1
|
Shah BUD, Raj R, Kaur P, Karim A, Bansari RB, Mehmoodi A, Malik J. Association of transportation noise with cardiovascular diseases. Clin Cardiol 2024; 47:e24275. [PMID: 38708862 PMCID: PMC11071170 DOI: 10.1002/clc.24275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
This comprehensive article delves into the intricate and multifaceted issue of noise pollution, shedding light on its diverse sources, profound health implications, and the economic burden it imposes on societies. Noise pollution is an increasingly prevalent environmental challenge, impacting millions of people worldwide, often without their full awareness of its adverse effects. Drawing from a wealth of scientific research, the article underscores the well-established links between noise pollution and a spectrum of health issues, including cardiovascular diseases, sleep disturbances, and psychological stress. While exploring the sources and consequences of noise pollution, the article highlights the urgent need for a holistic and collaborative approach to mitigate its impact. This entails a combination of regulatory measures, technological innovations, urban planning strategies, and public education campaigns. It is increasingly evident that the detrimental effects of noise pollution extend beyond physical health, encompassing mental and social well-being. The article also addresses the synergistic relationship between noise pollution and other environmental stressors, emphasizing the importance of considering noise in conjunction with factors like air pollution and access to green spaces. It examines the potential of green spaces to mitigate the effects of noise pollution and enhance overall health.
Collapse
Affiliation(s)
- Badar ud Din Shah
- Department of Cardiovascular MedicineCardiovascular Analytics GroupIslamabadPakistan
| | - Rohan Raj
- Department of MedicineNalanda Medical College and HospitalPatnaIndia
| | - Parvinder Kaur
- Department of MedicineCrimean State Medical UniversitySimferopolUkraine
| | - Ali Karim
- Department of Cardiovascular MedicineCardiovascular Analytics GroupIslamabadPakistan
| | - Raveena Bai Bansari
- Department of Cardiovascular MedicineCardiovascular Analytics GroupIslamabadPakistan
| | - Amin Mehmoodi
- Department of MedicineIbn e Seena HospitalKabulAfghanistan
| | - Jahanzeb Malik
- Department of Cardiovascular MedicineCardiovascular Analytics GroupIslamabadPakistan
| |
Collapse
|
2
|
Münzel T, Molitor M, Kuntic M, Hahad O, Röösli M, Engelmann N, Basner M, Daiber A, Sørensen M. Transportation Noise Pollution and Cardiovascular Health. Circ Res 2024; 134:1113-1135. [PMID: 38662856 DOI: 10.1161/circresaha.123.323584] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Epidemiological studies have found that transportation noise increases the risk for cardiovascular morbidity and mortality, with solid evidence for ischemic heart disease, heart failure, and stroke. According to the World Health Organization, at least 1.6 million healthy life years are lost annually from traffic-related noise in Western Europe. Traffic noise at night causes fragmentation and shortening of sleep, elevation of stress hormone levels, and increased oxidative stress in the vasculature and the brain. These factors can promote vascular (endothelial) dysfunction, inflammation, and arterial hypertension, thus elevating cardiovascular risk. The present review focusses on the indirect, nonauditory cardiovascular health effects of noise. We provide an updated overview of epidemiological research on the effects of transportation noise on cardiovascular risk factors and disease, and mechanistic insights based on the latest clinical and experimental studies and propose new risk markers to address noise-induced cardiovascular effects in the general population. We will discuss the potential effects of noise on vascular dysfunction, oxidative stress, and inflammation in humans and animals. We will elaborately explain the underlying pathomechanisms by alterations of gene networks, epigenetic pathways, circadian rhythm, signal transduction along the neuronal-cardiovascular axis, and metabolism. We will describe current and future noise mitigation strategies. Finally, we will conduct an overall evaluation of the status of the current evidence of noise as a significant cardiovascular risk factor.
Collapse
Affiliation(s)
- Thomas Münzel
- Department of Cardiology, University Medical Center Mainz, Germany (T.M., M.M., M.K., O.H., A.D.)
- German Centre for Cardiovascular Research (DZHK), Rhine-Main, Germany (T.M., M.M., O.H., A.D.)
| | - Michael Molitor
- Department of Cardiology, University Medical Center Mainz, Germany (T.M., M.M., M.K., O.H., A.D.)
- German Centre for Cardiovascular Research (DZHK), Rhine-Main, Germany (T.M., M.M., O.H., A.D.)
| | - Marin Kuntic
- Department of Cardiology, University Medical Center Mainz, Germany (T.M., M.M., M.K., O.H., A.D.)
| | - Omar Hahad
- Department of Cardiology, University Medical Center Mainz, Germany (T.M., M.M., M.K., O.H., A.D.)
- German Centre for Cardiovascular Research (DZHK), Rhine-Main, Germany (T.M., M.M., O.H., A.D.)
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Department Epidemiology and Public Health, University of Basel, Switzerland (M.R., N.E.)
| | - Nicole Engelmann
- Swiss Tropical and Public Health Institute, Department Epidemiology and Public Health, University of Basel, Switzerland (M.R., N.E.)
| | - Mathias Basner
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (M.B.)
| | - Andreas Daiber
- Department of Cardiology, University Medical Center Mainz, Germany (T.M., M.M., M.K., O.H., A.D.)
- German Centre for Cardiovascular Research (DZHK), Rhine-Main, Germany (T.M., M.M., O.H., A.D.)
| | - Mette Sørensen
- Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark (M.S.)
- Department of Natural Science and Environment, Roskilde University, Denmark (M.S.)
| |
Collapse
|
3
|
Sørensen M, Pershagen G, Thacher JD, Lanki T, Wicki B, Röösli M, Vienneau D, Cantuaria ML, Schmidt JH, Aasvang GM, Al-Kindi S, Osborne MT, Wenzel P, Sastre J, Fleming I, Schulz R, Hahad O, Kuntic M, Zielonka J, Sies H, Grune T, Frenis K, Münzel T, Daiber A. Health position paper and redox perspectives - Disease burden by transportation noise. Redox Biol 2024; 69:102995. [PMID: 38142584 PMCID: PMC10788624 DOI: 10.1016/j.redox.2023.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023] Open
Abstract
Transportation noise is a ubiquitous urban exposure. In 2018, the World Health Organization concluded that chronic exposure to road traffic noise is a risk factor for ischemic heart disease. In contrast, they concluded that the quality of evidence for a link to other diseases was very low to moderate. Since then, several studies on the impact of noise on various diseases have been published. Also, studies investigating the mechanistic pathways underlying noise-induced health effects are emerging. We review the current evidence regarding effects of noise on health and the related disease-mechanisms. Several high-quality cohort studies consistently found road traffic noise to be associated with a higher risk of ischemic heart disease, heart failure, diabetes, and all-cause mortality. Furthermore, recent studies have indicated that road traffic and railway noise may increase the risk of diseases not commonly investigated in an environmental noise context, including breast cancer, dementia, and tinnitus. The harmful effects of noise are related to activation of a physiological stress response and nighttime sleep disturbance. Oxidative stress and inflammation downstream of stress hormone signaling and dysregulated circadian rhythms are identified as major disease-relevant pathomechanistic drivers. We discuss the role of reactive oxygen species and present results from antioxidant interventions. Lastly, we provide an overview of oxidative stress markers and adverse redox processes reported for noise-exposed animals and humans. This position paper summarizes all available epidemiological, clinical, and preclinical evidence of transportation noise as an important environmental risk factor for public health and discusses its implications on the population level.
Collapse
Affiliation(s)
- Mette Sørensen
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Department of Natural Science and Environment, Roskilde University, Denmark.
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesse Daniel Thacher
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Timo Lanki
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland; School of Medicine, University of Eastern Finland, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Benedikt Wicki
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Manuella Lech Cantuaria
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Jesper Hvass Schmidt
- Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Gunn Marit Aasvang
- Department of Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Sadeer Al-Kindi
- Department of Medicine, University Hospitals, Harrington Heart & Vascular Institute, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Michael T Osborne
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Boston, MA, USA; Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Philip Wenzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Spain
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt Am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Rainer Schulz
- Institute of Physiology, Faculty of Medicine, Justus-Liebig University, Gießen, 35392, Gießen, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Katie Frenis
- Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
4
|
Münzel T, Treede H, Hahad O, Daiber A. Too Loud to Handle? Transportation Noise and Cardiovascular Disease. Can J Cardiol 2023; 39:1204-1218. [PMID: 36858080 DOI: 10.1016/j.cjca.2023.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The World Health Organization reported that more than 1.6 million healthy life-years are lost yearly from traffic-related noise in western Europe. In addition, the number of studies on health side effects in response to traffic noise is steadily growing, mainly cardiovascular disease, such as acute and chronic ischemic heart disease, heart failure, arrhythmia, and stroke. Pathophysiologically nighttime noise has been shown to cause sleep disturbances, including too short sleep periods and frequent interruption of sleep leading to an increase in the levels of circulating stress hormones and subsequently to a significant increase in the production of reactive oxygen species (oxidative stress) and inflammation in the vasculature and the brain. The consequence is arterial hypertension and vascular (endothelial) dysfunction, which might increase the risk of cardiovascular disease. With the present review, we give an overview of the "so-called" nonauditory cardiovascular health effects of noise, which have been proposed to be responsible for the future development of cardiovascular disease. We present epidemiological evidence but also evidence provided by translational human and experimental noise studies. Finally, we discuss manoeuvres to mitigate noise effectively.
Collapse
Affiliation(s)
- Thomas Münzel
- Department of Cardiology, University Medical Center Mainz, Mainz, Germany.
| | - Hendrik Treede
- Department of Cardiovascular Surgery, University Medical Center Mainz, Mainz, Germany
| | - Omar Hahad
- Department of Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
5
|
Xu X, Ge Y, Wang W, Lei X, Kan H, Cai J. Application of land use regression to map environmental noise in Shanghai, China. ENVIRONMENT INTERNATIONAL 2022; 161:107111. [PMID: 35121497 DOI: 10.1016/j.envint.2022.107111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/09/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Urban environment noise has been linked with wide adverse effects on health; however, noise epidemiological researches are hindered by the lack of large-scale population-based exposure assessment. OBJECTIVE We aimed to measure noise levels over multiple seasons and to establish an LUR model to assess the spatial variability of intra-urban noise and identify its potential sources in Shanghai, China. METHODS Forty-minute (LAeq, 40 min) measurements of environmental noise were collected at 144 fixed sites, and each was visited three times (morning, afternoon, and evening) in winter, spring, and summer in 2019. Noise measurements were then integrated with land-use types, road networks, socioeconomic variables, and geographic information systems to construct LUR models. Ten-fold cross-validation was used to test the model performance. RESULTS A total of 1296 measurements and 29 predicting variables were used to estimate the spatial variation in environmental noise. The annual mean (±standard deviation) of LAeq, 40min, was 62 ± 8 dB (A). Significant variations were observed among monitoring sites but not between seasons or time of day. The LUR model explained 79% of the spatial variability of the noise, and the R2 of the ten-fold cross-validation was 0.75. The most contributory predictors of noise level were road-related variables all within the 50-m buffers, followed by urban area within a 50-m buffer, total area of buildings within a 1000-m buffer, and number of restaurant clusters within a 50-m buffer. Farmland area within a 100-m buffer was the only negative variable in the model. A 50-m resolution noise prediction map was produced and suggested high noise level in urban areas and near traffic arteries. CONCLUSION LUR can be a robust method for reflecting noise variability in megacities such as Shanghai and may provide an efficient solution for noise exposure assessment in areas where noise maps are not available.
Collapse
Affiliation(s)
- Xueyi Xu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yihui Ge
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Xiaoning Lei
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| |
Collapse
|
6
|
Abstract
Epidemiological studies have found that transportation noise increases the risk of cardiovascular morbidity and mortality, with high-quality evidence for ischaemic heart disease. According to the WHO, ≥1.6 million healthy life-years are lost annually from traffic-related noise in Western Europe. Traffic noise at night causes fragmentation and shortening of sleep, elevation of stress hormone levels, and increased oxidative stress in the vasculature and the brain. These factors can promote vascular dysfunction, inflammation and hypertension, thereby elevating the risk of cardiovascular disease. In this Review, we focus on the indirect, non-auditory cardiovascular health effects of transportation noise. We provide an updated overview of epidemiological research on the effects of transportation noise on cardiovascular risk factors and disease, discuss the mechanistic insights from the latest clinical and experimental studies, and propose new risk markers to address noise-induced cardiovascular effects in the general population. We also explain, in detail, the potential effects of noise on alterations of gene networks, epigenetic pathways, gut microbiota, circadian rhythm, signal transduction along the neuronal-cardiovascular axis, oxidative stress, inflammation and metabolism. Lastly, we describe current and future noise-mitigation strategies and evaluate the status of the existing evidence on noise as a cardiovascular risk factor.
Collapse
|