1
|
Lee J, Kim HW, Shin DY, Han JP, Jang Y, Park JY, Yun SG, Cho EM, Seo YR. The Chronic Toxicity of Endocrine-Disrupting Chemical to Daphnia magna: A Transcriptome and Network Analysis of TNT Exposure. Int J Mol Sci 2024; 25:9895. [PMID: 39337382 PMCID: PMC11432125 DOI: 10.3390/ijms25189895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs) impair growth and development. While EDCs can occur naturally in aquatic ecosystems, they are continuously introduced through anthropogenic activities such as industrial effluents, pharmaceutical production, wastewater, and mining. To elucidate the chronic toxicological effects of endocrine-disrupting chemicals (EDCs) on aquatic organisms, we collected experimental data from a standardized chronic exposure test using Daphnia magna (D. magna), individuals of which were exposed to a potential EDC, trinitrotoluene (TNT). The chronic toxicity effects of this compound were explored through differential gene expression, gene ontology, network construction, and putative adverse outcome pathway (AOP) proposition. Our findings suggest that TNT has detrimental effects on the upstream signaling of Tcf/Lef, potentially adversely impacting oocyte maturation and early development. This study employs diverse bioinformatics approaches to elucidate the gene-level toxicological effects of chronic TNT exposure on aquatic ecosystems. The results provide valuable insights into the molecular mechanisms of the adverse impacts of TNT through network construction and putative AOP proposition.
Collapse
Affiliation(s)
- Jun Lee
- Institute of Environmental Medicine for Green Chemistry, Department of Life Science, Biomedi Campus, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Hyun Woo Kim
- Institute of Environmental Medicine for Green Chemistry, Department of Life Science, Biomedi Campus, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Dong Yeop Shin
- Institute of Environmental Medicine for Green Chemistry, Department of Life Science, Biomedi Campus, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Jun Pyo Han
- Institute of Environmental Medicine for Green Chemistry, Department of Life Science, Biomedi Campus, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Yujin Jang
- Institute of Environmental Medicine for Green Chemistry, Department of Life Science, Biomedi Campus, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Ju Yeon Park
- Institute of Environmental Medicine for Green Chemistry, Department of Life Science, Biomedi Campus, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Seok-Gyu Yun
- Department of Nano, Chemical & Biological Engineering, College of Natural Science and Engineering, Seokyeong University, Seoul 02173, Republic of Korea
| | - Eun-Min Cho
- Department of Nano, Chemical & Biological Engineering, College of Natural Science and Engineering, Seokyeong University, Seoul 02173, Republic of Korea
| | - Young Rok Seo
- Institute of Environmental Medicine for Green Chemistry, Department of Life Science, Biomedi Campus, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| |
Collapse
|
2
|
Mondal T, Biswas S, Mane MV, Panja SS. Shedding Novel Photophysical Insights Toward Discriminative Detection of Three Toxic Heavy Metal Ions and a hazard class 1 nitro-explosive By Using a Simple AIEE Active Luminogen. J Fluoresc 2024; 34:1401-1425. [PMID: 37542589 DOI: 10.1007/s10895-023-03378-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
In this work, we introduced a simple aggregation-induced emission enhancement (AIEE) sensor (PHCS) which can selectively detect and discriminate three environmentally and biologically imperative heavy metal ions (Cu2+, Co2+ and Hg2+) and a hazard class 1 categorized nitro-explosive picric acid (PA) in differential media. By virtue of its weak fluorescence attributes in pure organic medium owing to the synergistic operation of multiple photophysical quenching mechanisms, the molecular probe showcased highly selective 'TURN ON' fluorogenic response towards hazardous Hg2+ with a limit of detection (LOD) as low as 97 nM. Comprehensive investigation of binding mechanism throws light on the cumulative effect of probe-metal complexation induced chelation enhanced fluorescence (CHEF) effect and subsequent AIEE activation within the formed probe-metal adducts. Noteworthily, the probe (PHCS) can be readily used in real water samples for the quantitative determination of Hg2+ in a wide concentration range. In addition, the probe displayed modest colorimetric recognition performances to selectively detect and discriminate two essential heavy metal ions (Cu2+ and Co2+) with a LOD of 96 nM and 65 nM for Cu2+ and Co2+ respectively, in semi-aqueous medium. Intriguingly, based on high photoluminescence efficiency, the AIEE active nano-aggregated PHCS displayed a remarkable propensity to be used as a selective and ultra-sensitive 'TURN-OFF' fluorogenic chemosensor towards PA with LOD of 34.4 ppb in aqueous medium. Finally, we specifically shed light on the interaction of PHCS hydrosol towards PA using some unprecedented techniques, which helped uncover new photophysical insights of probe-explosive molecule interaction.
Collapse
Affiliation(s)
- Tapashree Mondal
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur, WB, 713209, India
| | - Sourav Biswas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P. O, Vithura, Thiruvananthapuram, Kerala, 69551, India
| | - Manoj V Mane
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore, 562112, India
| | - Sujit S Panja
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur, WB, 713209, India.
| |
Collapse
|
3
|
Arman A, Sağlam Ş, Üzer A, Apak R. A novel electrochemical sensor based on phosphate-stabilized poly-caffeic acid film in combination with graphene nanosheets for sensitive determination of nitro-aromatic energetic materials. Talanta 2024; 266:125098. [PMID: 37639871 DOI: 10.1016/j.talanta.2023.125098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/31/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
This work offers a novel approach and sensor electrode for electrocatalytic reduction of nitro-aromatic explosives (NAEs). This sensor was created by combining electrochemically reduced graphene nanosheets (GNSs) -through cyclic voltammetric reduction of a graphene oxide colloidal solution- with phosphate-stabilized poly-caffeic acid (pCAF) film-modified glassy carbon electrode (GCE). The poly-caffeic acid-modified nonconductive electrode was stabilized with a H2PO4-/HPO42- phosphate buffer at pH 7 and made conductive. The novel electrode, called phosphate stabilized-GC/GNSs/pCAF, was characterized by electrochemical methods and scanning electron microscopy (SEM). The sensor exhibited high performance for trinitrotoluene (TNT) detection with a linear response between 50 and 500 μg L- 1 and a detection limit of 6 μg L-1. In addition to TNT, precise determinations of NAEs such as 2,4-dinitrotoluene (2,4-DNT), tetryl (2,4,6-trinitrophenyl methyl nitramine), trinitro phenol (TNP or picric acid; PA), 2,4-dinitrophenol (2,4-DNP), and 4-amino dinitrotoluene (4A-DNT, an aerobic bacterial degradation product of TNT) were made using the developed sensor electrode and DPV technique. Simultaneous quantification of TNT and DNT was performed with the aid of a computational technique known as multiple linear regression (MLR). The optimized electrode was resistant to interference effects. Satisfactory results on real samples were obtained by applying the modified electrode to the determination of TNT, tetryl, and TNP in contaminated soil. The validation of the proposed method was made against a literature LC-MS/MS method. A statistical comparison of the obtained results was provided using F- and Student's t-tests.
Collapse
Affiliation(s)
- Aysu Arman
- Institute of Graduate Studies, Chemistry Department, Istanbul University-Cerrahpaşa, Avcılar, Istanbul, Turkey; Engineering Faculty, Chemistry Department, Istanbul University-Cerrahpaşa, Avcılar, Istanbul, Turkey
| | - Şener Sağlam
- Engineering Faculty, Chemistry Department, Istanbul University-Cerrahpaşa, Avcılar, Istanbul, Turkey
| | - Ayşem Üzer
- Engineering Faculty, Chemistry Department, Istanbul University-Cerrahpaşa, Avcılar, Istanbul, Turkey
| | - Reşat Apak
- Engineering Faculty, Chemistry Department, Istanbul University-Cerrahpaşa, Avcılar, Istanbul, Turkey; Turkish Academy of Sciences (TUBA), Bayraktar Neighborhood, Vedat Dalokay St. No:112, 06670, Çankaya, Ankara, Turkey.
| |
Collapse
|
4
|
Fully Flexible Covalent Organic Frameworks for Fluorescence Sensing 2,4,6-Trinitrophenol and p-Nitrophenol. Polymers (Basel) 2023; 15:polym15030653. [PMID: 36771953 PMCID: PMC9919289 DOI: 10.3390/polym15030653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Nitrophenols are important nitroaromatic compounds, both important environmental pollutants and dangerous explosives, posing a devastating danger and pollution threat to humans. It is vital to detect efficiently trace nitrophenols in the environment. In this contribution, a series of fully flexible cyclotriphosphazene-based COFs (FFCP COFs: HDADE, HBAPB, and HBPDA), prepared with both a flexible knot and flexible linkers of different lengths, were used for sensing 2,4,6-trinitrophenol (TNP) and p-nitrophenol (p-NP) in real time with excellent sensitivity and selectivity. The quenching constants of HDADE by TNP, HBAPB, and HBPDA by p-NP are 6.29 × 104, 2.17 × 105, and 2.48 × 105 L·mol-1, respectively. The LODs of TNP and p-NP are 1.19 × 10-11, 6.91 × 10-12, and 6.05 × 10-12 mol·L-1. Their sensitivities increase with the linker length, which is better than the corresponding COFs composed of rigid linkers. There is only a photoinduced electron transfer mechanism in the fluorescence quenching of HBPDA by p-NP. Meanwhile, the mechanisms of photoinduced charge transfer and resonance energy transfer exist in the fluorescence quenching of HDADE by TNP and the fluorescence quenching of HBAPB by p-NP.
Collapse
|
5
|
Gandhi S, Sharma V, Koul IS, Mandal SK. Shedding Light on the Lewis Acid Catalysis in Organic Transformations Using a Zn-MOF Microflower and Its ZnO Nanorod. Catal Letters 2022. [DOI: 10.1007/s10562-022-04004-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Highly Conjugated Carbazole and Pyrrolo[1,2-a]quinoxaline based Small Molecules for Fluorescent Detection of Nitroexplosives. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
|
8
|
Gao JJ, Peng RH, Zhu B, Tian YS, Xu J, Wang B, Fu XY, Han HJ, Wang LJ, Zhang FJ, Zhang WH, Deng YD, Wang Y, Li ZJ, Yao QH. Enhanced phytoremediation of TNT and cobalt co-contaminated soil by AfSSB transformed plant. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112407. [PMID: 34119926 DOI: 10.1016/j.ecoenv.2021.112407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/23/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
2,4,6-trinitrotoluene (TNT) and cobalt (Co) contaminants have posed a severe environmental problem in many countries. Phytoremediation is an environmentally friendly technology for the remediation of these contaminants. However, the toxicity of TNT and cobalt limit the efficacy of phytoremediation application. The present research showed that expressing the Acidithiobacillus ferrooxidans single-strand DNA-binding protein gene (AfSSB) can improve the tolerance of Arabidopsis and tall fescue to TNT and cobalt. Compared to control plants, the AfSSB transformed Arabidopsis and tall fescue exhibited enhanced phytoremediation of TNT and cobalt separately contaminated soil and co-contaminated soil. The comet analysis revealed that the AfSSB transformed Arabidopsis suffer reduced DNA damage than control plants under TNT or cobalt exposure. In addition, the proteomic analysis revealed that AfSSB improves TNT and cobalt tolerance by strengthening the reactive superoxide (ROS) scavenging system and the detoxification system. Results presented here serve as strong theoretical support for the phytoremediation potential of organic and metal pollutants mediated by single-strand DNA-binding protein genes. SUMMARIZES: This is the first report that AfSSB enhances phytoremediation of 2,4,6-trinitrotoluene and cobalt separately contaminated and co-contaminated soil.
Collapse
Affiliation(s)
- Jian-Jie Gao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Ri-He Peng
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Bo Zhu
- Key Laboratory for the Conservation Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Yong-Sheng Tian
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Jing Xu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Bo Wang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Xiao-Yan Fu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Hong-Juan Han
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Li-Juan Wang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Fu-Jian Zhang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Wen-Hui Zhang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yong-Dong Deng
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yu- Wang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Zhen-Jun Li
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China.
| | - Quan-Hong Yao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China.
| |
Collapse
|
9
|
Zhang X, Liu L, Zhang W, Na L, Hua R. Detection of 2,4,6-trinitrophenol based on f–f transition of Eu2+. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2020.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
10
|
Cazzolla Gatti R. Why We Will Continue to Lose Our Battle with Cancers If We Do Not Stop Their Triggers from Environmental Pollution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6107. [PMID: 34198930 PMCID: PMC8201328 DOI: 10.3390/ijerph18116107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/21/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Besides our current health concerns due to COVID-19, cancer is a longer-lasting and even more dramatic pandemic that affects almost a third of the human population worldwide. Most of the emphasis on its causes has been posed on genetic predisposition, chance, and wrong lifestyles (mainly, obesity and smoking). Moreover, our medical weapons against cancers have not improved too much during the last century, although research is in progress. Once diagnosed with a malignant tumour, we still rely on surgery, radiotherapy, and chemotherapy. The main problem is that we have focused on fighting a difficult battle instead of preventing it by controlling its triggers. Quite the opposite, our knowledge of the links between environmental pollution and cancer has surged from the 1980s. Carcinogens in water, air, and soil have continued to accumulate disproportionally and grow in number and dose, bringing us to today's carnage. Here, a synthesis and critical review of the state of the knowledge of the links between cancer and environmental pollution in the three environmental compartments is provided, research gaps are briefly discussed, and some future directions are indicated. New evidence suggests that it is relevant to take into account not only the dose but also the time when we are exposed to carcinogens. The review ends by stressing that more dedication should be put into studying the environmental causes of cancers to prevent and avoid curing them, that the precautionary approach towards environmental pollutants must be much more reactionary, and that there is an urgent need to leave behind the outdated petrochemical-based industry and goods production.
Collapse
Affiliation(s)
- Roberto Cazzolla Gatti
- Konrad Lorenz Institute for Evolution and Cognition Research, 3400 Klosterneuburg, Austria;
- Biological Institute, Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
11
|
Nawaz MAH, Meng L, Zhou H, Ren J, Shahzad SA, Hayat A, Yu C. Tetraphenylethene probe based fluorescent silica nanoparticles for the selective detection of nitroaromatic explosives. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:825-831. [PMID: 33502411 DOI: 10.1039/d0ay01945c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A simple and sensitive fluorometric method is developed utilizing aggregation-induced emission probe based silica nanoparticles for the detection of nitroaromatic explosives. A positively charged tetraphenylethene based probe (TPE-C2-2+) is doped into silica nanoparticles exploiting electrostatic interactions to produce TPE-SiO2 nanoparticles with a uniform particle size. The TPE-SiO2 nanoparticles exhibit strong fluorescence emission due to the aggregation-induced emission (AIE) effect of the doped TPE probe. The fluorescence emission of TPE-SiO2 offers quantitative and sensitive response to picric acid (PA), 2,4-dinitrotoluene (DNT) and 2,4,6-trinitrotoluene (TNT) which are used as model examples of nitroaromatic compounds. The fluorescence spectroscopy results show that the fluorescence emission of TPE-SiO2 was greatly quenched in the presence of the electron-poor nitroaromatic compounds due to the inner filter effect (IFE) and possibly the contact quenching mechanism. TPE-SiO2 nanoparticles show better sensitivity towards PA and could detect PA down to 0.01 μM with a linear detection range of 0.1-50 μM. The increased chemical stability, efficient high sensitivity and simple synthesis of the TPE-SiO2 nanoparticles demonstrate that they can be used as an excellent fluorescent probe for a wide range of electron-poor compounds, i.e. nitroaromatic compounds. Interference studies show that common interfering species with nitroexplosives such as acids, bases, volatile organic compounds, and salt solutions have a negligible effect during the sensing process.
Collapse
Affiliation(s)
- Muhammad Azhar Hayat Nawaz
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Lamba J, Anand S, Dutta J, Chatterjee S, Nagar S, Celin SM, Rai PK. Study on aerobic degradation of 2,4,6-trinitrotoluene (TNT) using Pseudarthrobacter chlorophenolicus collected from the contaminated site. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:80. [PMID: 33486600 DOI: 10.1007/s10661-021-08869-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
2,4,6-trinitrotoluene or TNT, a commonly used explosive, can pollute soil and groundwater. Conventional remediation practices for the TNT-contaminated sites are neither eco-friendly nor cost-effective. However, exploring bacteria to biodegrade TNT into environment-friendly compound(s) is an interesting area to explore. In this study, an indigenous bacterium, Pseudarthrobacter chlorophenolicus, strain S5-TSA-26, isolated from explosive contaminated soil, was investigated for potential aerobic degradation of TNT for the first time. The isolated strain of P. chlorophenolicus was incubated in a minimal salt medium (MSM) containing 120 mg/L TNT for 25 days at specified conditions. TNT degradation pattern by the bacterium was monitored at regular interval using UV-Vis spectrophotometry, high-performance liquid chromatography, and liquid chromatography mass spectrophotometric, by estimating nitrate, nitrite, and ammonium ion concentration and other metabolites such as 2,4-dinitrotoluene (DNT), 2-amino-4,6-dinitrotoluene (2-ADNT), and 2,4-diamino-6-nitrotoluene (2-DANT). It was observed that, in the presence of TNT, there was no reduction in growth of the bacterium although it multiplied well in the presence of TNT along with no considerable morphological changes. Furthermore, it was found that TNT degraded completely within 15 days of incubation. Thus, from this study, it may be concluded that the bacterium has the potential for degrading TNT completely with the production of non-toxic by-products and might be an important bacterium for treating TNT (i.e., a nitro-aromatic compound)-contaminated sites.
Collapse
Affiliation(s)
- Jyoti Lamba
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
- Centre for Fire, Explosive and Environment Safety (CFEES), Defence Research and Development Organisation (DRDO), Timarpur, Delhi, 110054, India
| | - Shalini Anand
- Centre for Fire, Explosive and Environment Safety (CFEES), Defence Research and Development Organisation (DRDO), Timarpur, Delhi, 110054, India.
| | - Jayanti Dutta
- Human Resource Development Centre, Panjab University, Chandigarh, 160 014, India
| | - Soumya Chatterjee
- Defence Research Laboratory, Defence Research and Development Organisation, Tezpur, Assam, 784 001, India
| | - Shilpi Nagar
- Centre for Fire, Explosive and Environment Safety (CFEES), Defence Research and Development Organisation (DRDO), Timarpur, Delhi, 110054, India
- Department of Environmental Studies, University of Delhi, Delhi, 110 007, India
| | - S Mary Celin
- Centre for Fire, Explosive and Environment Safety (CFEES), Defence Research and Development Organisation (DRDO), Timarpur, Delhi, 110054, India
| | - Pramod Kumar Rai
- Centre for Fire, Explosive and Environment Safety (CFEES), Defence Research and Development Organisation (DRDO), Timarpur, Delhi, 110054, India
| |
Collapse
|
13
|
Roucou A, Goubet M, Kleiner I, Bteich S, Cuisset A. Large Amplitude Torsions in Nitrotoluene Isomers Studied by Rotational Spectroscopy and Quantum Chemistry Calculations. Chemphyschem 2020; 21:2523-2538. [PMID: 32857456 DOI: 10.1002/cphc.202000591] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/27/2020] [Indexed: 11/12/2022]
Abstract
Rotational spectra of ortho-nitrotoluene (2-NT) and para-nitrotoluene (4-NT) have been recorded at low and room temperatures using a supersonic jet Fourier Transform microwave (MW) spectrometer and a millimeter-wave frequency multiplier chain, respectively. Supported by quantum chemistry calculations, the spectral analysis of pure rotation lines in the vibrational ground state has allowed to characterise the rotational energy, the hyperfine structure due to the 14 N nucleus and the internal rotation splittings arising from the methyl group. For 2-NT, an anisotropic internal rotation of coupled -CH3 and -NO2 torsional motions was identified by quantum chemistry calculations and discussed from the results of the MW analysis. The study of the internal rotation splittings in the spectra of three NT isomers allowed to characterise the internal rotation potentials of the methyl group and to compare them with other mono-substituted toluene derivatives in order to study the isomeric influence on the internal rotation barrier.
Collapse
Affiliation(s)
- Anthony Roucou
- Université du Littoral Côte d'Opale, UR 4493, LPCA, Laboratoire de Physico-Chimie de l'Atmosphère, F-59140, Dunkerque, France.,Institut de la Matière Condensée et des Nanosciences (IMCN), Université catholique de Louvain, Chemin du Cyclotron 2, 1348, Louvain-la-Neuve, Belgium
| | - Manuel Goubet
- Univ. Lille, CNRS, UMR8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000, Lille, France
| | - Isabelle Kleiner
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), CNRS UMR 7583, Université Paris-Est Créteil & Université de Paris, Institut Pierre Simon Laplace (IPSL), 61 avenue du Général de Gaulle, F-94010, Créteil cedex, France
| | - Sabath Bteich
- Université du Littoral Côte d'Opale, UR 4493, LPCA, Laboratoire de Physico-Chimie de l'Atmosphère, F-59140, Dunkerque, France
| | - Arnaud Cuisset
- Université du Littoral Côte d'Opale, UR 4493, LPCA, Laboratoire de Physico-Chimie de l'Atmosphère, F-59140, Dunkerque, France
| |
Collapse
|
14
|
Ahmadi R, Jalali Sarvestani MR. Adsorption of Tetranitrocarbazole on the Surface of Six Carbon-Based Nanostructures: A Density Functional Theory Investigation. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2020. [DOI: 10.1134/s1990793120010194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Guyot L, Simon F, Garcia J, Vanhalle F, Vilchez G, Bardel C, Manship B, Puisieux A, Machon C, Jacob G, Guitton J, Payen L. Structure-activity relationship study: Mechanism of cyto-genotoxicity of Nitropyrazole-derived high energy density materials family. Toxicol Appl Pharmacol 2019; 381:114712. [PMID: 31437493 DOI: 10.1016/j.taap.2019.114712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/10/2019] [Accepted: 08/15/2019] [Indexed: 11/25/2022]
Abstract
Stringent toxicological tests have to be performed prior to the industrial development of alternative chemicals particularly high energy dense materials (HEDMs) such as explosives. The properties (e.g., power, stability) of these compounds are constantly being improved, the current axis of research being the nitration of nitrogen heterocycles leading to HEDMs such as nitropyrazole-derived molecules. However, except for 3,4,5-trinitropyrazole (3,4,5-TNP), which was shown to be highly toxic in mice, the toxicological impact of these HEDMs has so far not been investigated. Furthermore, as industrials are strongly advised to develop alternative safety testing assays to in vivo experiments, we herein focused on determining the cytotoxic and genotoxic effects of seven Nitropyrazole-derived HEDMs on three rodent cell lines (mouse embryonic BALB/3T3 clone A31 cells, Chinese hamster ovary cells CHO-K1 and mouse lymphoma L5178Y TK +/- clone (3.7.2C) cells), two human fibroblast lines (CRC05, PFS04062) and on the human hepatic HepaRG model (both in proliferative and differentiated cells). A stronger cytotoxic effect was observed for 1,3-dinitropyrazole (1, 3-DNP) and 3,4,5-TNP in all cell lines, though differentiated HepaRG cells clearly displayed fewer likely due to the metabolism and elimination of these molecules by their functional biotransformation pathways. At the mechanistic level, the sub-chronic cytotoxic and genotoxic effects were linked to ROS/RNS production (experimental assays), HA2.X and to transcriptomic data highlighting the increase in DNA repair mechanisms.
Collapse
Affiliation(s)
- Laetitia Guyot
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Laboratoire de biochimie-toxicologie, France; UMR INSERM U1052/CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, France
| | - Florian Simon
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Laboratoire de biochimie-toxicologie, France
| | - Jessica Garcia
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Laboratoire de biochimie-toxicologie, France
| | - Floriane Vanhalle
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Laboratoire de biochimie-toxicologie, France
| | - Gaelle Vilchez
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Laboratoire de biochimie-toxicologie, France
| | - Claire Bardel
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Laboratoire de biochimie-toxicologie, France
| | - Brigitte Manship
- UMR INSERM U1052/CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, France
| | - Alain Puisieux
- UMR INSERM U1052/CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, France; Université Lyon 1, ISPBL, Faculté de pharmacie, Laboratoire de Toxicologie, France
| | - Christelle Machon
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Laboratoire de biochimie-toxicologie, France
| | - Guy Jacob
- Université Lyon 1, Faculté des sciences et technologies, UMR CNRS 5278 Hydrazines et Composés Energetiques Polyazotés, France; ArianeGroup Centre de Recherche du Bouchet, France
| | - Jérôme Guitton
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Laboratoire de biochimie-toxicologie, France; Université Lyon 1, ISPBL, Faculté de pharmacie, Laboratoire de Toxicologie, France.
| | - Léa Payen
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Laboratoire de biochimie-toxicologie, France; UMR INSERM U1052/CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, France; Université Lyon 1, ISPBL, Faculté de pharmacie, Laboratoire de Toxicologie, France
| |
Collapse
|
16
|
Patel S, Seet J, Li L, Duhamel J. Detection of Nitroaromatics by Pyrene-Labeled Starch Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13145-13156. [PMID: 31498989 DOI: 10.1021/acs.langmuir.9b02371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Starch nanoparticles (SNPs) were hydrophobically modified by using 1-pyrenebutyric acid (PyBA) with degrees of substitution (DS) between 0.0006 and 0.11. Fluorescence quenching studies were conducted on the pyrene-labeled starch nanoparticles (Py-SNPs) in dimethyl sulfoxide (DMSO) and water with nitromethane (NM), 4-mononitrotoluene (MNT), 2,6-dinitrotoluene (DNT), and 2,4,6-trinitrotoluene (TNT) to assess the mode of quenching of the pyrene labels in the two solvents. In DMSO where pyrene, starch, and the quenchers were soluble, a decrease in fluorescence signal was the result of dynamic encounters between the excited pyrene labels and the nitrated quenchers. In water where starch could be dispersed but pyrene and the nitroaromatic compounds (NACs) were sparingly soluble, quenching took place through the binding of NACs to pyrene aggregates. Py(11)-SNPs (Py-SNPs with a DS of 0.11)-coated filter papers (Py-CFPs) were prepared as fluorescence sensors. The fluorescence emitted by Py-CFPs was quenched to 25% of its original value within 10 ± 2, 72 ± 20, and 23 ± 4 s upon exposure to vapors of MNT, DNT, and TNT, respectively. When known amounts of NACs were deposited onto Py-CFPs, their limit of detection (LOD) when the fluorescence decreased by more than 3 standard deviations (3σ) from its original value equaled 9.2 ± 0.8, 3.3 ± 0.5, and 0.20 ± 0.02 ng/mm2 for MNT, DNT, and TNT, respectively. These response times and LODs were among the best values reported to date in the scientific literature for fluorescence sensors. The selectivity of the Py-CFPs toward NACs was also investigated by comparing their response to the presence of non-nitrated aromatics, amines, and aromatic ketones. Quenching was only observed with the latter family of chemicals tested, but with much lower efficiency compared to TNT, thus reflecting some level of selectivity toward this specific NAC.
Collapse
Affiliation(s)
- Sanjay Patel
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry , University of Waterloo , Waterloo , ON N2L 3G1 , Canada
| | - Jonathan Seet
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry , University of Waterloo , Waterloo , ON N2L 3G1 , Canada
| | - Lu Li
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry , University of Waterloo , Waterloo , ON N2L 3G1 , Canada
| | - Jean Duhamel
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry , University of Waterloo , Waterloo , ON N2L 3G1 , Canada
| |
Collapse
|
17
|
Kathiravan A, Gowri A, Khamrang T, Kumar MD, Dhenadhayalan N, Lin KC, Velusamy M, Jaccob M. Pyrene-Based Chemosensor for Picric Acid—Fundamentals to Smartphone Device Design. Anal Chem 2019; 91:13244-13250. [DOI: 10.1021/acs.analchem.9b03695] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Arunkumar Kathiravan
- Vel Tech Research Park, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu 600 062, India
| | - Annasamy Gowri
- Vel Tech Research Park, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu 600 062, India
| | - Themmila Khamrang
- Department of Chemistry, North Eastern Hill University, Shillong, Meghalaya 793 022, India
- Department of Chemistry, C. I. College, Bishnupur, Manipur 795126, India
| | - Madhu Deepan Kumar
- Department of Chemistry & Computational Chemistry Laboratory, Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai, Tamil Nadu 600 034, India
| | - Namasivayam Dhenadhayalan
- Department of Chemistry, National Taiwan University and Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - King-Chuen Lin
- Department of Chemistry, National Taiwan University and Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Marappan Velusamy
- Department of Chemistry, North Eastern Hill University, Shillong, Meghalaya 793 022, India
| | - Madhavan Jaccob
- Department of Chemistry & Computational Chemistry Laboratory, Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai, Tamil Nadu 600 034, India
| |
Collapse
|
18
|
Yang Z, Wei T, Huang H, Yang H, Zhou Y, Xu D. Insights into the biotransformation of 2,4,6-trinitrotoluene by the old yellow enzyme family of flavoproteins. A computational study. Phys Chem Chem Phys 2019; 21:11589-11598. [PMID: 30801593 DOI: 10.1039/c8cp07873d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biodegradation is a cost-effective and environmentally friendly alternative to removing 2,4,6-trinitrotoluene (TNT) pollution. However, mechanisms of TNT biodegradation have been elusive. To enhance the understanding of TNT biotransformation by the Old Yellow Enzyme (OYE) family, we investigated the crucial first-step hydrogen-transfer reaction by molecular dynamics simulations, docking technologies and empirical valence bond calculations. We revealed the significance of the π-π stacking conformation between the substrate TNT and the reduced flavin mononucleotide (FMNH2) cofactor, which is a prerequisite for the aromatic ring reduction of TNT. Under the π-π stacking conformation, the barrier of the hydrogen-transfer reaction in the aromatic ring reduction is about 16 kcal mol-1 lower than that of nitro group reduction. Then, we confirmed the mechanism of controlling the π-π stacking, that is, the π-π interaction competition mechanism. It indicates that the π-π stacking of TNT and FMNH2 occurs only when the π-π interaction between FMNH2 and TNT is stronger than that between TNT and several key residues with aromatic rings. Finally, based on the competition mechanism, the formation of π-π stacking of TNT and FMNH2 can be successfully enabled by removing the aromatic ring of those key residues in enzymes that originally only transform TNT through the nitro group reduction. This testified the validity of the π-π interaction competition mechanism. This work theoretically clarifies the molecular mechanism of the first-step hydrogen-transfer reaction for the biotransformation of TNT by the OYE family. It is helpful to obtain the enzymes that can biodegrade TNT through the aromatic ring reduction.
Collapse
Affiliation(s)
- Zhilin Yang
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900 Mianyang, China.
| | | | | | | | | | | |
Collapse
|
19
|
Gogia A, Mandal SK. A rational design and green synthesis of 3D metal organic frameworks containing a rigid heterocyclic nitrogen-rich dicarboxylate: structural diversity, CO2 sorption and selective sensing of 2,4,6-TNP in water. Dalton Trans 2019; 48:2388-2398. [DOI: 10.1039/c8dt04474k] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A rational design and green synthesis of two fluorescent and chemically/thermally stable 3D MOFs along with the selective sensing of TNP in water are reported.
Collapse
Affiliation(s)
- Alisha Gogia
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Mohali
- Mohali
- India
| | - Sanjay K. Mandal
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Mohali
- Mohali
- India
| |
Collapse
|
20
|
Thijs S, Sillen W, Truyens S, Beckers B, van Hamme J, van Dillewijn P, Samyn P, Carleer R, Weyens N, Vangronsveld J. The Sycamore Maple Bacterial Culture Collection From a TNT Polluted Site Shows Novel Plant-Growth Promoting and Explosives Degrading Bacteria. FRONTIERS IN PLANT SCIENCE 2018; 9:1134. [PMID: 30123233 PMCID: PMC6085565 DOI: 10.3389/fpls.2018.01134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/13/2018] [Indexed: 05/23/2023]
Abstract
Military activities have worldwide introduced toxic explosives into the environment with considerable effects on soil and plant-associated microbiota. Fortunately, these microorganisms, and their collective metabolic activities, can be harnessed for site restoration via in situ phytoremediation. We characterized the bacterial communities inhabiting the bulk soil and rhizosphere of sycamore maple (Acer pseudoplatanus) in two chronically 2,4,6-trinitrotoluene (TNT) polluted soils. Three hundred strains were isolated, purified and characterized, a majority of which showed multiple plant growth promoting (PGP) traits. Several isolates showed high nitroreductase enzyme activity and concurrent TNT-transformation. A 12-member bacterial consortium, comprising selected TNT-detoxifying and rhizobacterial strains, significantly enhanced TNT removal from soil compared to non-inoculated plants, increased root and shoot weight, and the plants were less stressed than the un-inoculated plants as estimated by the responses of antioxidative enzymes. The sycamore maple tree (SYCAM) culture collection is a significant resource of plant-associated strains with multiple PGP and catalytic properties, available for further genetic and phenotypic discovery and use in field applications.
Collapse
Affiliation(s)
- Sofie Thijs
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Wouter Sillen
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Sascha Truyens
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Bram Beckers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jonathan van Hamme
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC, Canada
| | - Pieter van Dillewijn
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Pieter Samyn
- Applied and Analytical Chemistry, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Robert Carleer
- Applied and Analytical Chemistry, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nele Weyens
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
21
|
Kong L, Mayorga-Martinez CC, Guan J, Pumera M. Fuel-Free Light-Powered TiO 2/Pt Janus Micromotors for Enhanced Nitroaromatic Explosives Degradation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:22427-22434. [PMID: 29916690 DOI: 10.1021/acsami.8b05776] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Nitroaromatic explosives such as 2,4,6-trinitrotoluene (2,4,6-TNT) and 2,4-dinitrotoluene (2,4-DNT) are two common nitroaromatic compounds in ammunition. Their leakage leads to serious environmental pollution and threatens human health. It is important to remove or decompose them rapidly and efficiently. In this work, we present that light-powered TiO2/Pt Janus micromotors have high efficiency for the "on-the-fly" photocatalytic degradation of 2,4-DNT and 2,4,6-TNT in pure water under UV irradiation. The redox reactions, induced by photogenerated holes and electrons on the TiO2/Pt Janus micromotor surfaces, produce a local electric field that propels the micromotors as well as oxidative species that are able to photodegrade 2,4-DNT and 2,4,6-TNT. Furthermore, the moving TiO2/Pt Janus micromotors show an efficient degradation of nitroaromatic compounds as compared to the stationary ones thanks to the enhanced mixing and mass transfer in the solution by movement of these micromotors. Such fuel-free light-powered micromotors for explosive degradation are expected to find a way to environmental remediation and security applications.
Collapse
Affiliation(s)
- Lei Kong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , Wuhan 430070 , People's Republic of China
| | - Carmen C Mayorga-Martinez
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague 6, Czech Republic
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , Wuhan 430070 , People's Republic of China
| | - Martin Pumera
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague 6, Czech Republic
| |
Collapse
|
22
|
Turhan H, Tukenmez E, Karagoz B, Bicak N. Highly fluorescent sensing of nitroaromatic explosives in aqueous media using pyrene-linked PBEMA microspheres. Talanta 2018; 179:107-114. [DOI: 10.1016/j.talanta.2017.10.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/24/2017] [Accepted: 10/28/2017] [Indexed: 02/04/2023]
|
23
|
Yang Z, Chen J, Zhou Y, Huang H, Xu D, Zhang C. Understanding the hydrogen transfer mechanism for the biodegradation of 2,4,6-trinitrotoluene catalyzed by pentaerythritol tetranitrate reductase: molecular dynamics simulations. Phys Chem Chem Phys 2018; 20:12157-12165. [DOI: 10.1039/c8cp00345a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The explosive 2,4,6-trinitrotoluene (TNT) is a highly toxic pollutant.
Collapse
Affiliation(s)
- Zhilin Yang
- Institute of Chemical Materials
- Chinese Academy of Engineering and Physics
- 621900 Mianyang
- China
| | - Junxian Chen
- MOE Key Laboratory of Green Chemistry & Technology
- College of Chemistry
- Sichuan University
- Chengdu
- P. R. China
| | - Yang Zhou
- Institute of Chemical Materials
- Chinese Academy of Engineering and Physics
- 621900 Mianyang
- China
| | - Hui Huang
- Institute of Chemical Materials
- Chinese Academy of Engineering and Physics
- 621900 Mianyang
- China
| | - Dingguo Xu
- MOE Key Laboratory of Green Chemistry & Technology
- College of Chemistry
- Sichuan University
- Chengdu
- P. R. China
| | - Chaoyang Zhang
- Institute of Chemical Materials
- Chinese Academy of Engineering and Physics
- 621900 Mianyang
- China
| |
Collapse
|
24
|
Khilyas IV, Lochnit G, Ilinskaya ON. Proteomic Analysis of 2,4,6-Trinitrotoluene Degrading Yeast Yarrowia lipolytica. Front Microbiol 2017; 8:2600. [PMID: 29312267 PMCID: PMC5744042 DOI: 10.3389/fmicb.2017.02600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/13/2017] [Indexed: 11/28/2022] Open
Abstract
2,4,6-trinitrotoluene (TNT) is a common component of many explosives. The overproduction and extensive usage of TNT significantly contaminates the environment. TNT accumulates in soils and aquatic ecosystems and can primarily be destroyed by microorganisms. Current work is devoted to investigation of Yarrowia lipolytica proteins responsible for TNT transformation through the pathway leading to protonated Meisenheimer complexes and nitrite release. Here, we identified a unique set of upregulated membrane and cytosolic proteins of Y. lipolytica, which biosynthesis increased during TNT transformation through TNT-monohydride-Meisenheimer complexes in the first step of TNT degradation, through TNT-dihydride-Meisenheimer complexes in the second step, and the aromatic ring denitration and degradation in the last step. We established that the production of oxidoreductases, namely, NADH flavin oxidoreductases and NAD(P)+-dependent aldehyde dehydrogenases, as well as transferases was enhanced at all stages of the TNT transformation by Y. lipolytica. The up-regulation of several stress response proteins (superoxide dismutase, catalase, glutathione peroxidase, and glutathione S-transferase) was also detected. The involvement of intracellular nitric oxide dioxygenase in NO formation during nitrite oxidation was shown. Our results present at the first time the full proteome analysis of Y. lipolytica yeast, destructor of TNT.
Collapse
Affiliation(s)
- Irina V Khilyas
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Guenter Lochnit
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Olga N Ilinskaya
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| |
Collapse
|
25
|
Rapp-Wright H, McEneff G, Murphy B, Gamble S, Morgan R, Beardah M, Barron L. Suspect screening and quantification of trace organic explosives in wastewater using solid phase extraction and liquid chromatography-high resolution accurate mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2017; 329:11-21. [PMID: 28119193 DOI: 10.1016/j.jhazmat.2017.01.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
The first comprehensive assessment of 34 solid phase extraction sorbents is presented for organic explosive residues in wastewater prior to analysis with liquid chromatography-high resolution accurate mass spectrometry (LC-HRMS). A total of 18 explosives were selected including nitramines, nitrate esters, nitroaromatics and organic peroxides. Three polymeric divinylbenzene-based sorbents were found to be most suitable and one co-polymerised with n-vinyl pyrrolidone offered satisfactory recoveries for 14 compounds in fortified wastewater (77-124%). Limits of detection in matrix ranged from 0.026-23μgL-1 with R2≥0.98 for most compounds. The method was applied to eight 24-h composite wastewater samples from a London wastewater works and one compound, 2,4-dinitrotoluene, was determined over five days between 332 and 468g day-1 (225-303ngL-1). To further exploit the suspect screening capability, 17 additional explosives, precursors and transformation products were screened in spiked wastewater samples. Of these, 14 were detected with recoveries from 62 to 92%, highlighting the broad applicability of the method. To our knowledge, this represents the first screen of explosives-related compounds in wastewater from a major European city. This method also allows post-analysis detection of new or emerging compounds using full-scan HRMS datasets to potentially identify and locate illegal manufacture of explosives via wastewater analysis.
Collapse
Affiliation(s)
- Helena Rapp-Wright
- Analytical & Environmental Sciences Division, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Gillian McEneff
- Analytical & Environmental Sciences Division, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Bronagh Murphy
- Analytical & Environmental Sciences Division, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Sally Gamble
- UCL Department of Security and Crime Science, 35 Tavistock Square, London WC1H 9EZ, UK
| | - Ruth Morgan
- UCL Department of Security and Crime Science, 35 Tavistock Square, London WC1H 9EZ, UK
| | - Matthew Beardah
- Forensic Explosives Laboratory, Dstl Fort Halstead, TN14 7BP, UK
| | - Leon Barron
- Analytical & Environmental Sciences Division, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
26
|
Yew YT, Ambrosi A, Pumera M. Nitroaromatic explosives detection using electrochemically exfoliated graphene. Sci Rep 2016; 6:33276. [PMID: 27633489 PMCID: PMC5025880 DOI: 10.1038/srep33276] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/19/2016] [Indexed: 01/01/2023] Open
Abstract
Detection of nitroaromatic explosives is of paramount importance from security point of view. Graphene sheets obtained from the electrochemical anodic exfoliation of graphite foil in different electrolytes (LiClO4 and Na2SO4) were compared and tested as electrode material for the electrochemical detection of 2,4-dinitrotoluene (DNT) and 2,4,6-trinitrotoluene (TNT) in seawater. Voltammetry analysis demonstrated the superior electrochemical performance of graphene produced in LiClO4, resulting in higher sensitivity and linearity for the explosives detection and lower limit of detection (LOD) compared to the graphene obtained in Na2SO4. We attribute this to the presence of oxygen functionalities onto the graphene material obtained in LiClO4 which enable charge electrostatic interactions with the –NO2 groups of the analyte, in addition to π-π stacking interactions with the aromatic moiety. Research findings obtained from this study would assist in the development of portable devices for the on-site detection of nitroaromatic explosives.
Collapse
Affiliation(s)
- Ying Teng Yew
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Adriano Ambrosi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Martin Pumera
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
27
|
Wu J, Tan C, Chen Z, Chen YZ, Tan Y, Jiang Y. Fluorescence array-based sensing of nitroaromatics using conjugated polyelectrolytes. Analyst 2016; 141:3242-5. [DOI: 10.1039/c6an00678g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A sensor array consisting of six conjugated polyelectrolytes was constructed to discriminate between nine nitroaromatics by linear discrimination analysis.
Collapse
Affiliation(s)
- Jiatao Wu
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
- The Ministry-Province Jointly Constructed Base for State Key Lab- Shenzhen Key Laboratory of Chemical Biology
| | - Chunyan Tan
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
- The Ministry-Province Jointly Constructed Base for State Key Lab- Shenzhen Key Laboratory of Chemical Biology
| | - Zhifang Chen
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
- The Ministry-Province Jointly Constructed Base for State Key Lab- Shenzhen Key Laboratory of Chemical Biology
| | - Yu Zong Chen
- Shenzhen Kivita Innovative Drug Discovery Institute
- Shenzhen 518055
- China
| | - Ying Tan
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
- The Ministry-Province Jointly Constructed Base for State Key Lab- Shenzhen Key Laboratory of Chemical Biology
| | - Yuyang Jiang
- The Ministry-Province Jointly Constructed Base for State Key Lab- Shenzhen Key Laboratory of Chemical Biology
- The Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055
- P. R. China
| |
Collapse
|
28
|
Mahbub P, Nesterenko PN. Application of photo degradation for remediation of cyclic nitramine and nitroaromatic explosives. RSC Adv 2016. [DOI: 10.1039/c6ra12565d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Photo degradation is a rapid and safe remediation process and advances in continuous-flow photochemistry can scale-up yields of photo degradation.
Collapse
Affiliation(s)
- P. Mahbub
- Australian Centre for Research on Separation Science
- School of Physical Sciences
- University of Tasmania
- Hobart 7001
- Australia
| | - P. N. Nesterenko
- Australian Centre for Research on Separation Science
- School of Physical Sciences
- University of Tasmania
- Hobart 7001
- Australia
| |
Collapse
|
29
|
Hughes S, Dasary SSR, Begum S, Williams N, Yu H. MEISENHEIMER COMPLEX BETWEEN 2,4,6-TRINITROTOLUENE AND 3-AMINOPROPYLTRIETHOXYSILANE AND ITS USE FOR A PAPER-BASED SENSOR. SENSING AND BIO-SENSING RESEARCH 2015; 5:37-41. [PMID: 26380171 PMCID: PMC4566156 DOI: 10.1016/j.sbsr.2015.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
2,4,6-Trinitrotoluene (TNT) forms a red-colored Meisenheimer complex with 3-aminopropyltrenthoxysilane (APTES) both in solution and on solid phase. The TNT-APTES complex is unique since it forms yellow-colored complexes with 2,4,6-trinitrophenol and 4-nitrophenol, and no complex with 2,4-dinitrotoluene. The absorption spectrum of TNT-APTES has two absorption bands at 530 and 650 nm, while APTES complexes with 2,4,6-trinitrophenol and 4-nitrophenol have absorption maxima at around 420 nm, and no absorption change for 2,4-dinitrotoluene. The TNT-APTES complex facilitates the exchange of the TNT-CH3 proton/deuteron with solvent molecules. The red color of TNT-APTES is immediately visible at 1 µM of TNT.
Collapse
Affiliation(s)
- Shantelle Hughes
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217
| | - Samuel S R Dasary
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217
| | - Salma Begum
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217
| | - Nya Williams
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217
| | - Hongtao Yu
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217
| |
Collapse
|
30
|
Gumuscu B, Cekmecelioglu D, Tekinay T. Complete dissipation of 2,4,6-trinitrotoluene by in-vessel composting. RSC Adv 2015. [DOI: 10.1039/c5ra07997g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We demonstrate complete removal of 2,4,6-trinitrotoluene (TNT) in 15 days using anin-vesselcomposting system amended with TNT-degrading bacteria strains.
Collapse
Affiliation(s)
- Burcu Gumuscu
- Bilkent University
- UNAM – Institute of Materials Science and Nanotechnology
- Ankara
- Turkey
- University of Twente
| | | | - Turgay Tekinay
- Gazi University
- Life Sciences Application and Research Center
- Ankara
- Turkey
- Gazi University
| |
Collapse
|
31
|
Ghosh D, Luwang MN. p-Aminobenzoic acid (pABA) sensitization of LaF3:Tb3+ nanoparticles and its applications in the detection of explosive materials. RSC Adv 2015. [DOI: 10.1039/c4ra15304a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
“A novel approach for detecting highly explosive aromatic nitro compounds utilizing pABA sensitised terbium (Tb3+) doped spherical LaF3 nanoparticles.”
Collapse
Affiliation(s)
- Debasish Ghosh
- Chemical Engineering and Process Development Division, National Chemical Laboratory
- Pune-411008, India
| | - Meitram Niraj Luwang
- Chemical Engineering and Process Development Division, National Chemical Laboratory
- Pune-411008, India
| |
Collapse
|
32
|
Cuisset A, Gruet S, Pirali O, Chamaillé T, Mouret G. Synchrotron FT-FIR spectroscopy of nitro-derivatives vapors: new spectroscopic signatures of explosive taggants and degradation products. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 132:838-845. [PMID: 24975521 DOI: 10.1016/j.saa.2014.05.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 04/12/2014] [Accepted: 05/25/2014] [Indexed: 06/03/2023]
Abstract
We report on the first successful rovibrational study of gas phase mononitrotoluene and dinitrotoluene in the TeraHertz/Far-Infrared (THz/FIR) spectral domain. Using the AILES beamline of the synchrotron SOLEIL and a Fourier Transform spectrometer connected to multipass cells, the low-energy vibrational cross-sections of the different isomers of mononitrotoluene have been measured and compared to calculated spectra with the density functional theory including the anharmonic contribution. The active FIR modes of 2,4 and 2,6 dinitrotoluene have been assigned to the vibrational bands measured by Fourier Transform FIR spectroscopy of the gas-phase molecular cloud produced in an evaporating/recondensating system. This study highlights the selectivity of gas phase THz/FIR spectroscopy allowing an unambiguous recognition and discrimination of nitro-aromatic compounds used as explosive taggants.
Collapse
Affiliation(s)
- Arnaud Cuisset
- Laboratoire de Physico-Chimie de l'Atmosphère, EA-4493, Université du Littoral - Côte d'Opale, 59140 Dunkerque, France.
| | - Sébastien Gruet
- Synchrotron SOLEIL, L'orme des Merisiers, Saint-Aubin - BP48, 91192 Gif-sur-Yvette, France
| | - Olivier Pirali
- Synchrotron SOLEIL, L'orme des Merisiers, Saint-Aubin - BP48, 91192 Gif-sur-Yvette, France; Institut des Sciences Moléculaires d'Orsay, UMR-8214 CNRS, Université Paris-Sud, 91405 Orsay Cedex, France
| | - Thierry Chamaillé
- Institut des Sciences Moléculaires d'Orsay, UMR-8214 CNRS, Université Paris-Sud, 91405 Orsay Cedex, France
| | - Gaël Mouret
- Laboratoire de Physico-Chimie de l'Atmosphère, EA-4493, Université du Littoral - Côte d'Opale, 59140 Dunkerque, France
| |
Collapse
|
33
|
Alam R, Lightcap IV, Karwacki CJ, Kamat PV. Sense and shoot: simultaneous detection and degradation of low-level contaminants using graphene-based smart material assembly. ACS NANO 2014; 8:7272-8. [PMID: 24893206 DOI: 10.1021/nn502336x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Smart material nanoassemblies that can simultaneously sense and shoot low-level contaminants from air and water are important for overcoming the threat of hazardous chemicals. Graphene oxide (GO) sheets deposited on mesoscopic TiO2 films that underpin the deposition of Ag nanoparticles with UV irradiation provide the foundation for the design of a smart material. The Ag particle size is readily controlled through precursor concentration and UV irradiation time. These semiconductor–graphene oxide–metal (SGM) films are SERS-active and hence capable of sensing aromatic contaminants such as 4-nitrobenzenethiol (4-NBT) in nanomolar range. Increased local concentration of organic molecules achieved through interaction with 2-D carbon support (GO) facilitates low-level detection of contaminants. Upon UV irradiation of 4-NBT-loaded SGM film, one can induce photocatalytic transformations. Thus, each component of the SGM film plays a pivotal role in aiding the detection and degradation of a contaminant dispersed in aqueous solutions. The advantage of using SGM films as multipurpose “detect and destroy” systems for nitroaromatic molecules is discussed.
Collapse
|
34
|
Seah TH, Poh HL, Chua CK, Sofer Z, Pumera M. Towards Graphane Applications in Security: The Electrochemical Detection of Trinitrotoluene in Seawater on Hydrogenated Graphene. ELECTROANAL 2013. [DOI: 10.1002/elan.201300228] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
35
|
Tan SM, Chua CK, Pumera M. Graphenes prepared from multi-walled carbon nanotubes and stacked graphene nanofibers for detection of 2,4,6-trinitrotoluene (TNT) in seawater. Analyst 2013; 138:1700-4. [DOI: 10.1039/c3an00089c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
Erkelens M, Adetutu EM, Taha M, Tudararo-Aherobo L, Antiabong J, Provatas A, Ball AS. Sustainable remediation--the application of bioremediated soil for use in the degradation of TNT chips. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2012; 110:69-76. [PMID: 22728982 DOI: 10.1016/j.jenvman.2012.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 05/19/2012] [Accepted: 05/26/2012] [Indexed: 06/01/2023]
Abstract
Environmental contamination by TNT (2,4,6 trinitrotoluene), historically used in civilian industries and the military as an explosive is of great concern due to its toxicity. Scientific studies have however shown that TNT is susceptible to microbial transformation. The aim of this study was to assess the potential of a previously bioremediated hydrocarbon contaminated soil (PBR) to increase TNT degradation rates. This was investigated by adding TNT chips to PBR and uncontaminated soils (PNC) in laboratory based studies (up to 16 weeks). Residual TNT chip analysis showed greater TNT degradation in PBR soils (70%) and significantly higher metabolic rates (4.5 fold increase in cumulative CO(2) levels) than in PNC soils (30%). Molecular analysis (PCR-DGGE-cluster analysis) showed substantial shifts in soil microbial communities associated with TNT contamination between day 0 and week 4 especially in PBR soils. Bacterial communities appeared to be more sensitive to TNT contamination than fungal communities in both soils. Quantitative PCR analysis showed ~3 fold increase in the abundance of nitroreductase genes (pnrA) in PBR soils with a gradual reduction in community evenness (Pareto-Lorenz curves) in contrast to PNC soils. These results suggest that microbial response to TNT contamination was dependent on the history of soil use. The results also confirm that the microbial potential of waste soils such as PBR soil (usually disposed of via landfill) can be successfully used for accelerated TNT chip degradation. This promotes sustainable re-use of waste soils extending the life span of landfill sites.
Collapse
Affiliation(s)
- Mason Erkelens
- School of Biological Sciences, Flinders University of South Australia, Sturt Road, Bedford Park, Adelaide, GPO Box 2100, Adelaide, SA 5001, Australia
| | | | | | | | | | | | | |
Collapse
|
37
|
Giannetto M, Maiolini E, Ferri EN, Girotti S, Mori G, Careri M. Competitive amperometric immunosensor based on covalent linking of a protein conjugate to dendrimer-functionalised nanogold substrate for the determination of 2,4,6-trinitrotoluene. Anal Bioanal Chem 2012; 405:737-43. [DOI: 10.1007/s00216-012-6137-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/11/2012] [Accepted: 05/22/2012] [Indexed: 11/28/2022]
|
38
|
Xu J, Jing N. Effects of 2,4-dinitrotoluene exposure on enzyme activity, energy reserves and condition factors in common carp (Cyprinus carpio). JOURNAL OF HAZARDOUS MATERIALS 2012; 203-204:299-307. [PMID: 22209323 DOI: 10.1016/j.jhazmat.2011.12.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 12/04/2011] [Accepted: 12/09/2011] [Indexed: 05/31/2023]
Abstract
In this study relative condition factor (RCF) and hepatosomatic index (HSI) as well as the available energy reserves of common carp (Cyprinus carpio) by 2,4-DNT semi-static bioassay were determined and linked to effects of enzymes in liver tissues. Fish were exposed at sublethal concentrations of 2,4-DNT (0.13 μg/L, 0.1, 0.5, 1.0mg/L) for 7 and 15 d. Based on the results, there was no significant change in all parameters measured in fish exposed to 2,4-DNT at environmental related concentration, but 2,4-DNT stress in fish exposed to higher concentrations reflected the significant changes of physiological and biochemical responses. 2,4-DNT stress resulted in EROD activity induction in the liver, and the levels of EROD activity ranged from 0.39- to 1.83-fold higher than control. For GK, Na(+)/K(+)-ATPase, and GST, these enzyme activity continued to decline after exposure to 0.1, 0.5 and 1.0mg/L 2,4-DNT, whereas the trend on GK and Na(+)/K(+)-ATPase was more obvious than GST. Through principal component analysis, effects by 2,4-DNT-stress in each test group were distinguished. Additionally, indications of a trade-off between metabolic cost of toxicant exposure and processes vital to the survival of the organism were seen at the enzyme activity level as well as on higher levels of biological organization.
Collapse
Affiliation(s)
- Jingbo Xu
- Department of Environmental Science and Engineering, Northeast Normal University, Changchun 130024, China.
| | | |
Collapse
|
39
|
Ribeiro da Silva MAV, Monte MJS, Lobo Ferreira AIMC, Oliveira JASA, Cimas Á. A Combined Experimental and Computational Thermodynamic Study of Difluoronitrobenzene Isomers. J Phys Chem B 2010; 114:12914-25. [DOI: 10.1021/jp1058885] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Manuel A. V. Ribeiro da Silva
- Centro de Investigação em Química, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, 687, P-4169-007 Porto, Portugal
| | - Manuel J. S. Monte
- Centro de Investigação em Química, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, 687, P-4169-007 Porto, Portugal
| | - Ana I. M. C. Lobo Ferreira
- Centro de Investigação em Química, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, 687, P-4169-007 Porto, Portugal
| | - Juliana A. S. A. Oliveira
- Centro de Investigação em Química, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, 687, P-4169-007 Porto, Portugal
| | - Álvaro Cimas
- Centro de Investigação em Química, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, 687, P-4169-007 Porto, Portugal
| |
Collapse
|
40
|
Chauhan A, Pandey G, Sharma NK, Paul D, Pandey J, Jain RK. p-Nitrophenol degradation via 4-nitrocatechol in Burkholderia sp. SJ98 and cloning of some of the lower pathway genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:3435-3441. [PMID: 20359211 DOI: 10.1021/es9024172] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Microbial degradation studies have pointed toward the occurrence of two distinct PNP catabolic pathways in Gram positive and Gram negative bacteria. The former involves 4-nitrocatechol (4-NC), 1,2,4-benzenetriol (BT), and maleylacetate (MA) as major degradation intermediates, whereas the later proceeds via formation of 1,4-benzoquinone (BQ) and hydroquinone (HQ). In the present study we identified a Gram negative organism viz. Burkholderia sp. strain SJ98 that degrades PNP via 4NC, BT, and MA. A 6.89 Kb genomic DNA fragment of strain SJ98 that encompasses seven putatively identified ORFs (orfA, pnpD, pnpC, orfB, orfC, orfD, and orfE) was cloned. PnpC is benzenetriol dioxygenase belonging to the intradiol dioxygenase superfamily, whereas PnpD is identified as maleylacetate reductase, a member of the Fe-ADH superfamily showing NADH dependent reductase activity. The in vitro activity assays carried out with purified pnpC and pnpD (btd and mar) gene products transformed BT to MA and MA to beta-ketoadipate, respectively. The cloning, sequencing, and characterization of these genes along with the functional PNP degradation studies ascertained the involvement of 4-NC, BT, and MA as degradation intermediates of PNP pathway in this strain. This is one of the first conclusive reports for 4-NC and BT mediated degradation of PNP in a Gram negative organism.
Collapse
Affiliation(s)
- Archana Chauhan
- Institute of Microbial Technology Sector-39A, Chandigarh-160036, India
| | | | | | | | | | | |
Collapse
|
41
|
Bankar AV, Kumar AR, Zinjarde SS. Environmental and industrial applications of Yarrowia lipolytica. Appl Microbiol Biotechnol 2009; 84:847-65. [DOI: 10.1007/s00253-009-2156-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 07/17/2009] [Accepted: 07/18/2009] [Indexed: 02/06/2023]
|
42
|
Abstract
2,4,6-Trinitrotoluene (TNT) is an important occupational and environmental pollutant. In TNT-exposed humans, notable toxic manifestations have included aplastic anaemia, toxic hepatitis, cataracts, hepatomegaly and liver cancer. Therefore, it is important to develop protection measures and to monitor workers involved in the clean-up of ammunition sites. Haemoglobin (Hb) adducts of TNT, 4-amino-2,6-dinitrotoluene (4ADNT) and 2-amino-4,6-dinitrotoluene (2ADNT), and the urine metabolites of TNT, 4ADNT and 2ADNT were found in 22-50% of the exposed workers, but not in the control group. The exposed workers were wearing protective equipment. The levels of erythrocytes, haemoglobin, creatinine, serum glutamic pyruvic transaminase and lymphocyte levels were significantly lower in the exposed workers than in the non-exposed workers. The levels of blood urea and reticulocytes were significantly higher in the exposed workers than in the non-exposed workers. Headache (26%), mucous membrane irritation (16%), sick leave (18%), lassitude (8%), anxiety (6%), shortness of breath (3%), nausea (5%) and allergic reactions (8%) were reported by the exposed workers. In a further analysis the U-4ADNT levels and the Hb-adduct levels were compared to the blood parameter and the health effects. The blood parameters were not significantly different between the U-4ADNT positive and U-4ADNT-negative group. Headache, mucous membrane irritation, sick leave, lassitude, anxiety, shortness of breath and allergic reactions were statistically not different between the two groups. Also in the workers with Hb-4ADNT adducts no significant negative changes were seen in regards to the changes of the blood parameters or the health effects. According to the results of the present study, it appears that the blood parameter changes and the health effects are more influenced by other factors than by the internal exposure to TNT.
Collapse
Affiliation(s)
- Gabriele Sabbioni
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA.
| | | |
Collapse
|
43
|
Kubota A, Maeda T, Nagafuchi N, Kadokami K, Ogawa HI. TNT biodegradation and production of dihydroxylamino-nitrotoluene by aerobic TNT degrader Pseudomonas sp. strain TM15 in an anoxic environment. Biodegradation 2008; 19:795-805. [PMID: 18299804 DOI: 10.1007/s10532-008-9182-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2007] [Accepted: 02/12/2008] [Indexed: 11/26/2022]
Abstract
Anaerobic bacteria have been used to produce 2,4-dihydroxylamino-nitrotoluene (2,4DHANT), a reductive metabolite of 2,4,6-trinitrotoluene (TNT). Here, an aerobic TNT biodegrader Pseudomonas sp. strain TM15 produced 2,4DHANT as evidenced by the molecular ion with m/z of 199 identified from LC-TOFMS analyses. TNT biodegradation with a high cell concentration (10(9) cells/ml) led to a significant accumulation of 2,4DHANT in the culture medium, as well as hydroxylamino-dinitrotoluenes (HADNTs), although these products were not accumulated when a low cell concentration was used; also, the accumulation of diamino-nitrotoluene and of an unidentified metabolite were observed in the culture medium with the high cell concentration (10(10) cells/ml). 2,4DHANT overproduction was a function of the aeration speed since cultures with low aeration speeds (30 rpm) had a 19-fold higher DHANT productivity than those aerated with high speeds (180 rpm); this indicates that molecular oxygen was related to the formation of 2,4DHANT. The quantification of dissolved oxygen (DO) in the media demonstrated that the productivity of 2,4DHANT was increased at low DO values. Moreover, supplying oxygen to the culture media produced a remarkable decrease of 2,4DHANT accumulation; these results clearly indicate that high 2,4DHANT production was a consequence of the oxygen deficit in the culture medium. This finding is useful for understanding the TNT biodegradation (bioremediation technology) in an anoxic environment.
Collapse
Affiliation(s)
- Akira Kubota
- Department of Biological Functions and Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Maeda T, Kubota A, Nagafuchi N, Kadokami K, Ogawa HI. Crucial problem in rapid spectrophotometric determination of 2,4,6-trinitrotoluene and its breakthrough method. J Microbiol Methods 2006; 66:568-71. [PMID: 16545473 DOI: 10.1016/j.mimet.2006.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 02/07/2006] [Indexed: 11/21/2022]
Abstract
A rapid spectrophotometric determination for 2,4,6-trinitrotoluene (TNT) is significant because this method is suitable for simultaneous analyses of the numerous samples. We found one problem that TNT reduction products interfere with the TNT detection in this assay, and we overcame this problem by heating the samples at 95 degrees C, resulting in the production of compounds that did not interfere.
Collapse
Affiliation(s)
- Toshinari Maeda
- Department of Biological Functions and Engineering, Graduate School of Life Sciences and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan
| | | | | | | | | |
Collapse
|
46
|
Harth V, Bolt HM, Brüning T. Cancer of the urinary bladder in highly exposed workers in the production of dinitrotoluenes: a case report. Int Arch Occup Environ Health 2005; 78:677-80. [PMID: 16049721 DOI: 10.1007/s00420-005-0012-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Accepted: 04/28/2005] [Indexed: 10/25/2022]
Abstract
Technical dinitrotoluene (consisting of 2,4- and 2,6-dinitrotoluene isomers) has been widely used as explosives. Both technical isomers are mutagenic in Salmonella typhimurium TA98 strains and carcinogenic in rodents. 2,4-dinitrotoluene shows a dose-dependency of malignant tumors of the kidneys, liver, and mammary glands in rats and mice. In this case report, we discuss a cluster of three cases of urothelial cancer amongst a group of about 60 workers exposed to dinitrotoluenes. The workers were employed in the manufacturing of nitrotoluene explosives in the former German Democratic Republic. The cases occurred within a period of 12 years (1990-2002) leading to a 15.9 fold higher incidence of cancer of the urinary bladder than of the federal state where the chemical factory was located. The observation of the cluster of urothelial cancer in persons highly exposed to nitrotoluenes underlines the putative human carcinogenicity of dinitrotoluenes with the human urothelium as a relevant target tissue.
Collapse
Affiliation(s)
- Volker Harth
- Berufsgenossenschaftliches Forschungsinstitut für Arbeitsmedizin (BGFA), Ruhr-Universität Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany.
| | | | | |
Collapse
|
47
|
Krämer PM, Kremmer E, Weber CM, Ciumasu IM, Forster S, Kettrup AA. Development of new rat monoclonal antibodies with different selectivities and sensitivities for 2,4,6-trinitrotoluene (TNT) and other nitroaromatic compounds. Anal Bioanal Chem 2005; 382:1919-33. [PMID: 16047192 DOI: 10.1007/s00216-005-3294-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 04/04/2005] [Accepted: 04/26/2005] [Indexed: 11/28/2022]
Abstract
Five new rat monoclonal antibodies (mAbs) for 2,4,6-trinitrotoluene (TNT) and other nitroaromatic compounds, including, especially, the metabolite 2-amino-4,6-dinitrotoluene (2-ADNT), are described. Five heterogeneous, competitive enzyme-linked immunosorbent assays (ELISAs) were developed. Assay 1 uses mAb DNT4 3F6 as recognition element and gives a standard curve for TNT in 40 mmol L(-1) phosphate buffered saline (PBS) with a test midpoint (IC50) of 0.26+/-0.08 microg L(-1) (n=20). Assay 2 (mAb DNT4 4G4) has an IC50 of 0.35+/-0.07 microg L(-1) (n=18), assay 3 (mAb DNT4 1A3) has an IC50 of 0.73+/-0.14 microg L(-1) (n=15), and assay 4 (mAb DNT4 1A7) has an IC50 of 2.32+/-0.70 microg L(-1) (n=15). Assay 5 (mAb DNT2 4B4) is very selective for 2-ADNT and has an IC50 of 8.5+/-1.7 microg L(-1) (n=15) in PBS. These antibodies for nitroaromatic compounds differ not only in their sensitivity but also in their selectivity. Major cross-reactants are 1,3,5-trinitrobenzene, 2-ADNT, 4-amino-2,6-dinitrotoluene (4-ADNT), 2,4-dinitroaniline, 3,5-dinitroaniline, and 2,6-dinitroaniline. Although assay 5 is not highly sensitive, the mAb DNT2 4B4 in this assay is highly selective for 2-ADNT. Of all the compounds tested, only 2,4-dinitroaniline and 3,5-dinitroaniline had relevant cross reactivities, 18% and about 26%, respectively. Two ELISAs, using mAbs DNT4 3F6 and DNT2 4B4, were used to analyze different concentrations of TNT and 2-ADNT, respectively, in three different surface water matrices (river and lake water). Both assays were affected by the matrix, but usually performed well (recovery within the range 70-120%). In addition, these ELISAs were used to analyze mixtures of TNT, 2-ADNT, and 4-ADNT, at three different concentrations, in the same water matrices. A different recognition pattern was clearly visible with both assays and depended on the cross reactivities of the corresponding mAb.
Collapse
Affiliation(s)
- Petra M Krämer
- GSF, National Research Centre for Environment and Health, Institute of Ecological Chemistry, Ingolstädter Landstrasse 1, 85764 Neuherberg, Oberschleissheim, Germany.
| | | | | | | | | | | |
Collapse
|
48
|
Sabbioni G, Liu YY, Yan H, Sepai O. Hemoglobin adducts, urinary metabolites and health effects in 2,4,6-trinitrotoluene exposed workers. Carcinogenesis 2005; 26:1272-9. [PMID: 15817613 DOI: 10.1093/carcin/bgi078] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
2,4,6-Trinitrotoluene (TNT) is an important occupational and environmental pollutant. In TNT exposed humans, the notable toxic manifestations have included aplastic anemia, toxic hepatitis, cataract, hepatomegaly and liver cancer. Therefore, we developed methods to biomonitor workers exposed to TNT. The workers were employed in a typical ammunition factory in China. The controls were recruited from the same factory. We determined hemoglobin (Hb) adducts and urine metabolites of TNT. Hb-adducts of TNT, 4-amino-2,6-dinitrotoluene (4ADNT) and 2-amino-4,6-dinitrotoluene (2ADNT), and the urine metabolites of TNT, 4ADNT and 2ADNT were found in all the workers and in a few controls. 4ADNT was the main product. Although the levels of 2ADNT correlated well with 4ADNT, 2ADNT was not found in all the samples. Therefore, 4ADNT was the best marker of exposure for Hb-adducts and urine metabolites. The levels of the urine metabolites and Hb-adducts were related to the health status of the workers. The Hb-adduct 4ADNT was statistically significantly associated with risk of hepatomegaly, splenomegaly and cataract. The odds ratio (OR) for cataract, splenomegaly and hepatomegaly were 6.4 [95% confidence interval (CI) = 1.4-29.6], 9.6 (1.1-85.3) and 7.6 (1.3-43.7), respectively. No correlation was found between urine metabolites and health effects. These results were tested for confounding factors like age, workyears, smoker status, smoke years, cigarettes per day and hepatitis B status using stepwise forward logistic regression analysis. In the case of splenomegaly, hepatitis B status is a confounder. In the case of cataract, age is a confounder. The Hb-adduct, 4ADNT, is a good biomarker of exposure and biomarker of biological effect.
Collapse
Affiliation(s)
- Gabriele Sabbioni
- Institute of Environmental and Occupational Toxicology, Casella Postale 108, 6780 Airolo, Switzerland.
| | | | | | | |
Collapse
|
49
|
Jain MR, Zinjarde SS, Deobagkar DD, Deobagkar DN. 2,4,6-trinitrotoluene transformation by a tropical marine yeast, Yarrowia lipolytica NCIM 3589. MARINE POLLUTION BULLETIN 2004; 49:783-788. [PMID: 15530522 DOI: 10.1016/j.marpolbul.2004.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Yarrowia lipolytica NCIM 3589, a tropical marine degrader of hydrocarbons and triglycerides transformed 2,4,6-trinitrotoluene (TNT) very efficiently. Though this yeast could not utilize TNT as the sole carbon or nitrogen source, it was capable of reducing the nitro groups in TNT to aminodinitrotoluene (ADNT). In a complete medium containing glucose and ammonium sulphate as the available carbon and nitrogen sources respectively, the culture was able to completely transform 1 mM (227 ppm) of TNT under such conditions. A dual pathway was found to be functional, one of which resulted in the formation of the hydride-Meisenheimer complex (H(-)TNT) as a transiently accumulating metabolite that was subsequently denitrated to 2,4-dinitrotoluene (2,4-DNT), whereas the other pathway resulted in the formation of amino derivatives. The presence of increasing amounts of reducing equivalents in the form of glucose promoted better growth and the nitroreductases of this yeast to reduce the aromatic ring to 2,4-DNT although, the reduction of the nitro groups to amino groups was the major functional pathway. The ability of this tropical marine yeast to transform TNT into products such as 2,4-DNT which in turn could be metabolized by other microbes has implications in the use of this yeast for bioremediation of TNT polluted marine environments.
Collapse
Affiliation(s)
- M R Jain
- Molecular Biology Research Laboratory, Department of Zoology, University of Pune, Pune 411007, India
| | | | | | | |
Collapse
|