test (10MWT) and functional independent measure (FIM) in participants with stroke. METHODS Twenty-four stroke survivors consistently underwent UBCE or abdominal draw-in maneuver (ADIM) for 30 min/session, 3 days a week for 4 weeks. Clinical outcome measurements - the FMA, TUG, 10MWT, and FIM - were observed pre-and post-intervention. RESULTS We detected significant changes in the FMA-lower extremities, TUG, 10MWT, and FIM scores between the UBCE and ADIM groups. UBCE and ADIM showed significant improvements in FMA-lower extremities, TUG, 10MWT, and FIM scores. However, UBCE showed more favorable results than ADIM in patients with stroke. CONCLUSIONS Our research provides novel therapeutic suggestion of neurorehabilitation in stroke patients.
Collapse
Affiliation(s)
- Chanhee Park
- Department of Physical Therapy, Yonsei University, Wonju, Korea
| | - Hyunsik Yoon
- Department of Physical Therapy, Chungnam National University Hospital, Daejeon, Korea
| |
Collapse
|
2
|
Haque ME, Gabr RE, George SD, Zhao X, Boren SB, Zhang X, Ting SM, Sun G, Hasan KM, Savitz S, Aronowski J. Serial Metabolic Evaluation of Perihematomal Tissues in the Intracerebral Hemorrhage Pig Model. Front Neurosci 2019; 13:888. [PMID: 31496934 PMCID: PMC6712426 DOI: 10.3389/fnins.2019.00888] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose Perihematomal edema (PHE) occurs in patients with intracerebral hemorrhage (ICH) and is often used as surrogate of secondary brain injury. PHE resolves over time, but little is known about the functional integrity of the tissues that recover from edema. In a pig ICH model, we aimed to assess metabolic integrity of perihematoma tissues by using non-invasive magnetic resonance spectroscopy (MRS). Materials and Methods Fourteen male Yorkshire pigs with an average age of 8 weeks were intracerebrally injected with autologous blood to produce ICH. Proton MRS data were obtained at 1, 7, and 14 days after ICH using a whole-body 3.0T MRI system. Point-resolved spectroscopy (PRESS)-localized 2D chemical shift imaging (CSI) was acquired. The concentration of N-Acetylaspartate (NAA), Choline (Cho), and Creatine (Cr) were measured within the area of PHE, tissues adjacent to the injury with no or negligible edema (ATNE), and contralesional brain tissue. A linear mixed model was used to analyze the evolution of metabolites in perihematomal tissues, with p-value < 0.05 indicating statistical significance. Results The perihematoma volume gradually decreased from 2.38 ± 1.23 ml to 0.41 ± 0.780 ml (p < 0.001) over 2 weeks. Significant (p < 0.001) reductions in NAA, Cr, and Cho concentrations were found in the PHE and ATNE regions compared to the contralesional hemisphere at day 1 and 7 after ICH. All three metabolites were significantly (p < 0.001) restored in the PHE tissue on day 14, but remained persistently low in the ATNE area, and unaltered in the contralesional voxel. Conclusion This study highlights the potential of MRS to probe salvageable tissues within the perihematoma in the sub-acute phase of ICH. Altered metabolites within the PHE and ATNE regions in addition to edema and hematoma volumes were explored as possible markers for tissue recovery. Perihematomal tissue with PHE demonstrated a more reversible injury compared to the tissue adjacent to the injury without edema, suggesting a potentially beneficial role of edema.
Collapse
Affiliation(s)
- Muhammad E Haque
- Institute for Stroke and Cerebrovascular Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Refaat E Gabr
- Diagnostic and Interventional Imaging, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sarah D George
- Institute for Stroke and Cerebrovascular Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiurong Zhao
- Institute for Stroke and Cerebrovascular Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Seth B Boren
- Institute for Stroke and Cerebrovascular Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xu Zhang
- Biostatistics, Epidemiology, and Research Design Component, Center for Clinical and Translational Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Shun-Ming Ting
- Institute for Stroke and Cerebrovascular Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Gunghua Sun
- Institute for Stroke and Cerebrovascular Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Khader M Hasan
- Diagnostic and Interventional Imaging, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sean Savitz
- Institute for Stroke and Cerebrovascular Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jaroslaw Aronowski
- Institute for Stroke and Cerebrovascular Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
3
|
El-Nashar H, ElWishy A, Helmy H, El-Rwainy R. Do core stability exercises improve upper limb function in chronic stroke patients? THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2019. [DOI: 10.1186/s41983-019-0087-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
4
|
Haque ME, Gabr RE, George SD, Boren SB, Vahidy FS, Zhang X, Arevalo OD, Alderman S, Narayana PA, Hasan KM, Friedman ER, Sitton CW, Savitz SI. Serial Cerebral Metabolic Changes in Patients With Ischemic Stroke Treated With Autologous Bone Marrow Derived Mononuclear Cells. Front Neurol 2019; 10:141. [PMID: 30858820 PMCID: PMC6397870 DOI: 10.3389/fneur.2019.00141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/04/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose: Cell-based therapy offers new opportunities for the development of novel treatments to promote tissue repair, functional restoration, and cerebral metabolic balance. N-acetylasperate (NAA), Choline (Cho), and Creatine (Cr) are three major metabolites seen on proton magnetic resonance spectroscopy (MRS) that play a vital role in balancing the biochemical processes and are suggested as markers of recovery. In this preliminary study, we serially monitored changes in these metabolites in ischemic stroke patients who were treated with autologous bone marrow-derived mononuclear cells (MNCs) using non-invasive MRS. Materials and Methods: A sub-group of nine patients (3 male, 6 female) participated in a serial MRS study, as part of a clinical trial on autologous bone marrow cell therapy in acute ischemic stroke. Seven to ten million mononuclear cells were isolated from the patient's bone marrow and administered intravenously within 72 h of onset of injury. MRS data were obtained at 1, 3, and 6 months using a whole-body 3.0T MRI. Single voxel point-resolved spectroscopy (PRESS) was obtained within the lesion and contralesional gray matter. Spectral analysis was done using TARQUIN software and absolute concentration of NAA, Cho, and Cr was determined. National Institute of Health Stroke Scale (NIHSS) was serially recoreded. Two-way analysis of variance was performed and p < 0.05 considered statistically significant. Results: All metabolites showed statistically significant or clear trends toward lower ipsilesional concentrations compared to the contralesional side at all time points. Statistically significant reductions were found in ipsilesional NAA at 1M and 3M, Cho at 6M, and Cr at 1M and 6M (p < 0.03), compared to the contralesional side. Temporally, ipsilesional NAA increased between 3M and 6M (p < 0.01). On the other hand, ipsilesional Cho showed continued decline till 6M (p < 0.01). Ipsilesional Cr was stable over time. Contralesional metabolites were relatively stable over time, with only Cr showing a reduction 3M (p < 0.02). There was a significant (p < 0.03) correlation between ipsilesional NAA and NIHSS at 3M follow-up. Conclusion: Serial changes in metabolites suggest that MRS can be applied to monitor therapeutic changes. Post-treatment increasing trends of NAA concentration and significant correlation with NIHSS support a potential therapeutic effect.
Collapse
Affiliation(s)
- Muhammad E Haque
- Institute for Stroke and Cerebrovascular Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Refaat E Gabr
- Diagnostic and Interventional Imaging, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sarah D George
- Institute for Stroke and Cerebrovascular Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Seth B Boren
- Institute for Stroke and Cerebrovascular Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Farhaan S Vahidy
- Institute for Stroke and Cerebrovascular Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xu Zhang
- Biostatistics, Epidemiology, Research Design Component, Center for Clinical and Translational Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Octavio D Arevalo
- Diagnostic and Interventional Imaging, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Susan Alderman
- Institute for Stroke and Cerebrovascular Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ponnada A Narayana
- Diagnostic and Interventional Imaging, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Khader M Hasan
- Diagnostic and Interventional Imaging, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Elliott R Friedman
- Diagnostic and Interventional Imaging, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Clark W Sitton
- Diagnostic and Interventional Imaging, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sean I Savitz
- Institute for Stroke and Cerebrovascular Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
5
|
Carlson HL, MacMaster FP, Harris AD, Kirton A. Spectroscopic biomarkers of motor cortex developmental plasticity in hemiparetic children after perinatal stroke. Hum Brain Mapp 2017; 38:1574-1587. [PMID: 27859933 PMCID: PMC6866903 DOI: 10.1002/hbm.23472] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 10/20/2016] [Accepted: 11/07/2016] [Indexed: 01/26/2023] Open
Abstract
Perinatal stroke causes hemiparetic cerebral palsy and lifelong motor disability. Bilateral motor cortices are key hubs within the motor network and their neurophysiology determines clinical function. Establishing biomarkers of motor cortex function is imperative for developing and evaluating restorative interventional strategies. Proton magnetic resonance spectroscopy (MRS) quantifies metabolite concentrations indicative of underlying neuronal health and metabolism in vivo. We used functional magnetic resonance imaging (MRI)-guided MRS to investigate motor cortex metabolism in children with perinatal stroke. Children aged 6-18 years with MRI-confirmed perinatal stroke and hemiparetic cerebral palsy were recruited from a population-based cohort. Metabolite concentrations were assessed using a PRESS sequence (3T, TE = 30 ms, voxel = 4 cc). Voxel location was guided by functional MRI activations during finger tapping tasks. Spectra were analysed using LCModel. Metabolites were quantified, cerebral spinal fluid corrected and compared between groups (ANCOVA) controlling for age. Associations with clinical motor performance (Assisting Hand, Melbourne, Box-and-Blocks) were assessed. Fifty-two participants were studied (19 arterial, 14 venous, 19 control). Stroke participants demonstrated differences between lesioned and nonlesioned motor cortex N-acetyl-aspartate [NAA mean concentration = 10.8 ± 1.9 vs. 12.0 ± 1.2, P < 0.01], creatine [Cre 8.0 ± 0.9 vs. 7.4 ± 0.9, P < 0.05] and myo-Inositol [Ins 6.5 ± 0.84 vs. 5.8 ± 1.1, P < 0.01]. Lesioned motor cortex NAA and creatine were strongly correlated with motor performance in children with arterial but not venous strokes. Interrogation of motor cortex by fMRI-guided MRS is feasible in children with perinatal stroke. Metabolite differences between hemispheres, stroke types and correlations with motor performance support functional relevance. MRS may be valuable in understanding the neurophysiology of developmental neuroplasticity in cerebral palsy. Hum Brain Mapp 38:1574-1587, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Helen L. Carlson
- Calgary Pediatric Stroke ProgramAlberta Children's HospitalCalgaryABCanada
- Alberta Children's Hospital Research Institute (ACHRI)ABCanadaCalgary
- NeurosciencesAlberta Children's HospitalCalgaryABCanada
- Department of PediatricsUniversity of CalgaryCalgaryABCanada
| | - Frank P. MacMaster
- Alberta Children's Hospital Research Institute (ACHRI)ABCanadaCalgary
- Department of PediatricsUniversity of CalgaryCalgaryABCanada
- Hotchkiss Brain Institute, University of CalgaryCalgaryABCanada
- Department of PsychiatryUniversity of CalgaryABCanada
- The Mathison Centre for Mental Health Research and Education, University of CalgaryCalgaryABCanada
- Child and Adolescent Imaging Research (CAIR) Programs, Alberta Children's HospitalCalgaryABCanada
- Strategic Clinical Network for Addictions and Mental HealthAlberta Health ServicesCalgaryABCanada
| | - Ashley D. Harris
- Alberta Children's Hospital Research Institute (ACHRI)ABCanadaCalgary
- Hotchkiss Brain Institute, University of CalgaryCalgaryABCanada
- Child and Adolescent Imaging Research (CAIR) Programs, Alberta Children's HospitalCalgaryABCanada
- Department of RadiologyUniversity of CalgaryCalgaryABCanada
| | - Adam Kirton
- Calgary Pediatric Stroke ProgramAlberta Children's HospitalCalgaryABCanada
- Alberta Children's Hospital Research Institute (ACHRI)ABCanadaCalgary
- NeurosciencesAlberta Children's HospitalCalgaryABCanada
- Department of PediatricsUniversity of CalgaryCalgaryABCanada
- Hotchkiss Brain Institute, University of CalgaryCalgaryABCanada
| |
Collapse
|
6
|
Cirstea CM, Savage CR, Nudo RJ, Cohen LG, Yeh HW, Choi IY, Lee P, Craciunas SC, Popescu EA, Bani-Ahmed A, Brooks WM. Handgrip-Related Activation in the Primary Motor Cortex Relates to Underlying Neuronal Metabolism After Stroke. Neurorehabil Neural Repair 2013; 28:433-42. [PMID: 24376066 DOI: 10.1177/1545968313516868] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Abnormal task-related activation in primary motor cortices (M1) has been consistently found in functional imaging studies of subcortical stroke. Whether the abnormal activations are associated with neuronal alterations in the same or homologous area is not known. OBJECTIVE Our goal was to establish the relationships between M1 measures of motor-task-related activation and a neuronal marker, N-acetylaspartate (NAA), in patients with severe to mild hemiparesis. METHODS A total of 18 survivors of an ischemic subcortical stroke (confirmed on T2-weighted images) at more than six months post-onset and 16 age- and sex-matched right-handed healthy controls underwent functional MRI during a handgrip task (impaired hand in patients, dominant hand in controls) and proton magnetic resonance spectroscopy ((1)H-MRS) imaging. Spatial extent and magnitude of blood oxygen level-dependent response (or activation) and NAA levels were measured in each M1. Relationships between activation and NAA were determined. RESULTS Compared with controls, patients had a greater extent of contralesional (ipsilateral to impaired hand, P < .001) activation and a higher magnitude of activation and lower NAA in both ipsilesional (P = .008 and P < .001, respectively) and contralesional (P < .0001, P < .05) M1. There were significant negative correlations between extent of activation and NAA in each M1 (P = .02) and a trend between contralesional activation and ipsilesional NAA (P = .08) in patients but not in controls. CONCLUSIONS Our results suggest that after stroke greater neuronal recruitment could be a compensatory response to lower neuronal metabolism. Thus, dual-modality imaging may be a powerful tool for providing complementary probes of post-stroke brain reorganization.
Collapse
Affiliation(s)
| | - Cary R Savage
- University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Leonardo G Cohen
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Hung-Wen Yeh
- University of Kansas Medical Center, Kansas City, KS, USA
| | - In-Young Choi
- University of Kansas Medical Center, Kansas City, KS, USA
| | - Phil Lee
- University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | - Ali Bani-Ahmed
- University of Kansas Medical Center, Kansas City, KS, USA
| | | |
Collapse
|
7
|
Craciunas SC, Brooks WM, Nudo RJ, Popescu EA, Choi IY, Lee P, Yeh HW, Savage CR, Cirstea CM. Motor and premotor cortices in subcortical stroke: proton magnetic resonance spectroscopy measures and arm motor impairment. Neurorehabil Neural Repair 2013; 27:411-20. [PMID: 23300210 DOI: 10.1177/1545968312469835] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although functional imaging and neurophysiological approaches reveal alterations in motor and premotor areas after stroke, insights into neurobiological events underlying these alterations are limited in human studies. OBJECTIVE We tested whether cerebral metabolites related to neuronal and glial compartments are altered in the hand representation in bilateral motor and premotor areas and correlated with distal and proximal arm motor impairment in hemiparetic persons. METHODS In 20 participants at >6 months postonset of a subcortical ischemic stroke and 16 age- and sex-matched healthy controls, the concentrations of N-acetylaspartate and myo-inositol were quantified by proton magnetic resonance spectroscopy. Regions of interest identified by functional magnetic resonance imaging included primary (M1), dorsal premotor (PMd), and supplementary (SMA) motor areas. Relationships between metabolite concentrations and distal (hand) and proximal (shoulder/elbow) motor impairment using Fugl-Meyer Upper Extremity (FMUE) subscores were explored. RESULTS N-Acetylaspartate was lower in M1 (P = .04) and SMA (P = .004) and myo-inositol was higher in M1 (P = .003) and PMd (P = .03) in the injured (ipsilesional) hemisphere after stroke compared with the left hemisphere in controls. N-Acetylaspartate in ipsilesional M1 was positively correlated with hand FMUE subscores (P = .04). Significant positive correlations were also found between N-acetylaspartate in ipsilesional M1, PMd, and SMA and in contralesional M1 and shoulder/elbow FMUE subscores (P = .02, .01, .02, and .02, respectively). CONCLUSIONS Our preliminary results demonstrated that proton magnetic resonance spectroscopy is a sensitive method to quantify relevant neuronal changes in spared motor cortex after stroke and consequently increase our knowledge of the factors leading from these changes to arm motor impairment.
Collapse
|
8
|
Neuronal-glial alterations in non-primary motor areas in chronic subcortical stroke. Brain Res 2012; 1463:75-84. [PMID: 22575560 DOI: 10.1016/j.brainres.2012.04.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 04/18/2012] [Accepted: 04/28/2012] [Indexed: 11/22/2022]
Abstract
Whether functional changes of the non-primary motor areas, e.g., dorsal premotor (PMd) and supplementary motor (SMA) areas, after stroke, reflect reorganization phenomena or recruitment of a pre-existing motor network remains to be clarified. We hypothesized that cellular changes in these areas would be consistent with their involvement in post-stroke reorganization. Specifically, we expected that neuronal and glial compartments would be altered in radiologically normal-appearing, i.e., spared, PMd and SMA in patients with arm paresis. Twenty survivors of a single ischemic subcortical stroke and 16 age-matched healthy controls were included. At more than six months after stroke, metabolites related to neuronal and glial compartments: N-acetylaspartate, myo-inositol, and glutamate/glutamine, were quantified by proton magnetic resonance spectroscopy in PMd and SMA in both injured (ipsilesional) and un-injured (contralesional) hemispheres. Correlations between metabolites were also calculated. Finally, relationships between metabolite concentrations and arm motor impairment (total and proximal Fugl-Meyer Upper Extremity, FMUE, scores) were analyzed. Compared to controls, stroke survivors showed significantly higher ipsilesional PMd myo-inositol and lower SMA N-acetylaspartate. Significantly lower metabolite correlations were found between ipsilesional and contralesional SMA. Ipsilesional N-acetylaspartate was significantly related to proximal FMUE scores. This study provides evidence of abnormalities in metabolites, specific to neuronal and glial compartments, across spared non-primary motor areas. Ipsilesional alterations were related to proximal arm motor impairment. Our results suggest the involvement of these areas in post-stroke reorganization.
Collapse
|
9
|
Cirstea CM, Brooks WM, Craciunas SC, Popescu EA, Choi IY, Lee P, Bani-Ahmed A, Yeh HW, Savage CR, Cohen LG, Nudo RJ. Primary motor cortex in stroke: a functional MRI-guided proton MR spectroscopic study. Stroke 2011; 42:1004-9. [PMID: 21330627 DOI: 10.1161/strokeaha.110.601047] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Our goal was to investigate whether certain metabolites, specific to neurons, glial cells, or the neuronal-glial neurotransmission system, in primary motor cortices (M1), are altered and correlated with clinical motor severity in chronic stroke. METHODS Fourteen survivors of a single ischemic stroke located outside the M1 and 14 age-matched healthy control subjects were included. At >6 months after stroke, N-acetylaspartate, myo-inositol, and glutamate/glutamine were measured using proton magnetic resonance spectroscopic imaging (in-plane resolution=5×5 mm(2)) in radiologically normal-appearing gray matter of the hand representation area, identified by functional MRI, in each M1. Metabolite concentrations and analyses of metabolite correlations within M1 were determined. Relationships between metabolite concentrations and arm motor impairment were also evaluated. RESULTS The stroke survivors showed lower N-acetylaspartate and higher myo-inositol across ipsilesional and contralesional M1 compared with control subjects. Significant correlations between N-acetylaspartate and glutamate/glutamine were found in either M1. Ipsilesional N-acetylaspartate and glutamate/glutamine were positively correlated with arm motor impairment and contralesional N-acetylaspartate with time after stroke. CONCLUSIONS Our preliminary data demonstrated significant alterations of neuronal-glial interactions in spared M1 with the ipsilesional alterations related to stroke severity and contralesional alterations to stroke duration. Thus, MR spectroscopy might be a sensitive method to quantify relevant metabolite changes after stroke and consequently increase our knowledge of the factors leading from these changes in spared motor cortex to motor impairment after stroke.
Collapse
Affiliation(s)
- Carmen M Cirstea
- Hoglund Brain Imaging Center, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 1052, Kansas City, KS 66160, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Stępień M, Conradi J, Waterstraat G, Hohlefeld FU, Curio G, Nikulin VV. Event-related desynchronization of sensorimotor EEG rhythms in hemiparetic patients with acute stroke. Neurosci Lett 2010; 488:17-21. [PMID: 21056625 DOI: 10.1016/j.neulet.2010.10.072] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 10/21/2010] [Accepted: 10/29/2010] [Indexed: 10/18/2022]
Abstract
Previous neuroimaging studies based on neurovascular coupling have shown that stroke affects both, strength and spatial extent of brain activation during upper limb movements. Here, we investigated the sub-second amplitude dynamics of a direct neuronal measure, i.e., event-related desynchronization (ERD) of EEG oscillations during finger movements, in patients with acute cortical and subcortical stroke. Acute cortical strokes were found to decrease the ERD of alpha oscillations for the affected pericentral sensorimotor areas compared to a control group. Within the cortical stroke group, the affected hemisphere showed a smaller alpha-ERD compared to the unaffected hemisphere when each was contralateral to the acting hand. Furthermore, when cortical stroke patients moved their paretic hand, the ipsilateral (i.e., contralesional) alpha-ERD was stronger than the contralateral (ipsilesional) ERD. Interestingly, the alpha-ERD amplitude in a hemisphere with a cortical stroke was relatively well preserved for non-paretic hand movements compared to alpha-ERD amplitude for paretic hand movements. This finding provides a new perspective for assessing the rehabilitative potential, which could be utilized through training of the still responsive cortical network, e.g., via enforced use of the paretic hand.
Collapse
Affiliation(s)
- Magdalena Stępień
- Neurophysics Group, Department of Neurology, Charité University Medicine Berlin, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Glodzik-Sobanska L, Slowik A, Kieltyka A, Kozub J, Sobiecka B, Urbanik A, Szczudlik A. Reduced prefrontal N-acetylaspartate in stroke patients with apathy. J Neurol Sci 2005; 238:19-24. [PMID: 16084528 DOI: 10.1016/j.jns.2005.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 05/05/2005] [Accepted: 06/02/2005] [Indexed: 11/15/2022]
Abstract
BACKGROUND Although substantial numbers of stroke patients suffer from apathy, its causes are still poorly understood. Previous studies suggest that dysfunction of the frontal lobes is implicated in the pathophysiology of motivation. Our aim was to investigate the association between proton magnetic resonance spectroscopy (H1-MRS) measurements in unaffected frontal lobes and apathy in a group of first-time stroke patients. METHODS 31 patients with a first-time ischemic stroke located outside the frontal lobes and 20 healthy subjects were included in the study. The authors performed single voxel H1-MRS in order to measure the N-acetylaspartate/creatine (NAA)/Cr, glutamate+glutamine (Glx)/Cr, choline (Cho)/Cr and myo-inositol (mI)/Cr ratios in the frontal lobes. Patients were assessed between days 7 and 12 post stroke. Diagnosis of apathy was made on the basis of clinical observation, interview and Apathy Scale. RESULTS 13 out of 31 patients (42%) demonstrated apathy. Patients with apathy had lower NAA/Cr ratios in the right frontal lobe than non-apathetic subjects. The patient group was divided into two subgroups: Those with left hemisphere strokes, and those with right hemisphere strokes. Of these subjects, significantly lowered NAA/Cr ratios were found in the right hemispheres of apathetic patients in the subgroup with left-sided brain lesions. CONCLUSIONS These findings point to the association between apathy and frontal lobe integrity, suggest different reactions of the hemispheres and indicate that changes in the NAA/Cr ratio are related to the apathy.
Collapse
Affiliation(s)
- Lidia Glodzik-Sobanska
- Center for Brain Health, NYU School of Medicine, 550 First Avenue, HN-400, NY 10016-6481, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Ross AJ, Sachdev PS, Wen W, Valenzuela MJ, Brodaty H. 1H MRS in stroke patients with and without cognitive impairment. Neurobiol Aging 2005; 26:873-82. [PMID: 15718046 DOI: 10.1016/j.neurobiolaging.2004.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Revised: 04/20/2004] [Accepted: 07/28/2004] [Indexed: 11/21/2022]
Abstract
The pathophysiological basis of cognitive impairment in patients with cerebrovascular disease (CVD) is not well understood, particularly in relation to the role of non-infarction ischemic change and associated Alzheimer-type pathology. We used single voxel 1H MRS to determine the differences in brain neurometabolites in non-infarcted frontal white matter and occipito-parietal gray matter of 48 stroke patients with or without cognitive impairment and 60 elderly controls. The results showed that there were no significant neurometabolite differences between the stroke cohort and healthy elderly controls, but there was a difference in NAA/H2O between the stroke patients that had cognitive impairment (vascular dementia (VaD) and vascular cognitive impairment (VCI)) compared with those patients with no impairment. This was significant in the occipito-parietal gray matter, but not in the frontal white matter, although the results were in the same direction for the latter. This suggests that cognitive impairment in stroke patients may be related to cortical neuronal dysfunction rather than purely subcortical change. Moreover, cortical regions not obviously infarcted may have dysfunctional neurons, the pathophysiological basis for which needs further study.
Collapse
Affiliation(s)
- A J Ross
- School of Psychiatry, University of New South Wales, Sydney, Australia
| | | | | | | | | |
Collapse
|
13
|
|
14
|
Flemming K, Ulmer S, Duisberg B, Hahn A, Jansen O. MR spectroscopic findings in a case of Alpers-Huttenlocher syndrome. AJNR Am J Neuroradiol 2002; 23:1421-3. [PMID: 12223390 PMCID: PMC7976260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Alpers-Huttenlocher syndrome, considered a mitochondrial disease, combines encephalopathy and liver failure. An 11-year-old boy with Alpers-Huttenlocher syndrome underwent conventional MR imaging, diffusion-weighted imaging, and proton MR spectroscopy. Diffusion-weighted imaging showed cytotoxic edema interpreted as acute-phase encephalopathy. MR spectroscopy revealed a lactate peak in the cortex that appeared abnormal on diffusion-weighted images, possibly representing respiratory deficiency with anaerobic metabolism. MR spectroscopy proved to be more sensitive regarding lactate detection than did neurometabolic examination of serum and CSF. A reduced N-acetylaspartate-creatine ratio was detected in both the cortex that appeared abnormal and the cortex that appeared normal on the diffusion-weighted images, indicating neuronal damage that was widespread, even beyond the boundaries of conventional MR imaging changes.
Collapse
Affiliation(s)
- Katharina Flemming
- Section of Neuroradiology, Clinic of Neurosurgery, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | | | | | | | | |
Collapse
|
15
|
Phan TG, Wright PM, Markus R, Howells DW, Davis SM, Donnan GA. Salvaging the ischaemic penumbra: more than just reperfusion? Clin Exp Pharmacol Physiol 2002; 29:1-10. [PMID: 11917903 DOI: 10.1046/j.1440-1681.2002.03609.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
1. The ischaemic penumbra is defined as a moderately hypoperfused region that retains structural integrity but has lost function. In animal models of ischaemic stroke, this region is prone to recurrent anoxic depolarization and will become infarcted if reperfusion does not occur. In the macaque model, an ischaemic penumbra has been identified for up to 3 h after ischaemic stroke onset, whereas in selected human patients it may exist for up to 48 h. 2. Although most definitions of the ischaemic penumbra stress a time-brain volume concept, few incorporate the idea that selective and delayed neuronal injury plays an important role. Thus, in addition to necrotic cell death caused by acute injury, it is important to also consider delayed death mediated by caspase-dependent and -independent apoptotic pathways. 3. Salvage of penumbral tissue is possible if reperfusion (e.g. after thrombolysis) occurs. However, neurons within this salvaged region may be still at risk of further delayed neuronal injury. 4. In the present review, we aim to revisit the concept of the ischaemic penumbra and explore the role of selective and delayed neuronal injury in enlargement of the volume of infarction, as well as pathogenic mechanisms of white matter ischaemia. Both animal and human models of cerebral ischaemia imaged using magnetic resonance and positron emission tomography techniques will be discussed.
Collapse
Affiliation(s)
- Thanh G Phan
- National Stroke Research Institute, West Heidelberg, Victoria, Australia
| | | | | | | | | | | |
Collapse
|