1
|
Lederer AK, Görrissen N, Nguyen TT, Kreutz C, Rasel H, Bartsch F, Lang H, Endres K. Exploring the effects of gut microbiota on cholangiocarcinoma progression by patient-derived organoids. J Transl Med 2025; 23:34. [PMID: 39789543 PMCID: PMC11716211 DOI: 10.1186/s12967-024-06012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Recent research indicates a role of gut microbiota in development and progression of life-threatening diseases such as cancer. Carcinomas of the biliary ducts, the so-called cholangiocarcinomas, are known for their aggressive tumor biology, implying poor prognosis of affected patients. An impact of the gut microbiota on cholangiocarcinoma development and progression is plausible due to the enterohepatic circulation and is therefore the subject of scientific debate, however evidence is still lacking. This review aimed to discuss the suitability of complex cell culture models to investigate the role of gut microbiota in cholangiocarcinoma progression. MAIN BODY Clinical research in this area is challenging due to poor comparability of patients and feasibility reasons, which is why translational models are needed to understand the basis of tumor progression in cholangiocarcinoma. A promising approach to investigate the influence of gut microbiota could be an organoid model. Organoids are 3D cell models cultivated in a modifiable and controlled condition, which can be grown from tumor tissue. 3D cell models are able to imitate physiological and pathological processes in the human body and thus contribute to a better understanding of health and disease. CONCLUSION The use of complex cell cultures such as organoids and organoid co-cultures might be powerful and valuable tools to study not only the growth behavior and growth of cholangiocarcinoma cells, but also the interaction with the tumor microenvironment and with components of the gut microbiota.
Collapse
Affiliation(s)
- Ann-Kathrin Lederer
- Department of General, Visceral and Transplantation Surgery, University Medical Center Mainz, 55131, Mainz, Germany.
- Center for Complementary Medicine, Department of Medicine II, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, 79106, Freiburg, Germany.
| | - Nele Görrissen
- Department of General, Visceral and Transplantation Surgery, University Medical Center Mainz, 55131, Mainz, Germany
| | - Tinh Thi Nguyen
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, 55131, Mainz, Germany
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
| | - Clemens Kreutz
- Institute of Medical Biometry and Statistics (IMBI), Faculty of Medicine and Medical Center, 79106, Freiburg, Germany
| | - Hannah Rasel
- Department of General, Visceral and Transplantation Surgery, University Medical Center Mainz, 55131, Mainz, Germany
| | - Fabian Bartsch
- Department of General, Visceral and Transplantation Surgery, University Medical Center Mainz, 55131, Mainz, Germany
| | - Hauke Lang
- Department of General, Visceral and Transplantation Surgery, University Medical Center Mainz, 55131, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, 55131, Mainz, Germany
- Faculty of Computer Sciences and Microsystems Technology, University of Applied Sciences Kaiserslautern, 66482, Zweibrücken, Germany
| |
Collapse
|
2
|
Ahmadi Asouri S, Aghadavood E, Mirzaei H, Abaspour A, Esmaeil Shahaboddin M. PIWI-interacting RNAs (PiRNAs) as emerging biomarkers and therapeutic targets in biliary tract cancers: A comprehensive review. Heliyon 2024; 10:e33767. [PMID: 39040379 PMCID: PMC11261894 DOI: 10.1016/j.heliyon.2024.e33767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/09/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Cancers affecting the biliary tract, such as gallbladder cancer and cholangiocarcinoma, make up a small percentage of adult gastrointestinal malignancies, but their incidence is on the rise. Due to the lack of dependable molecular biomarkers for diagnosis and prognosis, these cancers are often not detected until later stages and have limited treatment options. Piwi-interacting RNAs (piRNAs) are a type of small noncoding RNA that interacts with Piwi proteins and has been linked to various diseases, especially cancer. Manipulation of piRNA expression has the potential to serve as an important biomarker and target for therapy. This review uncovers the relationship between PIWI-interacting RNA (piRNA) and a variety of gastrointestinal cancers, including biliary tract cancer (BTC). It is evident that piRNAs have the ability to impact gene expression and regulate key genes and pathways related to the advancement of digestive cancers. Abnormal expression of piRNAs plays a significant role in the development and progression of digestive-related malignancies. The potential of piRNAs as potential biomarkers for diagnosis and prognosis, as well as therapeutic targets in BTC, is noteworthy. Nevertheless, there are obstacles and limitations that require further exploration to fully comprehend piRNAs' role in BTC and to devise effective diagnostic and therapeutic approaches using piRNAs. In summary, this review underscores the value of piRNAs as valuable biomarkers and promising targets for treating BTC, as we delve into the association between piRNAs and various gastrointestinal cancers, including BTC, and how piRNAs can impact gene expression and control essential pathways for digestive cancer advancement. The present research consists of a thorough evaluation presented in a storytelling style. The databases utilized to locate original sources were PubMed, MEDLINE, and Google Scholar, and the search was conducted using the designated keywords.
Collapse
Affiliation(s)
- Sahar Ahmadi Asouri
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Esmat Aghadavood
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Institute for Basic Sciences, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Abaspour
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Esmaeil Shahaboddin
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Institute for Basic Sciences, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
3
|
Curti S, Gallo M, Ferrante D, Bella F, Boschetti L, Casotto V, Ceppi M, Cervino D, Fazzo L, Fedeli U, Giorgi Rossi P, Giovannetti L, Girardi P, Lando C, Migliore E, Miligi L, Oddone E, Perlangeli V, Pernetti R, Piro S, Storchi C, Tumino R, Zona A, Zorzi M, Brandi G, Ferretti S, Magnani C, Marinaccio A, Mattioli S. Cholangiocarcinoma and Occupational Exposure to Asbestos: Insights From the Italian Pooled Cohort Study. LA MEDICINA DEL LAVORO 2024; 115:e2024016. [PMID: 38686579 PMCID: PMC11181221 DOI: 10.23749/mdl.v115i2.14649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Recent studies supported the association between occupational exposure to asbestos and risk of cholangiocarcinoma (CC). Aim of the present study is to investigate this association using an update of mortality data from the Italian pooled asbestos cohort study and to test record linkage to Cancer Registries to distinguish between hepatocellular carcinoma (HCC) and intrahepatic/extrahepatic forms of CC. METHODS The update of a large cohort study pooling 52 Italian industrial cohorts of workers formerly exposed to asbestos was carried out. Causes of death were coded according to ICD. Linkage was carried out for those subjects who died for liver or bile duct cancer with data on histological subtype provided by Cancer Registries. RESULTS 47 cohorts took part in the study (57,227 subjects). We identified 639 causes of death for liver and bile duct cancer in the 44 cohorts covered by Cancer Registry. Of these 639, 240 cases were linked to Cancer Registry, namely 14 CC, 83 HCC, 117 cases with unspecified histology, 25 other carcinomas, and one case of cirrhosis (likely precancerous condition). Of the 14 CC, 12 occurred in 2010-2019, two in 2000-2009, and none before 2000. CONCLUSION Further studies are needed to explore the association between occupational exposure to asbestos and CC. Record linkage was hampered due to incomplete coverage of the study areas and periods by Cancer Registries. The identification of CC among unspecific histology cases is fundamental to establish more effective and targeted liver cancer screening strategies.
Collapse
Affiliation(s)
- Stefania Curti
- Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - Mena Gallo
- Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - Daniela Ferrante
- Unit of Medical Statistics, Department of Translational Medicine, Università del Piemonte Orientale and Cancer Epidemiology Unit, CPO-Piemonte, Novara, Italy
| | - Francesca Bella
- Syracuse Cancer Registry, Provincial Health Authority of Syracuse, Italy
| | | | - Veronica Casotto
- Epidemiological Department, Azienda Zero, Veneto Region, Padua, Italy
| | - Marcello Ceppi
- Clinical Epidemiology Unit, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Lucia Fazzo
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Ugo Fedeli
- Epidemiological Department, Azienda Zero, Veneto Region, Padua, Italy
| | - Paolo Giorgi Rossi
- Epidemiology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Lucia Giovannetti
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Paolo Girardi
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Venice, Italy
| | - Cecilia Lando
- Clinical Epidemiology Unit, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy
| | - Enrica Migliore
- Unit of Cancer Epidemiology, Regional Operating Center of Piemonte (COR Piemonte), University of Torino and CPO-Piemonte, Turin, Italy
| | - Lucia Miligi
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Enrico Oddone
- Department of Public Health, Experimental and Forensic Medicine - University of Pavia, Pavia, Italy
| | | | - Roberta Pernetti
- Department of Public Health, Experimental and Forensic Medicine - University of Pavia, Pavia, Italy
| | - Sara Piro
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Cinzia Storchi
- Epidemiology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Rosario Tumino
- Syracuse Cancer Registry, Provincial Health Authority of Syracuse, Italy
| | - Amerigo Zona
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Manuel Zorzi
- Epidemiological Department, Azienda Zero, Veneto Region, Padua, Italy
| | - Giovanni Brandi
- Department of Medical and Surgical Sciences, University of Bologna, Italy
- Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | - Stefano Ferretti
- Emilia-Romagna Cancer Registry, Ferrara Unit, Local Health Authority, Ferrara; and University of Ferrara, Italy
| | - Corrado Magnani
- Unit of Medical Statistics, Department of Translational Medicine, Università del Piemonte Orientale and Cancer Epidemiology Unit, CPO-Piemonte, Novara, Italy
| | - Alessandro Marinaccio
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’ Compensation Authority, Rome, Italy
| | - Stefano Mattioli
- Department of Environmental and Prevention Sciences, University of Ferrara, Italy
| | | |
Collapse
|
4
|
Khosla D, Misra S, Chu PL, Guan P, Nada R, Gupta R, Kaewnarin K, Ko TK, Heng HL, Srinivasalu VK, Kapoor R, Singh D, Klanrit P, Sampattavanich S, Tan J, Kongpetch S, Jusakul A, Teh BT, Chan JY, Hong JH. Cholangiocarcinoma: Recent Advances in Molecular Pathobiology and Therapeutic Approaches. Cancers (Basel) 2024; 16:801. [PMID: 38398194 PMCID: PMC10887007 DOI: 10.3390/cancers16040801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Cholangiocarcinomas (CCA) pose a complex challenge in oncology due to diverse etiologies, necessitating tailored therapeutic approaches. This review discusses the risk factors, molecular pathology, and current therapeutic options for CCA and explores the emerging strategies encompassing targeted therapies, immunotherapy, novel compounds from natural sources, and modulation of gut microbiota. CCA are driven by an intricate landscape of genetic mutations, epigenetic dysregulation, and post-transcriptional modification, which differs based on geography (e.g., for liver fluke versus non-liver fluke-driven CCA) and exposure to environmental carcinogens (e.g., exposure to aristolochic acid). Liquid biopsy, including circulating cell-free DNA, is a potential diagnostic tool for CCA, which warrants further investigations. Currently, surgical resection is the primary curative treatment for CCA despite the technical challenges. Adjuvant chemotherapy, including cisplatin and gemcitabine, is standard for advanced, unresectable, or recurrent CCA. Second-line therapy options, such as FOLFOX (oxaliplatin and 5-FU), and the significance of radiation therapy in adjuvant, neoadjuvant, and palliative settings are also discussed. This review underscores the need for personalized therapies and demonstrates the shift towards precision medicine in CCA treatment. The development of targeted therapies, including FDA-approved drugs inhibiting FGFR2 gene fusions and IDH1 mutations, is of major research focus. Investigations into immune checkpoint inhibitors have also revealed potential clinical benefits, although improvements in survival remain elusive, especially across patient demographics. Novel compounds from natural sources exhibit anti-CCA activity, while microbiota dysbiosis emerges as a potential contributor to CCA progression, necessitating further exploration of their direct impact and mechanisms through in-depth research and clinical studies. In the future, extensive translational research efforts are imperative to bridge existing gaps and optimize therapeutic strategies to improve therapeutic outcomes for this complex malignancy.
Collapse
Affiliation(s)
- Divya Khosla
- Department of Radiotherapy and Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Shagun Misra
- Department of Radiotherapy and Oncology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Pek Lim Chu
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Peiyong Guan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Ritambhra Nada
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Rajesh Gupta
- Department of GI Surgery, HPB, and Liver Transplantation, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Khwanta Kaewnarin
- SingHealth Duke-NUS Institute of Biodiversity Medicine, Singapore 168583, Singapore
| | - Tun Kiat Ko
- Cancer Discovery Hub, National Cancer Center Singapore, Singapore 168583, Singapore
| | - Hong Lee Heng
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Center Singapore, Singapore 168583, Singapore
| | - Vijay Kumar Srinivasalu
- Department of Medical Oncology, Mazumdar Shaw Medical Center, NH Health City Campus, Bommasandra, Bangalore 560099, India
| | - Rakesh Kapoor
- Department of Radiotherapy and Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Deepika Singh
- SingHealth Duke-NUS Institute of Biodiversity Medicine, Singapore 168583, Singapore
| | - Poramate Klanrit
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somponnat Sampattavanich
- Siriraj Center of Research Excellence for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 73170, Thailand
| | - Jing Tan
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Center Singapore, Singapore 168583, Singapore
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Sarinya Kongpetch
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Apinya Jusakul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Bin Tean Teh
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore 169857, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Center Singapore, Singapore 168583, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Jason Yongsheng Chan
- Cancer Discovery Hub, National Cancer Center Singapore, Singapore 168583, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Division of Medical Oncology, National Cancer Center, Singapore 168583, Singapore
| | - Jing Han Hong
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
5
|
Caraballo-Arias Y, Roccuzzo F, Graziosi F, Danilevskaia N, Rota S, Zunarellli C, Caffaro P, Boffetta P, Bonetti M, Violante FS. Quantitative Assessment of Asbestos Fibers in Abdominal Organs: A Scoping Review. LA MEDICINA DEL LAVORO 2023; 114:e2023048. [PMID: 38060208 PMCID: PMC10731569 DOI: 10.23749/mdl.v114i6.14946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/11/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Quantification of asbestos fibers has been mainly performed in the lung but rarely in other organs. However, this may be relevant to understanding better translocation pathways and the oncogenic effects of asbestos on the human body. Electron microscopy is the best technology available to assess the type of fiber, dimensions, and distribution of asbestos fibers in different tissues and as a biomarker of cumulative dose. OBJECTIVES This scoping review aims to summarize the findings of the studies in which asbestos fibers have been quantified by electron microscopy, occasionally associated with X-ray microanalysis, in normal and pathological tissue of ten abdominal organs. METHODS A scoping review has been performed by searching articles that quantified asbestos fibers in abdominal organs by electron microscopy (Scanning- SEM or Transmission- TEM). RESULTS The 12 selected studies included 204 cases, and 325 samples were analyzed. The colon and rectum, kidney, bladder, and abdominal lymph nodes were the organs with at least ten samples available with quantification of asbestos fibers. Asbestos fibers were detected in all the abdominal organs considered: the highest value (152,32 million fibers per gram of dry tissue) was found in the colon and was identified using STEM with EDS. CONCLUSION The studies included were heterogeneous in terms of exposure and cases, type of samples, as well as analytical techniques, therefore we cannot confirm a specific pattern of distribution in any organ, based on the low homogeneity of the exposure status. The colon is the organ in which the number of fibers is the highest, probably because of exposure arising from both internal distribution of inhaled fibers and ingestion. Additional studies of the number of asbestos fibers in abdominal organs should be made to achieve better representativity.
Collapse
Affiliation(s)
- Yohama Caraballo-Arias
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna.
| | - Francesco Roccuzzo
- School of Occupational Medicine, Alma Mater Studiorum University of Bologna, 40138 Bologna.
| | - Francesca Graziosi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna.
| | - Nataliia Danilevskaia
- School of Occupational Medicine, Alma Mater Studiorum University of Bologna, 40138 Bologna.
| | - Samantha Rota
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna.
| | - Carlotta Zunarellli
- School of Occupational Medicine, Alma Mater Studiorum University of Bologna, 40138 Bologna.
| | - Paola Caffaro
- School of Occupational Medicine, Alma Mater Studiorum University of Bologna, 40138 Bologna.
| | - Paolo Boffetta
- Stony Brook Cancer Center, Stony Brook University, New York, NY 11794, USA. Stony Brook Department of Family, Population and Preventive Medicine, Renaissance School of Medicine, Stony Brook, NY, USA .
| | - Mattia Bonetti
- School of Occupational Medicine, Alma Mater Studiorum University of Bologna, 40138 Bologna.
| | | |
Collapse
|
6
|
Qurashi M, Vithayathil M, Khan SA. Epidemiology of cholangiocarcinoma. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2023:107064. [PMID: 37709624 DOI: 10.1016/j.ejso.2023.107064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
Cholangiocarcinoma (CCA) represents a heterogenous set of malignancies arising from the biliary tract. Classification of CCA subdivides tumours into intrahepatic (iCCA) and extrahepatic (eCCA), with eCCA further categorised as perihilar (pCCA) and distal (dCCA) lesions. Tumour subtypes show distinct epidemiological, genetic and clinical characteristics. Global incidence and mortality are rising, with the highest rates seen in Asian populations compared to the West. There has been a divergence in recent mortality trends observed between CCA subtypes, with rising rates of iCCA seen compared with eCCA. There are several drivers for these differing trends, including specific risk factors, misclassification of CCA subtypes and variation in diagnosis and surveillance. Risk factors for CCA can be divided into hepatobiliary, extra-hepatic and environmental, with hepatobiliary diseases conferring the largest risk. Surgery represents the only curative treatment for CCA, but can only be offered to early-stage candidates who are otherwise fit; the majority of patients are therefore treated with chemotherapy and, recently, immunotherapy. Due to late-stage presentation of disease, prognosis is poor, with 5-year survival <20%.
Collapse
Affiliation(s)
- Maria Qurashi
- Department of Surgery and Cancer, Imperial College London, W12 0NN, UK
| | | | - Shahid A Khan
- Liver Unit, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, UK.
| |
Collapse
|
7
|
Tavolari S, Brandi G. Mutational Landscape of Cholangiocarcinoma According to Different Etiologies: A Review. Cells 2023; 12:cells12091216. [PMID: 37174616 PMCID: PMC10177226 DOI: 10.3390/cells12091216] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Recent next-generation sequencing (NGS) studies on large cohorts of cholangiocarcinoma (CCA) patients have clearly revealed the extreme intra- and inter-tumoral molecular heterogeneity that characterizes this malignancy. The lack of a stereotyped molecular signature in CCA makes the identification of actionable therapeutic targets challenging, making it mandatory to have a better understanding of the origin of such heterogeneity in order to improve the clinical outcome of these patients. Compelling evidence has shown that the CCA genomic landscape significantly differs according to anatomical subtypes and the underlying etiology, highlighting the importance of conducting molecular studies in different populations of CCA patients. Currently, some risk factors have been recognized in CCA development, while others are emerging from recent epidemiological studies. Nevertheless, the role of each etiologic factor in driving CCA genetic heterogeneity still remains unclear, and available studies are limited. In an attempt to shed more light on this issue, here we review the current literature data on the mutational spectrum of this disease according to different etiologies.
Collapse
Affiliation(s)
- Simona Tavolari
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria of Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Giovanni Brandi
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria of Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
8
|
Vasuri F, Deserti M, Corradini AG, Tavolari S, Relli V, Palloni A, Frega G, Curti S, Mattioli S, Cescon M, D'Errico A, Brandi G. Asbestos exposure as an additional risk factor for small duct intrahepatic cholangiocarcinoma: a pilot study. Sci Rep 2023; 13:2580. [PMID: 36781903 PMCID: PMC9925780 DOI: 10.1038/s41598-023-27791-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 01/09/2023] [Indexed: 02/15/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a rare malignancy, recently classified in small duct and large duct morphological subtypes. Growing evidence suggests asbestos as a putative risk factor for iCCA, albeit no correlation between asbestos and iCCA morphology has been investigated so far. The aim of the present study was to assess the relationship between asbestos exposure and iCCA morphological subtype. Forty patients with surgically removed iCCA were prospectively enrolled: asbestos exposure was assessed according to the Italian National Mesothelioma Register questionnaire. From the surgical iCCA specimens the main histopathological variables were collected, including the small duct (sd-iCCA, 32 patients) and large duct subtypes (ld-iCCA, 8 patients). Five sd-iCCA cases had a definite/probable occupational exposure to asbestos, while no cases of ld-iCCA were classified as being occupationally exposed (definite/probable). Other kind of asbestos exposure (i.e. possible occupational, familial, environmental) were recorded in 16 sd-iCCA and 3 ld-iCCA. Cases with unlikely exposure to asbestos were 11 sd-iCCA (35.5%) and 5 ld-iCCA (62.5%). In conclusion, these findings seem to indicate that sd-iCCA might be more frequently associated to asbestos exposure rather than ld-iCCA, suggesting that asbestos fibres might represent a parenchymal, rather than a ductal risk factor for iCCA. This pilot study must be confirmed by further case-control studies or large independent cohorts.
Collapse
Affiliation(s)
- Francesco Vasuri
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
| | - Marzia Deserti
- Department of Specialty, Diagnostic and Experimental Medicine, University of Bologna, Bologna, Italy
- Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
| | - Angelo G Corradini
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
| | - Simona Tavolari
- Department of Specialty, Diagnostic and Experimental Medicine, University of Bologna, Bologna, Italy
- Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
| | - Valeria Relli
- Department of Specialty, Diagnostic and Experimental Medicine, University of Bologna, Bologna, Italy
- Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
| | - Andrea Palloni
- Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
| | - Giorgio Frega
- Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
| | - Stefania Curti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Stefano Mattioli
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Matteo Cescon
- General and Transplant Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
| | - Antonia D'Errico
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
| | - Giovanni Brandi
- Department of Specialty, Diagnostic and Experimental Medicine, University of Bologna, Bologna, Italy.
- Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy.
| |
Collapse
|
9
|
Any Role for Microbiota in Cholangiocarcinoma? A Comprehensive Review. Cells 2023; 12:cells12030370. [PMID: 36766711 PMCID: PMC9913249 DOI: 10.3390/cells12030370] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Alterations in the human microbiota have been linked to carcinogenesis in several cancers. To date, few studies have addressed the role of the microbiota in cholangiocarcinoma (CCA). Our work aims to update the knowledge about the role of the microbiota in the CCA microenvironment, and to highlight possible novel insights for the development of new diagnostic, prognostic, or even therapeutic strategies. We thus conducted a review of the literature. In recent years, great progress has been made in understanding the pathogenesis, the clinical and histological behavior, and the molecular profile of CCA. Much evidence suggests that the bile microbiota plays an essential role in biliary diseases, including CCA. Some studies have demonstrated that alterations in the qualitative and quantitative composition of the intestinal commensal bacteria lead to overall cancer susceptibility through various pathways. Other studies suggest that the gut microbiota plays a role in the pathogenesis and/or progression of CCA. The clinical implications are far-reaching, and the role of the microbiota in the CCA microenvironment may lead to considering the exciting implications of implementing therapeutic strategies that target the microbiota-immune system axis.
Collapse
|
10
|
Elvevi A, Laffusa A, Scaravaglio M, Rossi RE, Longarini R, Stagno AM, Cristoferi L, Ciaccio A, Cortinovis DL, Invernizzi P, Massironi S. Clinical treatment of cholangiocarcinoma: an updated comprehensive review. Ann Hepatol 2022; 27:100737. [PMID: 35809836 DOI: 10.1016/j.aohep.2022.100737] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023]
Abstract
Cholangiocarcinoma (CCA) is a heterogeneous group of neoplasms of the bile ducts and represents the second most common hepatic cancer after hepatocellular carcinoma; it is sub-classified as intrahepatic cholangiocarcinoma (iCCA) and extrahepatic cholangiocarcinoma (eCCA), the latter comprising both perihilar cholangiocarcinoma (pCCA or Klatskin tumor), and distal cholangiocarcinoma (dCCA). The global incidence of CCA has increased worldwide in recent decades. Chronic inflammation of biliary epithelium and bile stasis represent the main risk factors shared by all CCA sub-types. When feasible, liver resection is the treatment of choice for CCA, followed by systemic chemotherapy with capecitabine. Liver transplants represent a treatment option in patients with very early iCCA, in referral centers only. CCA diagnosis is often performed at an advanced stage when CCA is unresectable. In this setting, systemic chemotherapy with gemcitabine and cisplatin represents the first treatment option, but the prognosis remains poor. In order to ameliorate patients' survival, new drugs have been studied in the last few years. Target therapies are directed against different molecules, which are altered in CCA cells. These therapies have been studied as second-line therapy, alone or in combination with chemotherapy. In the same setting, the immune checkpoints inhibitors targeting programmed death 1 (PD-1), programmed death-ligand 1 (PD-L1), cytotoxic T-lymphocyte antigen-4 (CTLA-4), have been proposed, as well as cancer vaccines and adoptive cell therapy (ACT). These experimental treatments showed promising results and have been proposed as second- or third-line treatment, alone or in combination with chemotherapy or target therapies.
Collapse
Affiliation(s)
- Alessandra Elvevi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alice Laffusa
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Miki Scaravaglio
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Roberta Elisa Rossi
- Gastroenterology and Endoscopy Unit, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Raffaella Longarini
- Division of Oncology, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Anna Maria Stagno
- Division of Oncology, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Cristoferi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Antonio Ciaccio
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Diego Luigi Cortinovis
- Division of Oncology, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Sara Massironi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
11
|
Exposure to Asbestos and Increased Intrahepatic Cholangiocarcinoma Risk: Growing Evidences of a Putative Causal Link. Ann Glob Health 2022; 88:41. [PMID: 35755315 PMCID: PMC9205375 DOI: 10.5334/aogh.3660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/25/2022] [Indexed: 11/20/2022] Open
Abstract
To date the true global incidence of intrahepatic cholangiocarcinoma (iCCA) and the underlying risk factors remain to be fully defined, in particular, the role of occupational and environmental factors. Currently, the putative role of asbestos exposure as a risk factor for iCCA is gaining increased attention in the international scientific community and agencies. In this commentary we review and integrate available epidemiological and mechanistic evidences that support a potential role of asbestos exposure in iCCA etiology.
Collapse
|
12
|
Seeherunwong A, Chaiear N, Khuntikeo N, Ekpanyaskul C. The Proportion of Occupationally Related Cholangiocarcinoma: A Tertiary Hospital Study in Northeastern Thailand. Cancers (Basel) 2022; 14:cancers14102386. [PMID: 35625989 PMCID: PMC9139931 DOI: 10.3390/cancers14102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Northeastern Thailand has the world’s highest incidence rate of cholangiocarcinoma (CCA), whereas a consequence, approximately 14,000 patients die annually. In most cases, the causal factors are identified, but, for some, they remain unknown. Legally imported industrial chemicals such as 1,2-dichloropropane (1,2-DCP), dichloromethane (DCM), and asbestos fibers are defined as occupational causes of CCA. An investigation into these vis-à-vis the diagnosis of occupationally related CCA in Thailand has not been conducted, but is important for understanding the potential magnitude of the problem. The current study found that the proportion of occupationally related CCA was approximately 5.5%, as well as a lower proportion of occupational history taken by treating physicians. Improving physician skills and developing an assistive tool for exploring occupational history might improve the documentation of work-related conditions. Abstract Northeastern Thailand registers the highest worldwide incidence of cholangiocarcinoma (CCA). Most of the cases are associated with liver flukes, while unknown causes comprise approximately 10–30% of cases, and these could be due to occupational exposures. Our aim was to determine the magnitude of occupational causes of CCA in a tertiary hospital in northeastern Thailand. We conducted a cross-sectional study with a sample of 220 patients between March and November 2021. Descriptive statistics were used to analyze the findings. Clinical information and telephone interviews were used to explore significant occupational histories. An occupational consensus meeting was held with two occupational physicians, an industrial hygienist, and a hepatobiliary surgeon to decide on the final diagnosis. The response rate was 90.9% (200/220). Based on the medical records and telephone interviews, researchers found that 11 participants had significant exposure. After occupational consensus, it was agreed that the eleven had possible occupational causes, 5.5% (11/200)–54.5% (6/11) being due to asbestos fibers, 45.5% (5/11) due to dichloromethane, and 9.1% (1/11) due to 1,2-dichloropropane. Only 4% (8/200) had occupational histories collected by their treating physicians. Taken together, occupationally related CCA appears to have been underestimated, so improving occupational history taking is needed to properly identify and classify work-related CCA—both for patient treatment and occupational hazard prevention.
Collapse
Affiliation(s)
- Anantapat Seeherunwong
- Department of Community, Family and Occupational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Naesinee Chaiear
- Department of Community, Family and Occupational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Correspondence: ; Tel.: +66-43363587
| | - Narong Khuntikeo
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Cholangiocarcinoma Screening and Care Program (CASCAP), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chatchai Ekpanyaskul
- Department of Preventive and Social Medicine, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand;
| |
Collapse
|
13
|
Environmental and Lifestyle Risk Factors in the Carcinogenesis of Gallbladder Cancer. J Pers Med 2022; 12:jpm12020234. [PMID: 35207722 PMCID: PMC8877116 DOI: 10.3390/jpm12020234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/08/2021] [Accepted: 12/23/2021] [Indexed: 02/01/2023] Open
Abstract
Gallbladder cancer (GBC) is an aggressive neoplasm that in an early stage is generally asymptomatic and, in most cases, is diagnosed in advanced stages with a very low life expectancy because there is no curative treatment. Therefore, understanding the early carcinogenic mechanisms of this pathology is crucial to proposing preventive strategies for this cancer. The main risk factor is the presence of gallstones, which are associated with some environmental factors such as a sedentary lifestyle and a high-fat diet. Other risk factors such as autoimmune disorders and bacterial, parasitic and fungal infections have also been described. All these factors can generate a long-term inflammatory state characterized by the persistent activation of the immune system, the frequent release of pro-inflammatory cytokines, and the constant production of reactive oxygen species that result in a chronic damage/repair cycle, subsequently inducing the loss of the normal architecture of the gallbladder mucosa that leads to the development of GBC. This review addresses how the different risk factors could promote a chronic inflammatory state essential to the development of gallbladder carcinogenesis, which will make it possible to define some strategies such as anti-inflammatory drugs or public health proposals in the prevention of GBC.
Collapse
|
14
|
OUP accepted manuscript. Occup Med (Lond) 2022; 72:378-385. [DOI: 10.1093/occmed/kqac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
15
|
Kingham TP, Aveson VG, Wei AC, Castellanos JA, Allen PJ, Nussbaum DP, Hu Y, D'Angelica MI. Surgical management of biliary malignancy. Curr Probl Surg 2021; 58:100854. [PMID: 33531120 PMCID: PMC8022290 DOI: 10.1016/j.cpsurg.2020.100854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Affiliation(s)
| | - Victoria G Aveson
- New York Presbyterian Hospital-Weill Cornel Medical Center, New York, NY
| | - Alice C Wei
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Peter J Allen
- Duke Cancer Center, Chief, Division of Surgical Oncology, Duke University School of Medicine, Durham, NC
| | | | - Yinin Hu
- Division of Surgical Oncology, University of Maryland, Baltimore, MD
| | - Michael I D'Angelica
- Memorial Sloan Kettering Cancer Center, Professor of Surgery, Weill Medical College of Cornell University, New York, NY..
| |
Collapse
|
16
|
Rodrigues PM, Olaizola P, Paiva NA, Olaizola I, Agirre-Lizaso A, Landa A, Bujanda L, Perugorria MJ, Banales JM. Pathogenesis of Cholangiocarcinoma. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 16:433-463. [PMID: 33264573 DOI: 10.1146/annurev-pathol-030220-020455] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cholangiocarcinoma (CCA) encompasses a group of malignancies that can arise at any point in the biliary tree. Although considered a rare cancer, the incidence of CCA is increasing globally. The silent and asymptomatic nature of these tumors, particularly in their early stages, in combination with their high aggressiveness, intra- and intertumor heterogeneity, and chemoresistance, significantly compromises the efficacy of current therapeutic options, contributing to a dismal prognosis. During the last few years, increasing efforts have been made to unveil the etiologies and pathogenesis of these tumors and to develop more effective therapies. In this review, we summarize current findings in the field of CCA, mainly focusing on the mechanisms of pathogenesis, cells of origin, genomic and epigenetic abnormalities, molecular alterations, chemoresistance, and therapies.
Collapse
Affiliation(s)
- Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; , .,National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paula Olaizola
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; ,
| | - Nuno A Paiva
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; ,
| | - Irene Olaizola
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; ,
| | - Alona Agirre-Lizaso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; ,
| | - Ana Landa
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; ,
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; , .,National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; , .,National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; , .,National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
17
|
Diagnostic accuracy of administrative database for bile duct cancer by ICD-10 code in a tertiary institute in Korea. Hepatobiliary Pancreat Dis Int 2020; 19:575-580. [PMID: 32249128 DOI: 10.1016/j.hbpd.2020.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 03/12/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Administrative database provides valuable information for large cohort studies, especially when tissue diagnosis is rather difficult such as the diagnosis for bile duct cancer (BDC). The aim of this study was to evaluate the diagnostic accuracy of administrative database for BDC by International Classification of Diseases (ICD)-10 codes in a tertiary institute. METHODS BDC and control groups were collected from 2003 to 2016 at Seoul National University Bundang Hospital. Cases of BDC were identified in the National Health Insurance Service (NHIS) database by ICD 10-code supported by V code. The control group was selected from cases without ICD-10 codes for BDC. A definite or possible diagnosis was defined according to pathologic reports. Medical records, images, and pathology reports were analyzed to evaluate ICD-10 codes for BDC. Sensitivity, specificity, positive predictive value, and negative predictive value for BDC were analyzed according to diagnostic criteria and cancer locations. RESULTS A total of 1707 patients with BDC and 1707 controls were collected. Among those with BDC, 1320 (77.3%) were diagnosed by definite criteria. Most (99.4%) of them had adenocarcinoma. Rate of definite diagnosis was the highest for ampulla of Vater (88.9%), followed by that for extrahepatic (84.9%) and intrahepatic (68.3%) BDCs. False positive cases commonly had hepatocellular carcinomas. For overall diagnosis of BDC, sensitivity, specificity, positive predictive value, and negative predictive value were 99.94%, 98.33%, 98.30%, and 99.94%, respectively. Diagnostic accuracies were similar regardless of diagnostic criteria or tumor locations. CONCLUSIONS Administrative database for BDC collected according to ICD-10 code with V code shows good accuracy.
Collapse
|
18
|
Brandi G, Rizzo A, Deserti M, Relli V, Indio V, Bin S, Pariali M, Palloni A, De Lorenzo S, Tovoli F, Tavolari S. Wilson disease, ABCC2 c.3972C > T polymorphism and primary liver cancers: suggestions from a familial cluster. BMC MEDICAL GENETICS 2020; 21:225. [PMID: 33208122 PMCID: PMC7673086 DOI: 10.1186/s12881-020-01165-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Polymorphisms in genes modulating xenobiotics metabolism, in particular the ABCC2 c.3972C > T single nucleotide polymorphism (SNP) at exon 28, have been suggested to increase primary liver cancer (PLC) risk. Conversely, the occurrence of PLCs in Wilson disease patients is a rare event, in contrast with the occurrence observed in other chronic liver diseases. Here we report the clinical case of five siblings carrying the ABCC2 c.3972C > T SNP; three of them were affected by Wilson disease and two brothers with Wilson disease also developed PLCs. METHODS The presence of the ABCC2 c.3972C > T SNP was assessed by Sanger sequencing and the exposure of PLC risk factors by standardized questionnaires. RESULTS Notably, PLCs occurred only in the two brothers with the ABCC2 c.3972C > T SNP and Wilson disease who resulted exposed to asbestos and cigarette smoking, but not in the other siblings with the ABCC2 c.3972C > T SNP, alone or in association with Wilson disease, not exposed to these carcinogens and/or to other known risk factors for PLCs. CONCLUSIONS These findings suggest that ABCC2 c.3972C > T SNP and WD, also in association, may not represent a sufficient condition for PLC development, but that co-occurrence of further host/exogenous risk factors are needed to drive this process, reinforcing the notion that liver carcinogenesis is the result of a complex interplay between environmental and host genetic determinants. Due to the sporadic cases of this study and the paucity of data currently available in literature on this issue, future investigations in a larger population are needed to confirm our findings.
Collapse
Affiliation(s)
- Giovanni Brandi
- Division of Oncology, Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy.
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, via Massarenti 9, 40138, Bologna, Italy.
| | - Alessandro Rizzo
- Division of Oncology, Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy
| | - Marzia Deserti
- Division of Oncology, Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy
- Center for Applied Biomedical Research, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Valeria Relli
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, via Massarenti 9, 40138, Bologna, Italy
- Center for Applied Biomedical Research, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Valentina Indio
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Sofia Bin
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, via Massarenti 9, 40138, Bologna, Italy
| | - Milena Pariali
- Center for Applied Biomedical Research, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Andrea Palloni
- Division of Oncology, Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, via Massarenti 9, 40138, Bologna, Italy
| | - Stefania De Lorenzo
- Division of Oncology, Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, via Massarenti 9, 40138, Bologna, Italy
| | - Francesco Tovoli
- Department of Medical and Surgical Sciences, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Simona Tavolari
- Division of Oncology, Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy
- Center for Applied Biomedical Research, S. Orsola-Malpighi University Hospital, Bologna, Italy
| |
Collapse
|
19
|
Intrahepatic cholangiocarcinoma development in a patient with a novel BAP1 germline mutation and low exposure to asbestos. Cancer Genet 2020; 248-249:57-62. [PMID: 33093002 DOI: 10.1016/j.cancergen.2020.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
BRCA1 associated protein-1 (BAP1) germline mutations define a novel hereditary cancer syndrome, namely BAP1 tumor predisposition syndrome (BAP1-TPDS), characterized by an increased susceptibility to develop different cancer types, including mesothelioma, uveal and cutaneous melanoma, renal cell carcinoma, and basal cell and squamous cell carcinoma. Currently, the role of BAP1 germline mutations in intrahepatic cholangiocarcinoma (iCCA) pathogenesis is less known. Here we report the first clinical case of a female patient who developed an iCCA when she was 47-years-old and was found to carry a novel germline mutation at a splicing site of exon 4 in BAP1 gene (NM_004656.4: c.255_255+6del). An accurate anamnesis revealed the absence of risk factors linked to iCCA development, except for a low occupational exposure to asbestos. In tumor tissue, BAP1 sequencing, multiplex ligation-dependent probe amplification and immunoistochemistry showed the loss of heterozygosity and lack of nuclear expression, suggesting that BAP1 wild-type allele and functional protein were lost in cancer cells, in line with the classical two-hit model of tumor suppressor genes. Further studies are needed to confirm whether iCCA may be included into BAP1-TPDS cancer phenotypes and whether minimal asbestos exposure may facilitate the development of this malignancy in individuals carrying BAP1 germline mutations.
Collapse
|
20
|
Rizzo A, Ricci AD, Tavolari S, Brandi G. Circulating Tumor DNA in Biliary Tract Cancer: Current Evidence and Future Perspectives. Cancer Genomics Proteomics 2020; 17:441-452. [PMID: 32859625 PMCID: PMC7472453 DOI: 10.21873/cgp.20203] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/19/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Peripheral blood of cancer patients "physiologically" presents cells and cellular components deriving from primary or metastatic sites, including circulating tumor cells (CTCs), circulating free DNA (cfDNA) and exosomes containing proteins, lipids and nucleic acids. The term circulating tumor DNA (ctDNA) indicates the part of cfDNA which derives from primary tumors and/or metastatic sites, carrying tumor-specific genetic or epigenetic alterations. Analysis of ctDNA has enormous potential applications in all stages of cancer management, including earlier diagnosis of cancer, identification of driver alterations, monitoring of treatment response and detection of resistance mechanisms. Thus, ctDNA has the potential to profoundly change current clinical practice, by moving from tissue to peripheral blood as a source of information. Herein, we review current literature regarding the potential role for ctDNA in biliary tract cancer (BTC) patients, with a particular focus on state-of-the-art techniques and future perspectives of this highly aggressive disease.
Collapse
Affiliation(s)
- Alessandro Rizzo
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Angela Dalia Ricci
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Simona Tavolari
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Giovanni Brandi
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, Bologna, Italy
| |
Collapse
|
21
|
Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, Cardinale V, Carpino G, Andersen JB, Braconi C, Calvisi DF, Perugorria MJ, Fabris L, Boulter L, Macias RIR, Gaudio E, Alvaro D, Gradilone SA, Strazzabosco M, Marzioni M, Coulouarn C, Fouassier L, Raggi C, Invernizzi P, Mertens JC, Moncsek A, Ilyas SI, Heimbach J, Koerkamp BG, Bruix J, Forner A, Bridgewater J, Valle JW, Gores GJ. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol 2020; 17:557-588. [PMID: 32606456 PMCID: PMC7447603 DOI: 10.1038/s41575-020-0310-z] [Citation(s) in RCA: 1327] [Impact Index Per Article: 265.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma (CCA) includes a cluster of highly heterogeneous biliary malignant tumours that can arise at any point of the biliary tree. Their incidence is increasing globally, currently accounting for ~15% of all primary liver cancers and ~3% of gastrointestinal malignancies. The silent presentation of these tumours combined with their highly aggressive nature and refractoriness to chemotherapy contribute to their alarming mortality, representing ~2% of all cancer-related deaths worldwide yearly. The current diagnosis of CCA by non-invasive approaches is not accurate enough, and histological confirmation is necessary. Furthermore, the high heterogeneity of CCAs at the genomic, epigenetic and molecular levels severely compromises the efficacy of the available therapies. In the past decade, increasing efforts have been made to understand the complexity of these tumours and to develop new diagnostic tools and therapies that might help to improve patient outcomes. In this expert Consensus Statement, which is endorsed by the European Network for the Study of Cholangiocarcinoma, we aim to summarize and critically discuss the latest advances in CCA, mostly focusing on classification, cells of origin, genetic and epigenetic abnormalities, molecular alterations, biomarker discovery and treatments. Furthermore, the horizon of CCA for the next decade from 2020 onwards is highlighted.
Collapse
Affiliation(s)
- Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Jose J G Marin
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Shahid A Khan
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chiara Braconi
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Luke Boulter
- MRC-Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Rocio I R Macias
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Eugenio Gaudio
- Division of Human Anatomy, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | | | - Mario Strazzabosco
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Marco Marzioni
- Clinic of Gastroenterology and Hepatology, Universita Politecnica delle Marche, Ancona, Italy
| | | | - Laura Fouassier
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center of Autoimmune Liver Diseases, Department of Medicine and Surgery, San Gerardo Hospital, University of Milano, Bicocca, Italy
| | - Joachim C Mertens
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zürich, Switzerland
| | - Anja Moncsek
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zürich, Switzerland
| | - Sumera I. Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | | | | | - Jordi Bruix
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Alejandro Forner
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Barcelona, Spain
| | - John Bridgewater
- Department of Medical Oncology, UCL Cancer Institute, London, UK
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
22
|
Casals E, Zeng M, Parra-Robert M, Fernández-Varo G, Morales-Ruiz M, Jiménez W, Puntes V, Casals G. Cerium Oxide Nanoparticles: Advances in Biodistribution, Toxicity, and Preclinical Exploration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907322. [PMID: 32329572 DOI: 10.1002/smll.201907322] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/08/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Antioxidant nanoparticles have recently gained tremendous attention for their enormous potential in biomedicine. However, discrepant reports of either medical benefits or toxicity, and lack of reproducibility of many studies, generate uncertainties delaying their effective implementation. Herein, the case of cerium oxide is considered, a well-known catalyst in the petrochemistry industry and one of the first antioxidant nanoparticles proposed for medicine. Like other nanoparticles, it is now described as a promising therapeutic alternative, now as threatening to health. Sources of these discrepancies and how this analysis helps to overcome contradictions found for other nanoparticles are summarized and discussed. For the context of this analysis, what has been reported in the liver is reviewed, where many diseases are related to oxidative stress. Since well-dispersed nanoparticles passively accumulate in liver, it represents a major testing field for the study of new nanomedicines and their clinical translation. Even more, many contradictory works have reported in liver either cerium-oxide-associated toxicity or protection against oxidative stress and inflammation. Based on this, finally, the intention is to propose solutions to design improved nanoparticles that will work more precisely in medicine and safely in society.
Collapse
Affiliation(s)
- Eudald Casals
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Muling Zeng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Marina Parra-Robert
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Guillermo Fernández-Varo
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
- Departament of Biomedicine, University of Barcelona, Barcelona, 08036, Spain
| | - Manuel Morales-Ruiz
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
- Departament of Biomedicine, University of Barcelona, Barcelona, 08036, Spain
- Working Group for the Biochemical Assessment of Hepatic Disease-SEQC ML, Barcelona, 08036, Spain
| | - Wladimiro Jiménez
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
- Departament of Biomedicine, University of Barcelona, Barcelona, 08036, Spain
| | - Víctor Puntes
- Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC, The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | - Gregori Casals
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
- Working Group for the Biochemical Assessment of Hepatic Disease-SEQC ML, Barcelona, 08036, Spain
| |
Collapse
|
23
|
Dutheil F, Zaragoza-Civale L, Pereira B, Mermillod M, Baker JS, Schmidt J, Moustafa F, Navel V. Prostate Cancer and Asbestos: A Systematic Review and Meta-Analysis. Perm J 2020; 24:19.086. [PMID: 32097115 DOI: 10.7812/tpp/19.086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Asbestos-related diseases and cancers represent a major public health concern. OBJECTIVE To conduct a systematic review and meta-analysis to demonstrate that asbestos exposure increases the risk of prostate cancer. METHODS The PubMed, Cochrane Library, Embase, and ScienceDirect databases were searched using the keywords (prostate cancer OR prostatic neoplasm) AND (asbestos* OR crocidolite* OR chrysotile* OR amphibole* OR amosite*). To be included, articles needed to describe our primary outcome: Risk of prostate cancer after any asbestos exposure. RESULTS We included 33 studies with 15,687 cases of prostate cancer among 723,566 individuals. Asbestos exposure increased the risk of prostate cancer (effect size = 1.10, 95% confidence interval [CI] = 1.05-1.15). When we considered mode of absorption, respiratory inhalation increased the risk of prostate cancer (1.10, 95% CI = 1.05-1.14). Both environmental and occupational exposure increased the risk of prostate cancer (1.25, 95% CI = 1.01-1.48; and 1.07, 1.04-1.10, respectively). For type of fibers, the amosite group had an increased risk of prostate cancer (1.12, 95% CI = 1.05-1.19), and there were no significant results for the chrysotile/crocidolite group. The risk was higher in Europe (1.12, 95% CI = 1.05-1.19), without significant results in other continents. DISCUSSION Asbestos exposure seems to increase prostate cancer risk. The main mechanism of absorption was respiratory. Both environmental and occupational asbestos exposure were linked to increased risk of prostate cancer. CONCLUSION Patients who were exposed to asbestos should possibly be encouraged to complete more frequent prostate cancer screening.
Collapse
Affiliation(s)
- Frédéric Dutheil
- Physiological and Psychosocial Stress, Université Clermont Auvergne, CNRS, LaPSCo, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Occupational and Preventive Medicine, WittyFit, France.,Faculty of Health, School of Exercise Science, Australian Catholic University, Melbourne, Victoria
| | - Laetitia Zaragoza-Civale
- Occupational and Preventive Medicine, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Unit, the Clinical Research and Innovation Direction, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, France
| | - Martial Mermillod
- Université Grenoble Alpes, Université, Savoie Mont Blanc, CNRS, LPNC, Grenoble.,Institut Universitaire de France, Paris
| | - Julien S Baker
- Department of Sport, Physical Education, and Health, Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon Tong
| | - Jeannot Schmidt
- Physiological and Psychosocial Stress, Université Clermont Auvergne, CNRS, LaPSCo, CHU Clermont-Ferrand, Emergency Medicine, University Hospital of Clermont-Ferrand, France
| | - Fares Moustafa
- Emergency Medicine, Université Clermont Auvergne, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, France
| | - Valentin Navel
- Ophthalmology, Université Clermont Auvergne, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, France
| |
Collapse
|
24
|
Brandi G, Tavolari S. Asbestos and Intrahepatic Cholangiocarcinoma. Cells 2020; 9:E421. [PMID: 32059499 PMCID: PMC7072580 DOI: 10.3390/cells9020421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 02/07/2023] Open
Abstract
The link between asbestos exposure and the onset of thoracic malignancies is well established. However epidemiological studies have provided evidences that asbestos may be also involved in the development of gastrointestinal tumors, including intrahepatic cholangiocarcinoma (ICC). In line with this observation, asbestos fibers have been detected in the liver of patients with ICC. Although the exact mechanism still remains unknown, the presence of asbestos fibers in the liver could be explained in the light of their translocation pathway following ingestion/inhalation. In the liver, thin and long asbestos fibers could remain trapped in the smaller bile ducts, particularly in the stem cell niche of the canals of Hering, and exerting their carcinogenic effect for a long time, thus inducing hepatic stem/progenitor cells (HpSCs) malignant transformation. In this scenario, chronic liver damage induced by asbestos fibers over the years could be seen as a classic model of stem cell-derived carcinogenesis, where HpSC malignant transformation represents the first step of this process. This phenomenon could explain the recent epidemiological findings, where asbestos exposure seems mainly involved in ICC, rather than extrahepatic cholangiocarcinoma, development.
Collapse
Affiliation(s)
- Giovanni Brandi
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, 40138 Bologna, Italy
| | - Simona Tavolari
- Center for Applied Biomedical Research, S. Orsola-Malpighi University Hospital, 40138 Bologna, Italy;
| |
Collapse
|
25
|
Micro-Raman Spectroscopy, a Powerful Technique Allowing Sure Identification and Complete Characterization of Asbestiform Minerals. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9153092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Micro-Raman spectroscopy has been applied to fibrous minerals regulated as “asbestos”—anthophyllite, actinolite, amosite, crocidolite, tremolite, and chrysotile—responsible of severe diseases affecting mainly, but not only, the respiratory system. The technique proved to be powerful in the identification of the mineral phase and in the recognition of particles of carbonaceous materials (CMs) lying on the “asbestos” fibers surface. Also, erionite, a zeolite mineral, from different outcrops has been analyzed. To erionite has been ascribed the peak of mesothelioma noticed in Cappadocia (Turkey) during the 1970s. On the fibers, micro-Raman spectroscopy allowed to recognize many grains, micrometric in size, of iron oxy-hydroxides or potassium iron sulphate, in erionite from Oregon, or particles of CMs, in erionite from North Dakota, lying on the crystal surface. Raman spectroscopy appears therefore to be the technique allowing, without preparation of the sample, a complete characterization of the minerals and of the associated phases.
Collapse
|
26
|
Di Nunno V, Frega G, Santoni M, Gatto L, Fiorentino M, Montironi R, Battelli N, Brandi G, Massari F. BAP1 in solid tumors. Future Oncol 2019; 15:2151-2162. [PMID: 31159579 DOI: 10.2217/fon-2018-0915] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
One of the most attractive cancer-related genes under investigation is BAP1. Reasons of this growing interest are related to the wide spectrum of pathways directly or indirectly modulated by this gene and shared by several solid tumors. Programmed cell-death, cell metabolisms, immune cells development, ferroptosis and defects in DNA damage response are only some of the multitude of processes depending on BAP1. Loss of this gene seems to occur in different times of tumor history. Moreover, times of BAP1 loss strongly diverge among primary tumors suggesting the presence of several and different triggering factors. Regardless of when it happens, BAP1 loss usually results in prognosis worsening and in the acquisition of more aggressive clinical features by cancer cells.
Collapse
Affiliation(s)
| | - Giorgio Frega
- Oncology Unit, Department of Experimental, Diagnostic & Specialty Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Matteo Santoni
- Department of Oncology, Macerata Hospital, Macerata, Italy
| | - Lidia Gatto
- Oncology Unit, Department of Experimental, Diagnostic & Specialty Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Michelangelo Fiorentino
- Pathology Service, Addarii Institute of Oncology, S-Orsola-Malpighi Hospital, Bologna, Italy
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | | | - Giovanni Brandi
- Oncology Unit, Department of Experimental, Diagnostic & Specialty Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | | |
Collapse
|
27
|
Khan SA, Tavolari S, Brandi G. Cholangiocarcinoma: Epidemiology and risk factors. Liver Int 2019; 39 Suppl 1:19-31. [PMID: 30851228 DOI: 10.1111/liv.14095] [Citation(s) in RCA: 444] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/09/2019] [Accepted: 02/24/2019] [Indexed: 12/12/2022]
Abstract
Cholangiocarcinoma (CCA) is a heterogeneous disease arising from a complex interaction between host-specific genetic background and multiple risk factors. Globally, CCA incidence rates exhibit geographical variation, with much higher incidence in parts of the Eastern world compared to the West. These differences are likely to reflect differences in geographical risk factors as well as genetic determinants. Of note, over the past few decades, the incidence rates of CCA appear to change and subtypes of CCA appear to show distinct epidemiological trends. These trends need to be interpreted with caution given the issues of diagnosis, recording and coding of subtypes of CCA. Epidemiological evidences suggest that in general population some risk factors are less frequent but associated with a higher CCA risk, while others are more common but associated with a lower risk. Moreover, while some risk factors are shared by intrahepatic and both extrahepatic forms, others seem more specific for one of the two forms. Currently some pathological conditions have been clearly associated with CCA development, and other conditions are emerging; however, while their impact in increasing CCA risk as single etiological factors has been provided in many studies, less is known when two or more risk factors co-occur in the same patient. Moreover, despite the advancements in the knowledge of CCA aetiology, in Western countries about 50% of cases are still diagnosed without any identifiable risk factor. It is therefore conceivable that other still undefined etiologic factors are responsible for the recent increase of CCA (especially iCCA) incidence worldwide.
Collapse
Affiliation(s)
- Shahid A Khan
- Department of Hepatology, St Mary's Hospital, Imperial College London, London, United Kingdom
| | - Simona Tavolari
- Center of Applied Biomedical Research, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Giovanni Brandi
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, Bologna, Italy
- G.I.CO. (Italian Group of Cholangiocarcinoma), Bologna, Italy
| |
Collapse
|
28
|
Brandi G. Hot topics in cholangiocarcinoma. Transl Cancer Res 2019; 8:S219-S222. [PMID: 35117102 PMCID: PMC8797768 DOI: 10.21037/tcr.2018.08.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 08/12/2018] [Indexed: 12/03/2022]
Affiliation(s)
- Giovanni Brandi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
29
|
Grosso F, Croce A, Libener R, Mariani N, Pastormerlo M, Maconi A, Rinaudo C. Asbestos fiber identification in liver from cholangiocarcinoma patients living in an asbestos polluted area: a preliminary study. TUMORI JOURNAL 2019; 105:404-410. [PMID: 30915902 DOI: 10.1177/0300891619839305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE To assess whether asbestos fibers may be observed in liver tissue of patients with cholangiocarcinoma (CC) with environmental or working asbestos exposure. METHODS Detection of fibers was performed directly on histologic sections of liver from 7 patients with CC using optical microscope and variable pressure scanning electron microscopy equipped with energy-dispersive spectroscopy (VP-SEM/EDS). All patients were from Casale Monferrato, Italy, a highly asbestos-polluted town. Due to ethical constraints, observers were blinded to patients' clinical features. RESULTS Fibers/bundles of fibers of chrysotile were detected in 5 out of 7 patients (71%). The boundary between healthy and neoplastic tissue or the fibrocollagen tissue produced by the neoplasia were identified as areas of fiber incorporation. CONCLUSIONS This study is the first report about the detection of chrysotile asbestos fibers in the liver of patients with CC. Further studies on larger cohorts are needed to corroborate our preliminary findings.
Collapse
Affiliation(s)
- Federica Grosso
- Mesothelioma Unit, Oncology, SS Antonio e Biagio e Cesare Arrigo, General Hospital, Alessandria, Italy
| | - Alessandro Croce
- Department of Science and Technological Innovation, University of Eastern Piedmont, Alessandria, Italy
| | - Roberta Libener
- Pathology Unit, SS Antonio e Biagio e Cesare Arrigo, General Hospital, Alessandria, Italy
| | - Narciso Mariani
- Pathology Unit, SS Antonio e Biagio e Cesare Arrigo, General Hospital, Alessandria, Italy
| | - Massimo Pastormerlo
- S. Spirito Hospital, Department of Anatomy and Pathology, Casale Monferrato, Alessandria, Italy
| | - Antonio Maconi
- Scientific Promotion, SS Antonio e Biagio e Cesare Arrigo, General Hospital, Alessandria, Italy
| | - Caterina Rinaudo
- Department of Science and Technological Innovation, University of Eastern Piedmont, Alessandria, Italy
| |
Collapse
|
30
|
Zaitsu M, Kaneko R, Takeuchi T, Sato Y, Kobayashi Y, Kawachi I. Occupational class and male cancer incidence: Nationwide, multicenter, hospital-based case-control study in Japan. Cancer Med 2019; 8:795-813. [PMID: 30609296 PMCID: PMC6382925 DOI: 10.1002/cam4.1945] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 01/12/2023] Open
Abstract
Little is known about socioeconomic inequalities in male cancer incidence in nonwestern settings. Using the nationwide clinical and occupational inpatient data (1984‐2016) in Japan, we performed a multicentered, matched case–control study with 214 123 male cancer cases and 1 026 247 inpatient controls. Based on the standardized national classifications, we grouped patients’ longest‐held occupational class (blue‐collar, service, professional, manager), cross‐classified by industrial cluster (blue‐collar, service, white‐collar). Using blue‐collar workers in blue‐collar industries as the referent group, odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by conditional logistic regression with multiple imputation, matched for age, admission date, and admitting hospital. Smoking and alcohol consumption were additionally adjusted. Across all industries, a reduced risk with higher occupational class (professionals and managers) was observed for stomach and lung cancer. Even after controlling for smoking and alcohol consumption, the reduced odds persisted: OR of managers in white‐collar industries was 0.80 (95% CI 0.72‐0.90) for stomach cancer, and OR of managers in white‐collar industries was 0.66 (95% CI 0.55‐0.79) for lung cancer. In white‐collar industries, higher occupational class men tended to have lower a reduced risk for most common types of cancer, with the exception of professionals who showed an excess risk for prostate cancer. We documented socioeconomic inequalities in male cancer incidence in Japan, which could not be explained by smoking and alcohol consumption.
Collapse
Affiliation(s)
- Masayoshi Zaitsu
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Department of Public Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rena Kaneko
- Department of Public Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Gastroenterology, Kanto Rosai Hospital, Kawasaki, Kanagawa, Japan
| | - Takumi Takeuchi
- Department of Urology, Kanto Rosai Hospital, Kawasaki, Kanagawa, Japan
| | - Yuzuru Sato
- Department of Gastroenterology, Kanto Rosai Hospital, Kawasaki, Kanagawa, Japan
| | - Yasuki Kobayashi
- Department of Public Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ichiro Kawachi
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|