1
|
Rashed HR, Milone M. The spectrum of rippling muscle disease. Muscle Nerve 2024. [PMID: 39370631 DOI: 10.1002/mus.28270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024]
Abstract
Rippling muscle disease (RMD) is a rare disorder of muscle hyperexcitability. It is characterized by rippling wave-like muscle contractions induced by mechanical stretch or voluntary contraction followed by sudden stretch, painful muscle stiffness, percussion-induced rapid muscle contraction (PIRC), and percussion-induced muscle mounding (PIMM). RMD can be hereditary (hRMD) or immune-mediated (iRMD). hRMD is caused by pathogenic variants in caveolin-3 (CAV3) or caveolae-associated protein 1/ polymerase I and transcript release factor (CAVIN1/PTRF). CAV3 pathogenic variants are autosomal dominant or less frequently recessive while CAVIN1/PTRF pathogenic variants are autosomal recessive. CAV3-RMD manifests with a wide spectrum of clinical phenotypes, ranging from asymptomatic creatine kinase elevation to severe muscle weakness. Overlapping phenotypes are common. Muscle caveolin-3 immunoreactivity is often absent or diffusely reduced in CAV3-RMD. CAVIN1/PTRF-RMD is characterized by congenital generalized lipodystrophy (CGL, type 4) and often accompanied by several extra-skeletal muscle manifestations. Muscle cavin-1/PTRF immunoreactivity is absent or reduced while caveolin-3 immunoreactivity is reduced, often in a patchy way, in CAVIN1/PTRF-RMD. iRMD is often accompanied by other autoimmune disorders, including myasthenia gravis. Anti-cavin-4 antibodies are the serological marker while the mosaic expression of caveolin-3 and cavin-4 is the pathological feature of iRMD. Most patients with iRMD respond to immunotherapy. Rippling, PIRC, and PIMM are usually electrically silent. Different pathogenic mechanisms have been postulated to explain the disease mechanisms. In this article, we review the spectrum of hRMD and iRMD, including clinical phenotypes, electrophysiological characteristics, myopathological findings, and pathogenesis.
Collapse
|
2
|
A Role for Caveolin-3 in the Pathogenesis of Muscular Dystrophies. Int J Mol Sci 2020; 21:ijms21228736. [PMID: 33228026 PMCID: PMC7699313 DOI: 10.3390/ijms21228736] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Caveolae are the cholesterol-rich small invaginations of the plasma membrane present in many cell types including adipocytes, endothelial cells, epithelial cells, fibroblasts, smooth muscles, skeletal muscles and cardiac muscles. They serve as specialized platforms for many signaling molecules and regulate important cellular processes like energy metabolism, lipid metabolism, mitochondria homeostasis, and mechano-transduction. Caveolae can be internalized together with associated cargo. The caveolae-dependent endocytic pathway plays a role in the withdrawal of many plasma membrane components that can be sent for degradation or recycled back to the cell surface. Caveolae are formed by oligomerization of caveolin proteins. Caveolin-3 is a muscle-specific isoform, whose malfunction is associated with several diseases including diabetes, cancer, atherosclerosis, and cardiovascular diseases. Mutations in Caveolin-3 are known to cause muscular dystrophies that are collectively called caveolinopathies. Altered expression of Caveolin-3 is also observed in Duchenne’s muscular dystrophy, which is likely a part of the pathological process leading to muscle weakness. This review summarizes the major functions of Caveolin-3 in skeletal muscles and discusses its involvement in the pathology of muscular dystrophies.
Collapse
|
3
|
Finsterer J, Scorza FA, Scorza CA. Significance of Asymptomatic Hyper Creatine-Kinase Emia. J Clin Neuromuscul Dis 2019; 21:90-102. [PMID: 31743252 DOI: 10.1097/cnd.0000000000000269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
OBJECTIVES Whether asymptomatic hyper-CKemia (AHCE) should prompt a thorough work-up for muscle disease or not is controversially discussed. This review aims at summarizing and discussing recent findings concerning the cause, frequency, evolution, and work-up of conditions manifesting as AHCE and normal or abnormal electromyography (EMG) respectively muscle biopsy. METHODS Systematic PubMed search. RESULTS There are numerous primary (hereditary) and acquired myopathies that manifest with permanent, recurrent, or temporary AHCE with/without myopathic EMG or muscle biopsy. AHCE particularly occurs at onset of these conditions, which include dystrophinopathies, myotilinopathies, calpainopathy, caveolinopathy, dysferlinopathy, central core disease, multicore disease, desminopathy, MD1, MD2, hypoPP, malignant hyperthermia susceptibility, Pompe disease, McArdle disease, myoadenylate deaminase-deficiency, CPT2-deficiency, mitochondrial disorders, or myopathy with tubular aggregates. Most likely, other primary myopathies manifest with AHCE as well, without having been reported. Patients with AHCE should be taken seriously and repeated CK determination must be conducted. If hyper-CKemia is persisting or recurrent, these patients should undergo an EMG and eventually muscle biopsy. If noninformative, genetic work-up by a panel or whole exome sequencing should be initiated, irrespective of the family history. Patients with AHCE should avoid excessive exercise, require sufficient hydration, require counseling with regard to the risk of malignant hyperthermia, and should inform anesthesiologists and surgeons about their condition before elective surgery. CONCLUSIONS Recurrent AHCE should be taken seriously and managed with conventional work-up. If noninformative, genetic work-up should follow irrespective of the family history.
Collapse
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Vienna, Austria
| | - Fulvio A Scorza
- Disciplina de Neurociência, Escola Paulista de Medicine/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - Carla A Scorza
- Disciplina de Neurociência, Escola Paulista de Medicine/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
| |
Collapse
|
4
|
Dystrophy-associated caveolin-3 mutations reveal that caveolae couple IL6/STAT3 signaling with mechanosensing in human muscle cells. Nat Commun 2019; 10:1974. [PMID: 31036801 PMCID: PMC6488599 DOI: 10.1038/s41467-019-09405-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 02/27/2019] [Indexed: 12/14/2022] Open
Abstract
Caveolin-3 is the major structural protein of caveolae in muscle. Mutations in the CAV3 gene cause different types of myopathies with altered membrane integrity and repair, expression of muscle proteins, and regulation of signaling pathways. We show here that myotubes from patients bearing the CAV3 P28L and R26Q mutations present a dramatic decrease of caveolae at the plasma membrane, resulting in abnormal response to mechanical stress. Mutant myotubes are unable to buffer the increase in membrane tension induced by mechanical stress. This results in impaired regulation of the IL6/STAT3 signaling pathway leading to its constitutive hyperactivation and increased expression of muscle genes. These defects are fully reversed by reassembling functional caveolae through expression of caveolin-3. Our study reveals that under mechanical stress the regulation of mechanoprotection by caveolae is directly coupled with the regulation of IL6/STAT3 signaling in muscle cells and that this regulation is absent in Cav3-associated dystrophic patients. Caveolae are mechanosensors and mutations of their coat proteins are implicated in muscle disorders, but molecular mechanisms are unclear. Here, the authors show that caveolae can regulate IL6/STAT3 signaling in muscle cells under stress, and that dystrophy related Cav3 mutant myotubes have reduced caveolae and upregulated IL6 signaling.
Collapse
|
5
|
Chitranshi N, Dheer Y, Wall RV, Gupta V, Abbasi M, Graham SL, Gupta V. Computational analysis unravels novel destructive single nucleotide polymorphisms in the non-synonymous region of human caveolin gene. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2016.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Klinis S, Symeonidis A, Karanasios D, Symvoulakis EK. Asymptomatic hyperCKemia during a two-year monitoring period: A case report and literature overview. Biomed Rep 2017; 6:79-82. [PMID: 28123712 DOI: 10.3892/br.2016.822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/18/2016] [Indexed: 11/05/2022] Open
Abstract
High creatine kinase (CK) levels can be associated with many disorders, including neuromuscular, cardiac, metabolic, endocrine and traumatic. Idiopathic hyperCKemia is a diagnostic dilemma for physicians even though its long-term prognosis is usually benign. We report a case of a Caucasian 61-year-old woman who presented as completely asymptomatic to her general practitioner with a serum CK (sCK) level at 6,122 IU/l. A complete diagnostic evaluation, including physical and laboratory examinations, electromyogram and muscle biopsy were negative for any neuromuscular or other disorder. Two years later the patient remains asymptomatic, active and overall healthy but sCK levels remain elevated, ≤6,591 IU/l (>50-fold higher than normal values).
Collapse
Affiliation(s)
- Spyridon Klinis
- Primary Health Care Unit of Alonakia, Kozani 50100, Greece; Hippocrates, Association of General Practice/Family Medicine of Greece, Athens 11525, Greece
| | - Athanasios Symeonidis
- New Mihaniona Primary Health Center, Thessaloniki 57004, Greece; Hippocrates, Association of General Practice/Family Medicine of Greece, Athens 11525, Greece
| | - Dimitrios Karanasios
- Hippocrates, Association of General Practice/Family Medicine of Greece, Athens 11525, Greece; New Madytos Primary Health Center, Thessaloniki 57014, Greece
| | | |
Collapse
|
7
|
Sano K, Miura S, Fujiwara T, Fujioka R, Yorita A, Noda K, Kida H, Azuma K, Kaieda S, Yamamoto K, Taniwaki T, Fukumaki Y, Shibata H. A novel missense mutation of RYR1 in familial idiopathic hyper CK-emia. J Neurol Sci 2015; 356:142-7. [DOI: 10.1016/j.jns.2015.06.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/19/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
|
8
|
Méndez-Giménez L, Rodríguez A, Balaguer I, Frühbeck G. Role of aquaglyceroporins and caveolins in energy and metabolic homeostasis. Mol Cell Endocrinol 2014; 397:78-92. [PMID: 25008241 DOI: 10.1016/j.mce.2014.06.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 12/23/2022]
Abstract
Aquaglyceroporins and caveolins are submicroscopic integral membrane proteins that are particularly abundant in many mammalian cells. Aquaglyceroporins (AQP3, AQP7, AQP9 and AQP10) encompass a subfamily of aquaporins that allow the movement of water, but also of small solutes, such as glycerol, across cell membranes. Glycerol constitutes an important metabolite as a substrate for de novo synthesis of triacylglycerols and glucose as well as an energy substrate to produce ATP via the mitochondrial oxidative phosphorylation. In this sense, the control of glycerol influx/efflux in metabolic organs by aquaglyceroporins plays a crucial role with the dysregulation of these glycerol channels being associated with metabolic diseases, such as obesity, insulin resistance, non-alcoholic fatty liver disease and cardiac hypertrophy. On the other hand, caveolae have emerged as relevant plasma membrane sensors implicated in a wide range of cellular functions, including endocytosis, apoptosis, cholesterol homeostasis, proliferation and signal transduction. Caveolae-coating proteins, namely caveolins and cavins, can act as scaffolding proteins within caveolae by concentrating signaling molecules involved in free fatty acid and cholesterol uptake, proliferation, insulin signaling or vasorelaxation, among others. The importance of caveolae in whole-body homeostasis is highlighted by the link between homozygous mutations in genes encoding caveolins and cavins with metabolic diseases, such as lipodystrophy, dyslipidemia, muscular dystrophy and insulin resistance in rodents and humans. The present review focuses on the role of aquaglyceroporins and caveolins on lipid and glucose metabolism, insulin secretion and signaling, energy production and cardiovascular homeostasis, outlining their potential relevance in the development and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Leire Méndez-Giménez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain.
| | - Inmaculada Balaguer
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain; Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
9
|
Silvestri NJ, Wolfe GI. Asymptomatic/pauci-symptomatic creatine kinase elevations (hyperckemia). Muscle Nerve 2013; 47:805-15. [DOI: 10.1002/mus.23755] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Nicholas J. Silvestri
- Department of Neurology; University at Buffalo, Buffalo General Medical Center; 100 High Street Buffalo New York 14203-1126 USA
| | - Gil I. Wolfe
- Department of Neurology; University at Buffalo, Buffalo General Medical Center; 100 High Street Buffalo New York 14203-1126 USA
| |
Collapse
|
10
|
RNA interference improves myopathic phenotypes in mice over-expressing FSHD region gene 1 (FRG1). Mol Ther 2011; 19:2048-54. [PMID: 21730972 DOI: 10.1038/mt.2011.118] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Muscular dystrophies, and other diseases of muscle, arise from recessive and dominant gene mutations. Gene replacement strategies may be beneficial for the former, while gene silencing approaches may provide treatment for the latter. In the last two decades, muscle-directed gene therapies were primarily focused on treating recessive disorders. This disparity at least partly arose because feasible mechanisms to silence dominant disease genes lagged behind gene replacement strategies. With the discovery of RNA interference (RNAi) and its subsequent development as a promising new gene silencing tool, the landscape has changed. In this study, our objective was to demonstrate proof-of-principle for RNAi therapy of a dominant myopathy in vivo. We tested the potential of adeno-associated viral (AAV)-delivered therapeutic microRNAs, targeting the human Facioscapulohumeral muscular dystrophy (FSHD) region gene 1 (FRG1), to correct myopathic features in mice expressing toxic levels of human FRG1 (FRG1(-high) mice). We found that FRG1 gene silencing improved muscle mass, strength, and histopathological abnormalities associated with muscular dystrophy in FRG1(-high) mice, thereby demonstrating therapeutic promise for treatment of dominantly inherited myopathies using RNAi. This approach potentially applies to as many as 29 different gene mutations responsible for myopathies inherited as dominant disorders.
Collapse
|
11
|
Sinha B, Köster D, Ruez R, Gonnord P, Bastiani M, Abankwa D, Stan RV, Butler-Browne G, Vedie B, Johannes L, Morone N, Parton RG, Raposo G, Sens P, Lamaze C, Nassoy P. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 2011; 144:402-13. [PMID: 21295700 DOI: 10.1016/j.cell.2010.12.031] [Citation(s) in RCA: 645] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 10/27/2010] [Accepted: 12/23/2010] [Indexed: 12/15/2022]
Abstract
The functions of caveolae, the characteristic plasma membrane invaginations, remain debated. Their abundance in cells experiencing mechanical stress led us to investigate their role in membrane-mediated mechanical response. Acute mechanical stress induced by osmotic swelling or by uniaxial stretching results in a rapid disappearance of caveolae, in a reduced caveolin/Cavin1 interaction, and in an increase of free caveolins at the plasma membrane. Tether-pulling force measurements in cells and in plasma membrane spheres demonstrate that caveola flattening and disassembly is the primary actin- and ATP-independent cell response that buffers membrane tension surges during mechanical stress. Conversely, stress release leads to complete caveola reassembly in an actin- and ATP-dependent process. The absence of a functional caveola reservoir in myotubes from muscular dystrophic patients enhanced membrane fragility under mechanical stress. Our findings support a new role for caveolae as a physiological membrane reservoir that quickly accommodates sudden and acute mechanical stresses.
Collapse
|
12
|
Gazzerro E, Bonetto A, Minetti C. Caveolinopathies: translational implications of caveolin-3 in skeletal and cardiac muscle disorders. HANDBOOK OF CLINICAL NEUROLOGY 2011; 101:135-142. [PMID: 21496630 DOI: 10.1016/b978-0-08-045031-5.00010-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Caveolae are specialized lipid rafts localized on the cytoplasmic surface of the sarcolemmal membrane. Caveolae contribute to the maintenance of plasma membrane integrity, constitute specific macromolecular complexes that provide highly localized regulation of ion channels, and regulate vesicular trafficking and signal transduction. In skeletal muscle, the main structural assembly of caveolae is mediated by caveolin-3. Another family of adapter proteins, the cavins, is involved in the regulation of caveolae function and in the trafficking of caveolin-derived structures. Caveolin-3 defects lead to four distinct skeletal muscle disease phenotypes: limb-girdle muscular dystrophy, rippling muscle disease, distal myopathy, and hyperCKemia. Many patients show an overlap of these symptoms, and the same mutation can be linked to different clinical phenotypes. An ever-growing interest is also focused on the association between caveolin-3 mutations and heart disorders. Indeed, caveolin-3 mutants have been described in a patient with hypertrophic cardiomyopathy and two patients with dilated cardiomyopathy, and mutations in the caveolin-3 gene (CAV3) have been identified in patients affected by congenital long QT syndrome. Although caveolin-3 deficiency represents the primary event, multiple secondary molecular mechanisms lead to muscle tissue damage. Among these, sarcolemmal membrane alterations, disorganization of skeletal muscle T-tubule network, and disruption of distinct cell signaling pathways have been determined.
Collapse
Affiliation(s)
- E Gazzerro
- Unit of Muscular and Neurodegenerative Diseases, G. Gaslini Institute, Genova, Italy
| | | | | |
Collapse
|
13
|
|
14
|
Brauers E, Dreier A, Roos A, Wormland B, Weis J, Krüttgen A. Differential effects of myopathy-associated caveolin-3 mutants on growth factor signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:261-70. [PMID: 20472890 DOI: 10.2353/ajpath.2010.090741] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Caveolin-3 is an important scaffold protein of cholesterol-rich caveolae. Mutations of caveolin-3 cause hereditary myopathies that comprise remarkably different pathologies. Growth factor signaling plays an important role in muscle physiology; it is influenced by caveolins and cholesterol-rich rafts and might thus be affected by caveolin-3 dysfunction. Prompted by the observation of a marked chronic peripheral neuropathy in a patient suffering from rippling muscle disease due to the R26Q caveolin-3 mutation and because TrkA is expressed by neuronal cells and skeletal muscle fibers, we performed a detailed comparative study on the effect of pathogenic caveolin-3 mutants on the signaling and trafficking of the TrkA nerve growth factor receptor and, for comparison, of the epidermal growth factor receptor. We found that the R26Q mutant slightly and the P28L strongly reduced nerve growth factor signaling in TrkA-transfected cells. Surface biotinylation experiments revealed that the R26Q caveolin-3 mutation markedly reduced the internalization of TrkA, whereas the P28L did not. Moreover, P28L expression led to increased, whereas R26Q expression decreased, epidermal growth factor signaling. Taken together, we found differential effects of the R26Q and P28L caveolin-3 mutants on growth factor signaling. Our findings are of clinical interest because they might help explain the remarkable differences in the degree of muscle lesions caused by caveolin-3 mutations and also the co-occurrence of peripheral neuropathy in the R26Q caveolinopathy case presented.
Collapse
Affiliation(s)
- Eva Brauers
- Institute of Medical Microbiology, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Kyriakides T, Angelini C, Schaefer J, Sacconi S, Siciliano G, Vilchez JJ, Hilton-Jones D. EFNS guidelines on the diagnostic approach to pauci- or asymptomatic hyperCKemia. Eur J Neurol 2010; 17:767-73. [DOI: 10.1111/j.1468-1331.2010.03012.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Jacobi C, Ruscheweyh R, Vorgerd M, Weber MA, Storch-Hagenlocher B, Meinck HM. Rippling muscle disease: Variable phenotype in a family with five afflicted members. Muscle Nerve 2010; 41:128-32. [DOI: 10.1002/mus.21446] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Abstract
In muscle tissue the protein caveolin-3 forms caveolae--flask-shaped invaginations localized on the cytoplasmic surface of the sarcolemmal membrane. Caveolae have a key role in the maintenance of plasma membrane integrity and in the processes of vesicular trafficking and signal transduction. Mutations in the caveolin-3 gene lead to skeletal muscle pathology through multiple pathogenetic mechanisms. Indeed, caveolin-3 deficiency is associated to sarcolemmal membrane alterations, disorganization of skeletal muscle T-tubule network and disruption of distinct cell-signaling pathways. To date, there have been 30 caveolin-3 mutations identified in the human population. Caveolin-3 defects lead to four distinct skeletal muscle disease phenotypes: limb girdle muscular dystrophy, rippling muscle disease, distal myopathy, and hyperCKemia. In addition, one caveolin-3 mutant has been described in a case of hypertrophic cardiomyopathy. Many patients show an overlap of these symptoms and the same mutation can be linked to different clinical phenotypes. This variability can be related to additional genetic or environmental factors. This review will address caveolin-3 biological functions in muscle cells and will describe the muscle and heart disease phenotypes associated with caveolin-3 mutations.
Collapse
|
18
|
Chong SW, Korzh V, Jiang YJ. Myogenesis and molecules - insights from zebrafish Danio rerio. JOURNAL OF FISH BIOLOGY 2009; 74:1693-1755. [PMID: 20735668 DOI: 10.1111/j.1095-8649.2009.02174.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Myogenesis is a fundamental process governing the formation of muscle in multicellular organisms. Recent studies in zebrafish Danio rerio have described the molecular events occurring during embryonic morphogenesis and have thus greatly clarified this process, helping to distinguish between the events that give rise to fast v. slow muscle. Coupled with the well-known Hedgehog signalling cascade and a wide variety of cellular processes during early development, the continual research on D. rerio slow muscle precursors has provided novel insights into their cellular behaviours in this organism. Similarly, analyses on fast muscle precursors have provided knowledge of the behaviour of a sub-set of epitheloid cells residing in the anterior domain of somites. Additionally, the findings by various groups on the roles of several molecules in somitic myogenesis have been clarified in the past year. In this study, the authors briefly review the current trends in the field of research of D. rerio trunk myogenesis.
Collapse
Affiliation(s)
- S-W Chong
- Laboratory of Developmental Signalling and Patterning, Genes and Development Division, A STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
| | | | | |
Collapse
|
19
|
Traverso M, Gazzerro E, Assereto S, Sotgia F, Biancheri R, Stringara S, Giberti L, Pedemonte M, Wang X, Scapolan S, Pasquini E, Donati MA, Zara F, Lisanti MP, Bruno C, Minetti C. Caveolin-3 T78M and T78K missense mutations lead to different phenotypes in vivo and in vitro. J Transl Med 2008; 88:275-83. [PMID: 18253147 DOI: 10.1038/labinvest.3700713] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Caveolins are the principal protein components of caveolae, invaginations of the plasma membrane involved in cell signaling and trafficking. Caveolin-3 (Cav-3) is the muscle-specific isoform of the caveolin family and mutations in the CAV3 gene lead to a large group of neuromuscular disorders. In unrelated patients, we identified two distinct CAV3 mutations involving the same codon 78. Patient 1, affected by dilated cardiomyopathy and limb girdle muscular dystrophy (LGMD)-1C, shows an autosomal recessive mutation converting threonine to methionine (T78M). Patient 2, affected by isolated familiar hyperCKemia, shows an autosomal dominant mutation converting threonine to lysine (T78K). Cav-3 wild type (WT) and Cav-3 mutations were transiently transfected into Cos-7 cells. Cav-3 WT and Cav-3 T78M mutant localized at the plasma membrane, whereas Cav-3 T78K was retained in a perinuclear compartment. Cav-3 T78K expression was decreased by 87% when compared with Cav-3 WT, whereas Cav-3 T78M protein levels were unchanged. To evaluate whether Cav-3 T78K and Cav-3 T78M mutants behaved with a dominant negative pattern, Cos-7 cells were cotransfected with green fluorescent protein (GFP)-Cav-3 WT in combination with either mutant or WT Cav-3. When cotransfected with Cav-3 WT or Cav-3 T78M, GFP-Cav-3 WT was localized at the plasma membrane, as expected. However, when cotransfected with Cav-3 T78K, GFP-Cav-3 WT was retained in a perinuclear compartment, and its protein levels were reduced by 60%, suggesting a dominant negative action. Accordingly, Cav-3 protein levels in muscles from a biopsy of patient 2 (T78K mutation) were reduced by 80%. In conclusion, CAV3 T78M and T78K mutations lead to distinct disorders showing different clinical features and inheritance, and displaying distinct phenotypes in vitro.
Collapse
Affiliation(s)
- Monica Traverso
- Muscular and Neurodegenerative Disease Unit, University of Genoa and G. Gaslini Paediatric Institute, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hernández-Deviez DJ, Howes MT, Laval SH, Bushby K, Hancock JF, Parton RG. Caveolin regulates endocytosis of the muscle repair protein, dysferlin. J Biol Chem 2007; 283:6476-88. [PMID: 18096699 DOI: 10.1074/jbc.m708776200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dysferlin and Caveolin-3 are plasma membrane proteins associated with muscular dystrophy. Patients with mutations in the CAV3 gene show dysferlin mislocalization in muscle cells. By utilizing caveolin-null cells, expression of caveolin mutants, and different mutants of dysferlin, we have dissected the site of action of caveolin with respect to dysferlin trafficking pathways. We now show that Caveolin-1 or -3 can facilitate exit of a dysferlin mutant that accumulates in the Golgi complex of Cav1(-/-) cells. In contrast, wild type dysferlin reaches the plasma membrane but is rapidly endocytosed in Cav1(-/-) cells. We demonstrate that the primary effect of caveolin is to cause surface retention of dysferlin. Caveolin-1 or Caveolin-3, but not specific caveolin mutants, inhibit endocytosis of dysferlin through a clathrin-independent pathway colocalizing with internalized glycosylphosphatidylinositol-anchored proteins. Our results provide new insights into the role of this endocytic pathway in surface remodeling of specific surface components. In addition, they highlight a novel mechanism of action of caveolins relevant to the pathogenic mechanisms underlying caveolin-associated disease.
Collapse
Affiliation(s)
- Delia J Hernández-Deviez
- Institute for Molecular Bioscience, Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | |
Collapse
|
21
|
Falace A, Striano P, Manganelli F, Coppola A, Striano S, Minetti C, Zara F. Inherited neuromyotonia: A clinical and genetic study of a family. Neuromuscul Disord 2007; 17:23-7. [PMID: 17140792 DOI: 10.1016/j.nmd.2006.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 09/11/2006] [Accepted: 09/20/2006] [Indexed: 10/23/2022]
Abstract
Neuromyotonia is a disorder of peripheral nerve hyperexcitability characterized by myokymia, muscle cramps and stiffness, delayed muscle relaxation after contraction (pseudomyotonia), and hyperhidrosis, associated with well described spontaneous electromyographic features. It is usually an acquired disorder associated with autoantibodies against neuronal voltage-gated potassium channels. However, mutations of KCNA1, encoding the K(+) channel subunit hKv1.1, have been reported in rare families with neuromyotonia, and mutations in KCNQ2, encoding voltage-gated potassium M channel subunit, in families with benign neonatal seizures and myokymia. We report a three-generation family with inherited neuromyotonia without evidence of immunological involvement. Genetic study excluded mutations in KCNA1, KCNA2, KCNA6 and KCNQ2 genes. Our study does not completely exclude the involvement of other genes encoding ion channels subunits in the pathogenesis of this disorder. Further studies of familial cases will shed light on the molecular basis of inherited neuromyotonia.
Collapse
Affiliation(s)
- Antonio Falace
- Neuromuscular and Neurodegenerative Disease Unit, University of Genova, G Gaslini Institute, Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
22
|
Reijneveld JC, Ginjaar IB, Frankhuizen WS, Notermans NC. CAV3 gene mutation analysis in patients with idiopathic hyper-CK-emia. Muscle Nerve 2006; 34:656-8. [PMID: 16770780 DOI: 10.1002/mus.20593] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As caveolin-3 deficiencies may explain persistent hyper-CK-emia, we performed CAV3 gene mutation analysis and immunohistochemistry for caveolin-3 in 31 patients with idiopathic hyper-CK-emia. In 2 of 29 patients who donated blood, variants in the CAV3 gene were detected. Although immunohistochemical analysis strongly suggested that caveolin-3 was properly localized in the muscle tissue of the two affected patients, it may not function normally and could thus explain their persistent hyper-CK-emia. Our findings contribute to the clarification of unexplained persistent hyper-CK-emia, but further research is needed before CAV3 gene mutation analysis becomes part of the routine evaluation of these patients.
Collapse
Affiliation(s)
- Jaap C Reijneveld
- Department of Neurology, VU University Medical Center, ZH 2A.87, 1007 MB Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
23
|
Capasso M, De Angelis MV, Di Muzio A, Scarciolla O, Pace M, Stuppia L, Comi GP, Uncini A. Familial idiopathic hyper-CK-emia: an underrecognized condition. Muscle Nerve 2006; 33:760-5. [PMID: 16502425 DOI: 10.1002/mus.20525] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Persistent elevation of serum creatine kinase (CK) in individuals with normal neurological and laboratory examinations has been called idiopathic hyperCKemia (IH). IH has been reported in rare families and was recently ascribed to caveolin-3 gene mutations. We retrospectively found that IH was familial in 13 of 28 subjects in whom serum CK was measured in relatives. These 13 families had a total of 41 subjects with IH, including six over 60 years of age. In eight families there was male-to-male transmission and a higher prevalence of males with hyperCKemia. Muscle biopsy in one member of all families was normal or showed minimal, nonspecific changes. Morphometric examination disclosed different patterns of changes in fiber size and distribution. Caveolin-3 expression was normal and in five families molecular genetics excluded caveolin-3 gene mutations. Our findings suggest that IH is familial in 46% of cases. Familial IH is a benign genetically heterogeneous condition that is autosomal-dominant in at least 60% of cases, with a higher penetrance in men.
Collapse
Affiliation(s)
- Margherita Capasso
- Neuromuscular Diseases Unit, Center for Excellence on Aging, G. d'Annunzio University Foundation, Via Colle dell'Ara, I-66013 Chieti, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The heterogeneous childhood limb-girdle muscular dystrophies have originally been defined as a group of autosomal recessive and dominant diseases with progressive weakness and wasting of shoulder and pelvic-girdle muscles. Over the last 12 years, the underlying genetic defects for many of the diseases have been identified and insight into pathomechanisms of disease has been gained. At the same time, improved diagnostic techniques have allowed to extend the phenotypic spectrum for many of these devastating conditions, which showed that clinical symptoms and pathological findings are not restricted to skeletal muscles. Childhood limb-girdle muscular dystrophies are systemic diseases that often affect the musculoskeletal, respiratory, and cardiovascular system and that can go along with central nervous system involvement and gastrointestinal symptoms. The systemic nature of the diseases requires adequate management strategies that improve symptoms, longevity, and quality of life of the patients. As we are entering an era of translational research the need for precise molecular diagnoses, a thorough understanding of the natural history of the diseases and guidelines for standardized assessments of the patients become even more relevant. In this review, the best characterized childhood limb-girdle muscular dystrophies are discussed and their management aspects highlighted.
Collapse
Affiliation(s)
- Volker Straub
- Institute of Human Genetics, University of Newcastle upon Tyne, International Centre for Life, Newcastle upon Tyne, United Kingdom.
| | | |
Collapse
|
25
|
Hernández-Deviez DJ, Martin S, Laval SH, Lo HP, Cooper ST, North KN, Bushby K, Parton RG. Aberrant dysferlin trafficking in cells lacking caveolin or expressing dystrophy mutants of caveolin-3. Hum Mol Genet 2005; 15:129-42. [PMID: 16319126 DOI: 10.1093/hmg/ddi434] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations in the dysferlin (DYSF) and caveolin-3 (CAV3) genes are associated with muscle disease. Dysferlin is mislocalized, by an unknown mechanism, in muscle from patients with mutations in caveolin-3 (Cav-3). To examine the link between Cav-3 mutations and dysferlin mistargeting, we studied their localization at high resolution in muscle fibers, in a model muscle cell line, and upon heterologous expression of dysferlin in muscle cell lines and in wild-type or caveolin-null fibroblasts. Dysferlin shows only partial overlap with Cav-3 on the surface of isolated muscle fibers but co-localizes with Cav-3 in developing transverse (T)-tubules in muscle cell lines. Heterologously expressed dystrophy-associated mutant Cav3R26Q accumulates in the Golgi complex of muscle cell lines or fibroblasts. Cav3R26Q and other Golgi-associated mutants of both Cav-3 (Cav3P104L) and Cav-1 (Cav1P132L) caused a dramatic redistribution of dysferlin to the Golgi complex. Heterologously expressed epitope-tagged dysferlin associates with the plasma membrane in primary fibroblasts and muscle cells. Transport to the cell surface is impaired in the absence of Cav-1 or Cav-3 showing that caveolins are essential for dysferlin association with the PM. These results suggest a functional role for caveolins in a novel post-Golgi trafficking pathway followed by dysferlin.
Collapse
Affiliation(s)
- Delia J Hernández-Deviez
- Institute for Molecular Bioscience, Centre for Microscopy and Microanalysis and School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Most neuromuscular disorders display only non-specific myopathological features in routine histological preparations. However, a number of proteins, including sarcolemmal, sarcomeric, and nuclear proteins as well as enzymes with defects responsible for neuromuscular disorders, have been identified during the past two decades, allowing a more specific and firm diagnosis of muscle diseases. Identification of protein defects relies predominantly on immunohistochemical preparations and on Western blot analysis. While immunohistochemistry is very useful in identifying abnormal expression of primary protein abnormalities in recessive conditions, it is less helpful in detecting primary defects in dominantly inherited disorders. Abnormal immunohistochemical expression patterns can be confirmed by Western blot analysis which may also be informative in dominant disorders, although its role has yet to be established. Besides identification of specific protein defects, immunohistochemistry is also helpful in the differentiation of inflammatory myopathies by subtyping cellular infiltrates and demonstrating up-regulation of subtle immunological parameters such as cell adhesion molecules. The role of immunohistochemistry in denervating disorders, however, remains controversial in the absence of a reliable marker of muscle fibre denervation. Nevertheless, as well as the diagnostic value of immunocytochemical analysis it may also widen understanding of muscle fibre pathology as well as help in the development of therapeutic strategies.
Collapse
Affiliation(s)
- D S Tews
- Edinger-Institute of the Johann-Wolfgang Goethe-University, Frankfurt, Germany.
| | | |
Collapse
|
27
|
Nixon SJ, Wegner J, Ferguson C, Méry PF, Hancock JF, Currie PD, Key B, Westerfield M, Parton RG. Zebrafish as a model for caveolin-associated muscle disease; caveolin-3 is required for myofibril organization and muscle cell patterning. Hum Mol Genet 2005; 14:1727-43. [PMID: 15888488 DOI: 10.1093/hmg/ddi179] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Caveolae are an abundant feature of many animal cells. However, the exact function of caveolae remains unclear. We have used the zebrafish, Danio rerio, as a system to understand caveolae function focusing on the muscle-specific caveolar protein, caveolin-3 (Cav3). We have identified caveolin-1 (alpha and beta), caveolin-2 and Cav3 in the zebrafish. Zebrafish Cav3 has 72% identity to human CAV3, and the amino acids altered in human muscle diseases are conserved in the zebrafish protein. During embryonic development, cav3 expression is apparent by early segmentation stages in the first differentiating muscle precursors, the adaxial cells and slightly later in the notochord. cav3 expression appears in the somites during mid-segmentation stages and then later in the pectoral fins and facial muscles. Cav3 and caveolae are located along the entire sarcolemma of late stage embryonic muscle fibers, whereas beta-dystroglycan is restricted to the muscle fiber ends. Down-regulation of Cav3 expression causes gross muscle abnormalities and uncoordinated movement. Ultrastructural analysis of isolated muscle fibers reveals defects in myoblast fusion and disorganized myofibril and membrane systems. Expression of the zebrafish equivalent to a human muscular dystrophy mutant, CAV3P104L, causes severe disruption of muscle differentiation. In addition, knockdown of Cav3 resulted in a dramatic up-regulation of eng1a expression resulting in an increase in the number of muscle pioneer-like cells adjacent to the notochord. These studies provide new insights into the role of Cav3 in muscle development and demonstrate its requirement for correct intracellular organization and myoblast fusion.
Collapse
Affiliation(s)
- Susan J Nixon
- Institute for Molecular Bioscience, Universitky of Queensland, Brisbane 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sugie K, Murayama K, Noguchi S, Murakami N, Mochizuki M, Hayashi YK, Nonaka I, Nishino I. Two novel CAV3 gene mutations in Japanese families. Neuromuscul Disord 2005; 14:810-4. [PMID: 15564037 DOI: 10.1016/j.nmd.2004.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 08/16/2004] [Accepted: 08/27/2004] [Indexed: 11/22/2022]
Abstract
Caveolin-3 deficiency is a rare, autosomal dominant, muscle disorder caused by caveolin-3 gene (CAV3) mutations and consists of four clinical phenotypes: limb-girdle muscular dystrophy type 1C (LGMD-1C), rippling muscle disease, distal myopathy, and familial hyperCKemia. So far, only 13 mutations have been reported. We here report two novel heterozygous mutations, 96C>G (N32K) and 128T>A (V43E), in the CAV3 gene in two unrelated Japanese families with LGMD-1C. Both probands presented with elevated serum CK level with calf muscle hypertrophy in their childhood but without apparent muscle weakness. However, their mothers showed mild limb-girdle weakness in addition to high CK level. Caveolin-3 was deficient and caveolae were lacking in muscles from both patients. Our data confirm that caveolin-3 deficiency causes LGMD-1C and expand the variability in CAV3 gene mutations.
Collapse
MESH Headings
- Adult
- Caveolin 3
- Caveolins/deficiency
- Caveolins/genetics
- Child
- Child, Preschool
- Creatine Kinase/metabolism
- DNA Mutational Analysis
- Dysferlin
- Dystrophin/metabolism
- Family Health
- Female
- Genes, Dominant
- Genetic Predisposition to Disease/genetics
- Genetic Testing
- Genetic Variation/genetics
- Humans
- Hypertrophy/genetics
- Hypertrophy/pathology
- Japan
- Male
- Membrane Proteins/metabolism
- Microscopy, Electron, Transmission
- Middle Aged
- Muscle Proteins/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/ultrastructure
- Muscular Dystrophies, Limb-Girdle/genetics
- Muscular Dystrophies, Limb-Girdle/metabolism
- Muscular Dystrophies, Limb-Girdle/pathology
- Mutation, Missense/genetics
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Kazuma Sugie
- Department of Neuromuscular Research, National Center of Neurology and Psychiatry (NCNP), National Institute of Neuroscience, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Although they were discovered more than 50 years ago, caveolae have remained enigmatic plasmalemmal organelles. With their characteristic “flasklike” shape and virtually ubiquitous tissue distribution, these interesting structures have been implicated in a wide range of cellular functions. Similar to clathrin-coated pits, caveolae function as macromolecular vesicular transporters, while their unique lipid composition classifies them as plasma membrane lipid rafts, structures enriched in a variety of signaling molecules. The caveolin proteins (caveolin-1, -2, and -3) serve as the structural components of caveolae, while also functioning as scaffolding proteins, capable of recruiting numerous signaling molecules to caveolae, as well as regulating their activity. That so many signaling molecules and signaling cascades are regulated by an interaction with the caveolins provides a paradigm by which numerous disease processes may be affected by ablation or mutation of these proteins. Indeed, studies in caveolin-deficient mice have implicated these structures in a host of human diseases, including diabetes, cancer, cardiovascular disease, atherosclerosis, pulmonary fibrosis, and a variety of degenerative muscular dystrophies. In this review, we provide an in depth summary regarding the mechanisms by which caveolae and caveolins participate in human disease processes.
Collapse
Affiliation(s)
- Alex W Cohen
- Dept. of Molecular Pharmacology and the Albert Einstein Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
30
|
Fee DB, So YT, Barraza C, Figueroa KP, Pulst SM. Phenotypic variability associated with Arg26Gln mutation in caveolin3. Muscle Nerve 2004; 30:375-8. [PMID: 15318349 DOI: 10.1002/mus.20092] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Caveolin3 (CAV3) is a protein associated with dystrophin, dystrophin-associated glycoproteins, and dysferlin. Mutations in the CAV3 gene result in certain autosomal-dominant inherited diseases, namely, rippling muscle disease (RMD), limb-girdle muscular dystrophy type 1C (LGMD1C), distal myopathy, and hyperCKemia. In this report we show that a previously reported family with RMD has a mutation in the CAV3 gene. Affected individuals had either a characteristic RMD phenotype, a combination of RMD and LGMD1C phenotypes, or a LGMD1C phenotype, but one mutation carrier was asymptomatic at age 86 years. This phenotypic variability associated with mutations in CAV3 has been reported previously but only in a few families. It is important to remember the significant phenotypic variability associated with CAV3 mutations when counseling families with these mutations. These observations also suggest the presence of factors independent of the CAV3 gene locus that modify phenotype.
Collapse
Affiliation(s)
- Dominic B Fee
- Division of Neurology, Cedars-Sinai Medical Center, 8631 West Third St., Suite 1145, Los Angeles, California 90048, USA
| | | | | | | | | |
Collapse
|
31
|
Alias L, Gallano P, Moreno D, Pujol R, Martínez-Matos JA, Baiget M, Ferrer I, Olivé M. A novel mutation in the caveolin-3 gene causing familial isolated hyperCKaemia. Neuromuscul Disord 2004; 14:321-4. [PMID: 15099591 DOI: 10.1016/j.nmd.2004.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Revised: 01/26/2004] [Accepted: 01/28/2004] [Indexed: 11/17/2022]
Abstract
Three members of a family were known to have persistent elevated serum CK levels without muscle weakness. A muscle biopsy showed a partial reduction of caveolin-3 at the sarcolemma of muscle fibres, which was confirmed by Western blot analysis. Mutational analysis identified a novel heterozygous mutation: G-->A transition at nucleotide position 169 in exon 2 in the CAV-3 gene, generating a Val-->Met change at codon 57 of the aminoacid chain. This is the second mutation in the CAV-3 gene associated with familial isolated hyperCKaemia.
Collapse
Affiliation(s)
- Laura Alias
- Servei de Genètica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Laval SH, Bushby KMD. Limb-girdle muscular dystrophies - from genetics to molecular pathology. Neuropathol Appl Neurobiol 2004; 30:91-105. [PMID: 15043707 DOI: 10.1111/j.1365-2990.2004.00555.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The limb-girdle muscular dystrophies are a diverse group of muscle-wasting disorders characteristically affecting the large muscles of the pelvic and shoulder girdles. Molecular genetic analyses have demonstrated causative mutations in the genes encoding a disparate collection of proteins involved in all aspects of muscle cell biology. Muscular dystrophy includes a spectrum of disorders caused by loss of the linkage between the extracellular matrix and the actin cytoskeleton. Within this are the forms of limb-girdle muscular dystrophy caused by deficiencies of the sarcoglycan complex and by aberrant glycosylation of alpha-dystroglycan caused by mutations in the fukutin-related protein gene. However, other forms of this disease have distinct pathophysiological mechanisms. For example, deficiency of dysferlin disrupts sarcolemmal membrane repair, whilst loss of calpain-3 may exert its pathological influence either by perturbation of the IkappaBalpha/NF-kappaB pathway, or through calpain-dependent cytoskeletal remodelling. Caveolin-3 is implicated in numerous cell-signalling pathways and involved in the biogenesis of the T-tubule system. Alterations in the nuclear lamina caused by mutations in laminA/C, sarcomeric changes in titin, telethonin or myotilin at the Z-disc, and subtle changes in the extracellular matrix proteins laminin-alpha2 or collagen VI can all lead to a limb-girdle muscular dystrophy phenotype, although the specific pathological mechanisms remain obscure. Differential diagnosis of these disorders requires the careful application of a broad range of disciplines: clinical assessment, immunohistochemistry and immunoblotting using a panel of antibodies and extensive molecular genetic analyses.
Collapse
Affiliation(s)
- S H Laval
- Institute of Human Genetics, International Centre for Life, Newcastle-upon-Tyne, UK
| | | |
Collapse
|
33
|
Abstract
Despite major advances in molecular genetics, histopathologic evaluation of muscle biopsy specimens continues to provide important diagnostic information in patients with suspected muscle diseases and in patients with vasculitic neuropathies. Muscle biopsy specimens are used in diagnosing many inherited as well as inflammatory and toxic myopathies. Furthermore, the study of muscle histopathology can also enhance our understanding of disease pathogenesis.
Collapse
Affiliation(s)
- David Lacomis
- University of Pittsburgh Medical Center, UPMC Presbyterian, 200 Lothrop Street, F878, Pittsburgh, PA 15213, USA.
| |
Collapse
|
34
|
Sotgia F, Woodman SE, Bonuccelli G, Capozza F, Minetti C, Scherer PE, Lisanti MP. Phenotypic behavior of caveolin-3 R26Q, a mutant associated with hyperCKemia, distal myopathy, and rippling muscle disease. Am J Physiol Cell Physiol 2003; 285:C1150-60. [PMID: 12839838 DOI: 10.1152/ajpcell.00166.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Four different phenotypes have been associated with CAV3 mutations: limb girdle muscular dystrophy-1C (LGMD-1C), rippling muscle disease (RMD), and distal myopathy (DM), as well as idiopathic and familial hyperCKemia (HCK). Detailed molecular characterization of two caveolin-3 mutations (P104L and DeltaTFT), associated with LGMD-1C, shows them to impart a dominant-negative effect on wild-type caveolin-3, rendering it dysfunctional through sequestration in the Golgi complex. Interestingly, substitution of glutamine for arginine at amino acid position 26 (R26Q) of caveolin-3 is associated not only with RMD but also with DM and HCK. However, the phenotypic behavior of the caveolin-3 R26Q mutation has never been evaluated in cultured cells. Thus we characterized the cellular and molecular properties of the R26Q mutant protein to better understand how this mutation can manifest as such distinct disease phenotypes. Here, we show that the caveolin-3 R26Q mutant is mostly retained at the level of the Golgi complex. The caveolin-3 R26Q mutant formed oligomers of a much larger size than wild-type caveolin-3 and was excluded from caveolae-enriched membranes. However, caveolin-3 R26Q did not behave in a dominant-negative fashion when coexpressed with wild-type caveolin-3. Thus the R26Q mutation behaves differently from other caveolin-3 mutations (P104L and DeltaTFT) that have been previously characterized. These data provide a possible explanation for the scope of the various disease phenotypes associated with the caveolin-3 R26Q mutation. We propose a haploinsufficiency model in which reduced levels of wild-type caveolin-3, although not rendered dysfunctional due to the caveolin-3 R26Q mutant protein, are insufficient for normal muscle cell function.
Collapse
Affiliation(s)
- Federica Sotgia
- Department of Molecular Pharmacology, The Albert Einstein Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Wicklund MP, Mendell JR. The limb girdle muscular dystrophies: our ever-expanding knowledge. J Clin Neuromuscul Dis 2003; 5:12-28. [PMID: 19078718 DOI: 10.1097/00131402-200309000-00003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The limb girdle muscular dystrophies (LGMDs) represent a genetically diverse group of disorders. Currently, chromosomal loci are known for at least 5 autosomal-dominant and 10 autosomal-recessive subgroups. In 13 of these, recognized genes and protein products generate an assortment of phenotypes, some unique and many overlapping. In some disorders, novel clinical features are sufficiently distinct so as to proffer clues to the diagnosis of a specific LGMD subtype. An armamentarium of laboratory tools is required to confirm specific subtypes of LGMD. These might only be available in neuromuscular centers specializing in this form of dystrophy. Currently, supportive therapy is the predominant means of treatment, but further understanding of unique pathogenic mechanisms holds promise for the future.
Collapse
Affiliation(s)
- Matthew P Wicklund
- From the Department of Neurology, Wilford Hall Medical Center, Lackland Air Force Base, Texas (Dr Wicklund); and the Department of Neurology, The Ohio State University, Columbus, Ohio (Dr Mendell)
| | | |
Collapse
|
36
|
Yabe I, Kawashima A, Kikuchi S, Higashi T, Fukazawa T, Hamada T, Sasaki H, Tashiro K. Caveolin-3 gene mutation in Japanese with rippling muscle disease. Acta Neurol Scand 2003; 108:47-51. [PMID: 12807393 DOI: 10.1034/j.1600-0404.2003.00083.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Rippling muscle disease (RMD) is a rare myopathy characterized by percussion-induced rapid muscle contractions, muscle mounding, and rippling. Recently a caveolin-3 gene (CAV3) mutation was identified in patients with autosomal dominant RMD. The objective of this study was to determine whether a similar mutation was present in two Japanese families with this condition. PATIENTS AND METHODS Clinical examination, mutational analysis, and muscle immunohistochemistry were carried out in six patients from two Japanese RMD pedigrees. RESULTS Apart from the atrophy of the intrinsic muscles in their hands and a slight muscle weakness in their fingers, the clinical features of our patients were compatible with RMD. Our investigation revealed a CAV3 missense mutation, i.e. Arg26Gln in both families. Immunohistochemistry performed on a muscle biopsy specimen showed reduced caveolin-3 surface expression. CONCLUSIONS Japanese RMD also appears to result from a CAV3 mutation.
Collapse
Affiliation(s)
- I Yabe
- Department of Neurology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, and Hokkaido Neurology Hospital, Nijyuyonken, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Almost 50 years after the first sighting of small pits that covered the surface of mammalian cells, investigators are now getting to grips with the detailed workings of these enigmatic structures that we now know as caveolae.
Collapse
Affiliation(s)
- Robert G Parton
- Institute for Molecular Bioscience and Centre for Functional and Applied Genomics, Centre for Microscopy and Microanalysis, and School of Biomedical Sciences, The University of Queensland, QLD 4072, Australia.
| |
Collapse
|
38
|
Fischer D, Schroers A, Blümcke I, Urbach H, Zerres K, Mortier W, Vorgerd M, Schröder R. Consequences of a novel caveolin-3 mutation in a large German family. Ann Neurol 2003; 53:233-41. [PMID: 12557291 DOI: 10.1002/ana.10442] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mutations in the human caveolin-3 gene (cav-3) on chromosome 3p25 have been described in limb girdle muscular dystrophy, rippling muscle disease, hyperCKemia, and distal myopathy. Here, we describe the genetic, myopathological, and clinical findings in a large German family harboring a novel heterozygous mutation (GAC-->GAA) in codon 27 of the cav-3 gene. This missense mutation causes an amino acid change from asparagine to glutamate (Asp27Glu) in the N-terminal region of the Cav-3 protein, which leads to a drastic decrease of Cav-3 protein expression in skeletal muscle tissue. In keeping with an autosomal dominant mode of inheritance, this novel cav-3 mutation was found to cosegregate with neuromuscular involvement in the reported family. Ultrastructural analysis of Cav-3-deficient muscle showed an abnormal folding of the plasma membrane as well as multiple vesicular structures in the subsarcolemmal region. Neurological examination of all nine subjects from three generations harboring the novel cav-3 mutation showed clear evidence of rippling muscle disease. However, only two of these nine patients showed isolated signs of rippling muscle disease without muscle weakness or atrophy, whereas five had additional signs of a distal myopathy and two fulfilled the diagnostic criteria of a coexisting limb girdle muscular dystrophy. These findings indicate that mutations in the human cav-3 gene can lead to different and overlapping clinical phenotypes even within the same family. Different clinical phenotypes in caveolinopathies may be attributed to so far unidentified modifying factors/genes in the individual genetic background of affected patients.
Collapse
Affiliation(s)
- Dirk Fischer
- Department of Neurology, University of Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|