1
|
Xiong L, Liu X, Qin X, Li W. Accurate pneumoconiosis staging via deep texture encoding and discriminative representation learning. Front Med (Lausanne) 2024; 11:1440585. [PMID: 39444812 PMCID: PMC11496156 DOI: 10.3389/fmed.2024.1440585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Accurate pneumoconiosis staging is key to early intervention and treatment planning for pneumoconiosis patients. The staging process relies on assessing the profusion level of small opacities, which are dispersed throughout the entire lung field and manifest as fine textures. While conventional convolutional neural networks (CNNs) have achieved significant success in tasks such as image classification and object recognition, they are less effective for classifying fine-grained medical images due to the need for global, orderless feature representation. This limitation often results in inaccurate staging outcomes for pneumoconiosis. In this study, we propose a deep texture encoding scheme with a suppression strategy designed to capture the global, orderless characteristics of pneumoconiosis lesions while suppressing prominent regions such as the ribs and clavicles within the lung field. To further enhance staging accuracy, we incorporate an ordinal label distribution to capture the ordinal information among profusion levels of opacities. Additionally, we employ supervised contrastive learning to develop a more discriminative feature space for downstream classification tasks. Finally, in accordance with standard practices, we evaluate the profusion levels of opacities in each subregion of the lung, rather than relying on the entire chest X-ray image. Experimental results on the pneumoconiosis dataset demonstrate the superior performance of the proposed method confirming its effectiveness for accurate pneumoconiosis staging.
Collapse
Affiliation(s)
- Liang Xiong
- Chengdu Institute of Computer Applications, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Liu
- School of Computer Science and Technology, Dongguan University of Technology, Dongguan, China
- Chongqing Prevention and Treatment Hospital for Occupation Diseases, Chongqing, China
| | - Xiaolin Qin
- Chengdu Institute of Computer Applications, Chinese Academy of Sciences, Chengdu, China
| | - Weiling Li
- School of Computer Science and Technology, Dongguan University of Technology, Dongguan, China
| |
Collapse
|
2
|
Song M, Wang J, Yu Z, Wang J, Yang L, Lu Y, Li B, Wang X, Wang X, Huang Q, Li Z, Kanellakis NI, Liu J, Wang J, Wang B, Yang J. PneumoLLM: Harnessing the power of large language model for pneumoconiosis diagnosis. Med Image Anal 2024; 97:103248. [PMID: 38941859 DOI: 10.1016/j.media.2024.103248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024]
Abstract
The conventional pretraining-and-finetuning paradigm, while effective for common diseases with ample data, faces challenges in diagnosing data-scarce occupational diseases like pneumoconiosis. Recently, large language models (LLMs) have exhibits unprecedented ability when conducting multiple tasks in dialogue, bringing opportunities to diagnosis. A common strategy might involve using adapter layers for vision-language alignment and diagnosis in a dialogic manner. Yet, this approach often requires optimization of extensive learnable parameters in the text branch and the dialogue head, potentially diminishing the LLMs' efficacy, especially with limited training data. In our work, we innovate by eliminating the text branch and substituting the dialogue head with a classification head. This approach presents a more effective method for harnessing LLMs in diagnosis with fewer learnable parameters. Furthermore, to balance the retention of detailed image information with progression towards accurate diagnosis, we introduce the contextual multi-token engine. This engine is specialized in adaptively generating diagnostic tokens. Additionally, we propose the information emitter module, which unidirectionally emits information from image tokens to diagnosis tokens. Comprehensive experiments validate the superiority of our methods.
Collapse
Affiliation(s)
- Meiyue Song
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, 100005, China
| | - Jiarui Wang
- School of Automation, Northwestern Polytechnical University, Shaanxi, Xi'an 710072, China
| | - Zhihua Yu
- Jinneng Holding Coal Industry Group Co. Ltd Occupational Disease Precaution Clinic, Shanxi, 037001, China
| | - Jiaxin Wang
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Le Yang
- School of Electronics and Control Engineering, Chang'an University, Shaanxi, Xi'an 710064, China
| | - Yuting Lu
- School of Automation, Northwestern Polytechnical University, Shaanxi, Xi'an 710072, China
| | - Baicun Li
- Center of Respiratory Medicine, China-Japan Friendship Hospital, National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, Beijing, 100020, China
| | - Xue Wang
- Department of Respiratory, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, China; Internal Medicine, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Xiaoxu Wang
- School of Automation, Northwestern Polytechnical University, Shaanxi, Xi'an 710072, China
| | - Qinghua Huang
- School of Artificial Intelligence, OPtics and ElectroNics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhijun Li
- Translational Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Shanghai 201619, China; School of Mechanical Engineering, Tongji University, Shanghai 201804, China
| | - Nikolaos I Kanellakis
- Laboratory of Pleural and Lung Cancer Translational Research, CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Jiangfeng Liu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, 100005, China.
| | - Jing Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, 100005, China.
| | - Binglu Wang
- School of Automation, Northwestern Polytechnical University, Shaanxi, Xi'an 710072, China.
| | - Juntao Yang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, 100005, China
| |
Collapse
|
3
|
Hang W, Bu C, Cui Y, Chen K, Zhang D, Li H, Wang S. Research progress on the pathogenesis and prediction of pneumoconiosis among coal miners. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:319. [PMID: 39012521 DOI: 10.1007/s10653-024-02114-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
Pneumoconiosis is the most common occupational disease among coal miners, which is a lung disease caused by long-term inhalation of coal dust and retention in the lungs. The early stage of this disease is highly insidious, and pulmonary fibrosis may occur in the middle and late stages, leading to an increase in patient pain index and mortality rate. Currently, there is a lack of effective treatment methods. The pathogenesis of pneumoconiosis is complex and has many influencing factors. Although the characteristics of coal dust have been considered the main cause of different mechanisms of pneumoconiosis, the effects of coal dust composition, particle size and shape, and coal dust concentration on the pathogenesis of pneumoconiosis have not been systematically elucidated. Meanwhile, considering the irreversibility of pneumoconiosis progression, early prediction for pneumoconiosis patients is particularly important. However, there is no early prediction standard for pneumoconiosis among coal miners. This review summarizes the relevant research on the pathogenesis and prediction of pneumoconiosis in coal miners in recent years. Firstly, the pathogenesis of coal worker pneumoconiosis and silicosis was discussed, and the impact of coal dust characteristics on pneumoconiosis was analyzed. Then, the early diagnostic methods for pneumoconiosis have been systematically introduced, with a focus on image collaborative computer-aided diagnosis analysis and biomarker detection. Finally, the challenge of early screening technology for miners with pneumoconiosis was proposed.
Collapse
Affiliation(s)
- Wenlu Hang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu Province, People's Republic of China
| | - Chunlu Bu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu Province, People's Republic of China
| | - Yuming Cui
- School of Mechatronic Engineering, Jiangsu Normal University, Xuzhou, 221000, Jiangsu Province, People's Republic of China
| | - Kai Chen
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221000, Jiangsu Province, People's Republic of China
| | - Dekun Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221000, Jiangsu Province, People's Republic of China
| | - Haiquan Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu Province, People's Republic of China.
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, 221000, Jiangsu Province, People's Republic of China.
| | - Songquan Wang
- School of Mechatronic Engineering, Jiangsu Normal University, Xuzhou, 221000, Jiangsu Province, People's Republic of China.
| |
Collapse
|
4
|
Liu C, Fang Y, Xie Y, Zheng H, Li X, Wu D, Zhang T. Deep learning pneumoconiosis staging and diagnosis system based on multi-stage joint approach. BMC Med Imaging 2024; 24:165. [PMID: 38956579 PMCID: PMC11221180 DOI: 10.1186/s12880-024-01337-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Pneumoconiosis has a significant impact on the quality of patient survival due to its difficult staging diagnosis and poor prognosis. This study aimed to develop a computer-aided diagnostic system for the screening and staging of pneumoconiosis based on a multi-stage joint deep learning approach using X-ray chest radiographs of pneumoconiosis patients. METHODS In this study, a total of 498 medical chest radiographs were obtained from the Department of Radiology of West China Fourth Hospital. The dataset was randomly divided into a training set and a test set at a ratio of 4:1. Following histogram equalization for image enhancement, the images were segmented using the U-Net model, and staging was predicted using a convolutional neural network classification model. We first used Efficient-Net for multi-classification staging diagnosis, but the results showed that stage I/II of pneumoconiosis was difficult to diagnose. Therefore, based on clinical practice we continued to improve the model by using the Res-Net 34 Multi-stage joint method. RESULTS Of the 498 cases collected, the classification model using the Efficient-Net achieved an accuracy of 83% with a Quadratic Weighted Kappa (QWK) score of 0.889. The classification model using the multi-stage joint approach of Res-Net 34 achieved an accuracy of 89% with an area under the curve (AUC) of 0.98 and a high QWK score of 0.94. CONCLUSIONS In this study, the diagnostic accuracy of pneumoconiosis staging was significantly improved by an innovative combined multi-stage approach, which provided a reference for clinical application and pneumoconiosis screening.
Collapse
Affiliation(s)
- Chang Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, PR China
| | - Yeqi Fang
- College of Physics, Sichuan University, Chengdu, 610041, PR China
| | - YuHuan Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, PR China
| | - Hao Zheng
- College of Computer Science, Sichuan University, Chengdu, 610041, PR China
| | - Xin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, PR China
| | - Dongsheng Wu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China.
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, PR China.
| | - Tao Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China.
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, PR China.
| |
Collapse
|
5
|
Zhang Y, Zheng B, Zeng F, Cheng X, Wu T, Peng Y, Zhang Y, Xie Y, Yi W, Chen W, Wu J, Li L. Potential of digital chest radiography-based deep learning in screening and diagnosing pneumoconiosis: An observational study. Medicine (Baltimore) 2024; 103:e38478. [PMID: 38905434 PMCID: PMC11191863 DOI: 10.1097/md.0000000000038478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/16/2024] [Indexed: 06/23/2024] Open
Abstract
The diagnosis of pneumoconiosis is complex and subjective, leading to inevitable variability in readings. This is especially true for inexperienced doctors. To improve accuracy, a computer-assisted diagnosis system is used for more effective pneumoconiosis diagnoses. Three models (Resnet50, Resnet101, and DenseNet) were used for pneumoconiosis classification based on 1250 chest X-ray images. Three experienced and highly qualified physicians read the collected digital radiography images and classified them from category 0 to category III in a double-blinded manner. The results of the 3 physicians in agreement were considered the relative gold standards. Subsequently, 3 models were used to train and test these images and their performance was evaluated using multi-class classification metrics. We used kappa values and accuracy to evaluate the consistency and reliability of the optimal model with clinical typing. The results showed that ResNet101 was the optimal model among the 3 convolutional neural networks. The AUC of ResNet101 was 1.0, 0.9, 0.89, and 0.94 for detecting pneumoconiosis categories 0, I, II, and III, respectively. The micro-average and macro-average mean AUC values were 0.93 and 0.94, respectively. The accuracy and Kappa values of ResNet101 were 0.72 and 0.7111 for quadruple classification and 0.98 and 0.955 for dichotomous classification, respectively, compared with the relative standard classification of the clinic. This study develops a deep learning based model for screening and staging of pneumoconiosis is using chest radiographs. The ResNet101 model performed relatively better in classifying pneumoconiosis than radiologists. The dichotomous classification displayed outstanding performance, thereby indicating the feasibility of deep learning techniques in pneumoconiosis screening.
Collapse
Affiliation(s)
- Yajuan Zhang
- Department of Radiology, Guangzhou Twelfth People’s Hospital, Guangzhou, China
| | - Bowen Zheng
- Department of Radiology, Nan fang Hospital, Southern Medical University, Guangzhou, China
| | - Fengxia Zeng
- Department of Radiology, Nan fang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoke Cheng
- Department of Radiology, Guangzhou Twelfth People’s Hospital, Guangzhou, China
| | - Tianqiong Wu
- Department of Radiology, Guangzhou Twelfth People’s Hospital, Guangzhou, China
| | - Yuli Peng
- Department of Radiology, Guangzhou Twelfth People’s Hospital, Guangzhou, China
| | - Yonliang Zhang
- Department of Radiology, Guangzhou Twelfth People’s Hospital, Guangzhou, China
| | - Yuanlin Xie
- Department of Radiology, San shui District Institute for Disease Control and Prevention, Foshan Guangdong, China
| | - Wei Yi
- Department of Radiology, The Third People’s Hospital of Yunnan Province, Yunnan, China
| | - Weiguo Chen
- Department of Radiology, Nan fang Hospital, Southern Medical University, Guangzhou, China
| | - Jiefang Wu
- Department of Radiology, Nan fang Hospital, Southern Medical University, Guangzhou, China
| | - Long Li
- Department of Radiology, Guangzhou Twelfth People’s Hospital, Guangzhou, China
| |
Collapse
|
6
|
Yu SN, Chiu MC, Chang YP, Liang CY, Chen W. Improving Computer-Aided Thoracic Disease Diagnosis through Comparative Analysis Using Chest X-ray Images Taken at Different Times. SENSORS (BASEL, SWITZERLAND) 2024; 24:1478. [PMID: 38475013 DOI: 10.3390/s24051478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Medical professionals in thoracic medicine routinely analyze chest X-ray images, often comparing pairs of images taken at different times to detect lesions or anomalies in patients. This research aims to design a computer-aided diagnosis system that enhances the efficiency of thoracic physicians in comparing and diagnosing X-ray images, ultimately reducing misjudgments. The proposed system encompasses four key components: segmentation, alignment, comparison, and classification of lung X-ray images. Utilizing a public NIH Chest X-ray14 dataset and a local dataset gathered by the Chiayi Christian Hospital in Taiwan, the efficacy of both the traditional methods and deep-learning methods were compared. Experimental results indicate that, in both the segmentation and alignment stages, the deep-learning method outperforms the traditional method, achieving higher average IoU, detection rates, and significantly reduced processing time. In the comparison stage, we designed nonlinear transfer functions to highlight the differences between pre- and post-images through heat maps. In the classification stage, single-input and dual-input network architectures were proposed. The inclusion of difference information in single-input networks enhances AUC by approximately 1%, and dual-input networks achieve a 1.2-1.4% AUC increase, underscoring the importance of difference images in lung disease identification and classification based on chest X-ray images. While the proposed system is still in its early stages and far from clinical application, the results demonstrate potential steps forward in the development of a comprehensive computer-aided diagnostic system for comparative analysis of chest X-ray images.
Collapse
Affiliation(s)
- Sung-Nien Yu
- Department of Electrical Engineering, National Chung Cheng University, Chiayi County 621301, Taiwan
- Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Chiayi County 621301, Taiwan
| | - Meng-Chin Chiu
- Department of Electrical Engineering, National Chung Cheng University, Chiayi County 621301, Taiwan
| | - Yu Ping Chang
- Department of Electrical Engineering, National Chung Cheng University, Chiayi County 621301, Taiwan
| | - Chi-Yen Liang
- Division of Pulmonary and Critical Care Medicine, Chiayi Christian Hospital, Chiayi County 600566, Taiwan
| | - Wei Chen
- Division of Pulmonary and Critical Care Medicine, Chiayi Christian Hospital, Chiayi County 600566, Taiwan
| |
Collapse
|
7
|
Liu Y, Wu J, Zhou J, Guo J, Liang C, Xing Y, Wang Z, Chen L, Ding Y, Ren D, Bai Y, Hu D. Identification of high-risk population of pneumoconiosis using deep learning segmentation of lung 3D images and radiomics texture analysis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:108006. [PMID: 38215580 DOI: 10.1016/j.cmpb.2024.108006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/25/2023] [Accepted: 01/01/2024] [Indexed: 01/14/2024]
Abstract
OBJECTION The aim of this study is to develop an early-warning model for identifying high-risk populations of pneumoconiosis by combining lung 3D images and radiomics lung texture features. METHODS A retrospective study was conducted, including 600 dust-exposed workers and 300 confirmed pneumoconiosis patients. Chest computed tomography (CT) images were divided into a training set and a test set in a 2:1 ratio. Whole-lung segmentation was performed using deep learning models for feature extraction of radiomics. Two feature selection algorithms and five classification models were used. The optimal model was selected using a 10-fold cross-validation strategy, and the calibration curve and decision curve were evaluated. To verify the applicability of the model, the diagnostic efficiency and accuracy between the model and human interpretation were compared. Additionally, the risk probabilities for different risk groups defined by the model were compared at different time intervals. RESULTS Four radiomics features were ultimately used to construct the predictive model. The logistic regression model was the most stable in both the training set and testing set, with an area under curve (AUC) of 0.964 (95 % confidence interval [CI], 0.950-0.976) and 0.947 (95 %CI, 0.925-0.964). In the training and testing sets, the Brier scores were 0.092 and 0.14, respectively, with threshold probability ranges of 2 %-99 % and 2 %-85 %. These results indicate that the model exhibits good calibration and clinical benefit. The comparison between the model and human interpretation showed that the model was not inferior in terms of diagnostic efficiency and accuracy. Additionally, the high-risk population identified by the model was diagnosed as pneumoconiosis two years later. CONCLUSION This study provides a meticulous and quantifiable method for detecting and assessing the risk of pneumoconiosis, building upon accurate diagnosis. Employing risk scoring and probability estimation, not only enhances the efficiency of diagnostic physicians but also provides a valuable reference for controlling the occurrence of pneumoconiosis.
Collapse
Affiliation(s)
- Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Huainan, PR China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, PR China
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Huainan, PR China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, PR China.
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, PR China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, PR China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Huainan, PR China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, PR China
| | - Chao Liang
- School of Medicine, Anhui University of Science and Technology, Huainan, PR China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, PR China
| | - Yingru Xing
- School of Medicine, Anhui University of Science and Technology, Huainan, PR China; Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei, PR China
| | - Zhongyu Wang
- Ziwei King Star Digital Technology Co., Ltd., Hefei, PR China
| | - Lijuan Chen
- Occupational Control Hospital of Huaihe Energy Group, Huainan, PR China
| | - Yan Ding
- Occupational Control Hospital of Huaihe Energy Group, Huainan, PR China
| | - Dingfei Ren
- Occupational Control Hospital of Huaihe Energy Group, Huainan, PR China.
| | - Ying Bai
- School of Medicine, Anhui University of Science and Technology, Huainan, PR China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, PR China
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Huainan, PR China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, PR China; Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, PR China.
| |
Collapse
|
8
|
Li X, Xu M, Yan Z, Xia F, Li S, Zhang Y, Xing Z, Guan L. Deep convolutional network-based chest radiographs screening model for pneumoconiosis. Front Med (Lausanne) 2024; 11:1290729. [PMID: 38348336 PMCID: PMC10859417 DOI: 10.3389/fmed.2024.1290729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Background Pneumoconiosis is the most important occupational disease all over the world, with high prevalence and mortality. At present, the monitoring of workers exposed to dust and the diagnosis of pneumoconiosis rely on manual interpretation of chest radiographs, which is subjective and low efficiency. With the development of artificial intelligence technology, a more objective and efficient computer aided system for pneumoconiosis diagnosis can be realized. Therefore, the present study reported a novel deep learning (DL) artificial intelligence (AI) system for detecting pneumoconiosis in digital frontal chest radiographs, based on which we aimed to provide references for radiologists. Methods We annotated 49,872 chest radiographs from patients with pneumoconiosis and workers exposed to dust using a self-developed tool. Next, we used the labeled images to train a convolutional neural network (CNN) algorithm developed for pneumoconiosis screening. Finally, the performance of the trained pneumoconiosis screening model was validated using a validation set containing 495 chest radiographs. Results Approximately, 51% (25,435/49,872) of the chest radiographs were labeled as normal. Pneumoconiosis was detected in 49% (24,437/49,872) of the labeled radiographs, among which category-1, category-2, and category-3 pneumoconiosis accounted for 53.1% (12,967/24,437), 20.4% (4,987/24,437), and 26.5% (6,483/24,437) of the patients, respectively. The CNN DL algorithm was trained using these data. The validation set of 495 digital radiography chest radiographs included 261 cases of pneumoconiosis and 234 cases of non-pneumoconiosis. As a result, the accuracy of the AI system for pneumoconiosis identification was 95%, the area under the curve was 94.7%, and the sensitivity was 100%. Conclusion DL algorithm based on CNN helped screen pneumoconiosis in the chest radiographs with high performance; thus, it could be suitable for diagnosing pneumoconiosis automatically and improve the efficiency of radiologists.
Collapse
Affiliation(s)
- Xiao Li
- Peking University Third Hospital, Beijing, China
| | - Ming Xu
- Beijing Tianming Innovation Data Technology Co., Ltd., Beijing, China
| | - Ziye Yan
- Beijing Tianming Innovation Data Technology Co., Ltd., Beijing, China
| | - Fanbo Xia
- Beijing Tianming Innovation Data Technology Co., Ltd., Beijing, China
| | - Shuqiang Li
- Peking University Third Hospital, Beijing, China
| | - Yanlin Zhang
- Peking University Third Hospital, Beijing, China
| | | | - Li Guan
- Peking University Third Hospital, Beijing, China
| |
Collapse
|
9
|
Shah IA, Mishra S. Artificial intelligence in advancing occupational health and safety: an encapsulation of developments. J Occup Health 2024; 66:uiad017. [PMID: 38334203 PMCID: PMC10878366 DOI: 10.1093/joccuh/uiad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 02/10/2024] Open
Abstract
OBJECTIVES In an era characterized by dynamic technological advancements, the well-being of the workforce remains a cornerstone of progress and sustainability. The evolving industrial landscape in the modern world has had a considerable influence on occupational health and safety (OHS). Ensuring the well-being of workers and creating safe working environments are not only ethical imperatives but also integral to maintaining operational efficiency and productivity. We aim to review the advancements that have taken place with a potential to reshape workplace safety with integration of artificial intelligence (AI)-driven new technologies to prevent occupational diseases and promote safety solutions. METHODS The published literature was identified using scientific databases of Embase, PubMed, and Google scholar including a lower time bound of 1974 to capture chronological advances in occupational disease detection and technological solutions employed in industrial set-ups. RESULTS AI-driven technologies are revolutionizing how organizations approach health and safety, offering predictive insights, real-time monitoring, and risk mitigation strategies that not only minimize accidents and hazards but also pave the way for a more proactive and responsive approach to safeguarding the workforce. CONCLUSION As industries embrace the transformative potential of AI, a new frontier of possibilities emerges for enhancing workplace safety. This synergy between OHS and AI marks a pivotal moment in the quest for safer, healthier, and more sustainable workplaces.
Collapse
Affiliation(s)
- Immad A Shah
- Division of Health Sciences, ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, India
| | - SukhDev Mishra
- Department of Biostatistics, Division of Health Sciences, ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, India
| |
Collapse
|
10
|
Arslan M, Haider A, Khurshid M, Abu Bakar SSU, Jani R, Masood F, Tahir T, Mitchell K, Panchagnula S, Mandair S. From Pixels to Pathology: Employing Computer Vision to Decode Chest Diseases in Medical Images. Cureus 2023; 15:e45587. [PMID: 37868395 PMCID: PMC10587792 DOI: 10.7759/cureus.45587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Radiology has been a pioneer in the healthcare industry's digital transformation, incorporating digital imaging systems like picture archiving and communication system (PACS) and teleradiology over the past thirty years. This shift has reshaped radiology services, positioning the field at a crucial junction for potential evolution into an integrated diagnostic service through artificial intelligence and machine learning. These technologies offer advanced tools for radiology's transformation. The radiology community has advanced computer-aided diagnosis (CAD) tools using machine learning techniques, notably deep learning convolutional neural networks (CNNs), for medical image pattern recognition. However, the integration of CAD tools into clinical practice has been hindered by challenges in workflow integration, unclear business models, and limited clinical benefits, despite development dating back to the 1990s. This comprehensive review focuses on detecting chest-related diseases through techniques like chest X-rays (CXRs), magnetic resonance imaging (MRI), nuclear medicine, and computed tomography (CT) scans. It examines the utilization of computer-aided programs by researchers for disease detection, addressing key areas: the role of computer-aided programs in disease detection advancement, recent developments in MRI, CXR, radioactive tracers, and CT scans for chest disease identification, research gaps for more effective development, and the incorporation of machine learning programs into diagnostic tools.
Collapse
Affiliation(s)
- Muhammad Arslan
- Department of Emergency Medicine, Royal Infirmary of Edinburgh, National Health Service (NHS) Lothian, Edinburgh, GBR
| | - Ali Haider
- Department of Allied Health Sciences, The University of Lahore, Gujrat Campus, Gujrat, PAK
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, PAK
| | | | - Rutva Jani
- Department of Internal Medicine, C. U. Shah Medical College and Hospital, Gujarat, IND
| | - Fatima Masood
- Department of Internal Medicine, Gulf Medical University, Ajman, ARE
| | - Tuba Tahir
- Department of Business Administration, Iqra University, Karachi, PAK
| | - Kyle Mitchell
- Department of Internal Medicine, University of Science, Arts and Technology, Olveston, MSR
| | - Smruthi Panchagnula
- Department of Internal Medicine, Ganni Subbalakshmi Lakshmi (GSL) Medical College, Hyderabad, IND
| | - Satpreet Mandair
- Department of Internal Medicine, Medical University of the Americas, Charlestown, KNA
| |
Collapse
|
11
|
Wang Y, Cui F, Ding X, Yao Y, Li G, Gui G, Shen F, Li B. Automated identification of the preclinical stage of coal workers' pneumoconiosis from digital chest radiography using three-stage cascaded deep learning model. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Ahmad HK, Milne MR, Buchlak QD, Ektas N, Sanderson G, Chamtie H, Karunasena S, Chiang J, Holt X, Tang CHM, Seah JCY, Bottrell G, Esmaili N, Brotchie P, Jones C. Machine Learning Augmented Interpretation of Chest X-rays: A Systematic Review. Diagnostics (Basel) 2023; 13:diagnostics13040743. [PMID: 36832231 PMCID: PMC9955112 DOI: 10.3390/diagnostics13040743] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Limitations of the chest X-ray (CXR) have resulted in attempts to create machine learning systems to assist clinicians and improve interpretation accuracy. An understanding of the capabilities and limitations of modern machine learning systems is necessary for clinicians as these tools begin to permeate practice. This systematic review aimed to provide an overview of machine learning applications designed to facilitate CXR interpretation. A systematic search strategy was executed to identify research into machine learning algorithms capable of detecting >2 radiographic findings on CXRs published between January 2020 and September 2022. Model details and study characteristics, including risk of bias and quality, were summarized. Initially, 2248 articles were retrieved, with 46 included in the final review. Published models demonstrated strong standalone performance and were typically as accurate, or more accurate, than radiologists or non-radiologist clinicians. Multiple studies demonstrated an improvement in the clinical finding classification performance of clinicians when models acted as a diagnostic assistance device. Device performance was compared with that of clinicians in 30% of studies, while effects on clinical perception and diagnosis were evaluated in 19%. Only one study was prospectively run. On average, 128,662 images were used to train and validate models. Most classified less than eight clinical findings, while the three most comprehensive models classified 54, 72, and 124 findings. This review suggests that machine learning devices designed to facilitate CXR interpretation perform strongly, improve the detection performance of clinicians, and improve the efficiency of radiology workflow. Several limitations were identified, and clinician involvement and expertise will be key to driving the safe implementation of quality CXR machine learning systems.
Collapse
Affiliation(s)
- Hassan K. Ahmad
- Annalise.ai, Sydney, NSW 2000, Australia
- Department of Emergency Medicine, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Correspondence:
| | | | - Quinlan D. Buchlak
- Annalise.ai, Sydney, NSW 2000, Australia
- School of Medicine, University of Notre Dame Australia, Sydney, NSW 2007, Australia
- Department of Neurosurgery, Monash Health, Melbourne, VIC 3168, Australia
| | | | | | | | | | - Jason Chiang
- Annalise.ai, Sydney, NSW 2000, Australia
- Department of General Practice, University of Melbourne, Melbourne, VIC 3010, Australia
- Westmead Applied Research Centre, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | - Jarrel C. Y. Seah
- Annalise.ai, Sydney, NSW 2000, Australia
- Department of Radiology, Alfred Health, Melbourne, VIC 3004, Australia
| | | | - Nazanin Esmaili
- School of Medicine, University of Notre Dame Australia, Sydney, NSW 2007, Australia
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Peter Brotchie
- Annalise.ai, Sydney, NSW 2000, Australia
- Department of Radiology, St Vincent’s Health Australia, Melbourne, VIC 3065, Australia
| | - Catherine Jones
- Annalise.ai, Sydney, NSW 2000, Australia
- I-MED Radiology Network, Brisbane, QLD 4006, Australia
- School of Public and Preventive Health, Monash University, Clayton, VIC 3800, Australia
- Department of Clinical Imaging Science, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
13
|
Ait Nasser A, Akhloufi MA. A Review of Recent Advances in Deep Learning Models for Chest Disease Detection Using Radiography. Diagnostics (Basel) 2023; 13:159. [PMID: 36611451 PMCID: PMC9818166 DOI: 10.3390/diagnostics13010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
Chest X-ray radiography (CXR) is among the most frequently used medical imaging modalities. It has a preeminent value in the detection of multiple life-threatening diseases. Radiologists can visually inspect CXR images for the presence of diseases. Most thoracic diseases have very similar patterns, which makes diagnosis prone to human error and leads to misdiagnosis. Computer-aided detection (CAD) of lung diseases in CXR images is among the popular topics in medical imaging research. Machine learning (ML) and deep learning (DL) provided techniques to make this task more efficient and faster. Numerous experiments in the diagnosis of various diseases proved the potential of these techniques. In comparison to previous reviews our study describes in detail several publicly available CXR datasets for different diseases. It presents an overview of recent deep learning models using CXR images to detect chest diseases such as VGG, ResNet, DenseNet, Inception, EfficientNet, RetinaNet, and ensemble learning methods that combine multiple models. It summarizes the techniques used for CXR image preprocessing (enhancement, segmentation, bone suppression, and data-augmentation) to improve image quality and address data imbalance issues, as well as the use of DL models to speed-up the diagnosis process. This review also discusses the challenges present in the published literature and highlights the importance of interpretability and explainability to better understand the DL models' detections. In addition, it outlines a direction for researchers to help develop more effective models for early and automatic detection of chest diseases.
Collapse
Affiliation(s)
| | - Moulay A. Akhloufi
- Perception, Robotics and Intelligent Machines Research Group (PRIME), Department of Computer Science, Université de Moncton, Moncton, NB E1C 3E9, Canada
| |
Collapse
|
14
|
Akhter Y, Singh R, Vatsa M. AI-based radiodiagnosis using chest X-rays: A review. Front Big Data 2023; 6:1120989. [PMID: 37091458 PMCID: PMC10116151 DOI: 10.3389/fdata.2023.1120989] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/06/2023] [Indexed: 04/25/2023] Open
Abstract
Chest Radiograph or Chest X-ray (CXR) is a common, fast, non-invasive, relatively cheap radiological examination method in medical sciences. CXRs can aid in diagnosing many lung ailments such as Pneumonia, Tuberculosis, Pneumoconiosis, COVID-19, and lung cancer. Apart from other radiological examinations, every year, 2 billion CXRs are performed worldwide. However, the availability of the workforce to handle this amount of workload in hospitals is cumbersome, particularly in developing and low-income nations. Recent advances in AI, particularly in computer vision, have drawn attention to solving challenging medical image analysis problems. Healthcare is one of the areas where AI/ML-based assistive screening/diagnostic aid can play a crucial part in social welfare. However, it faces multiple challenges, such as small sample space, data privacy, poor quality samples, adversarial attacks and most importantly, the model interpretability for reliability on machine intelligence. This paper provides a structured review of the CXR-based analysis for different tasks, lung diseases and, in particular, the challenges faced by AI/ML-based systems for diagnosis. Further, we provide an overview of existing datasets, evaluation metrics for different[][15mm][0mm]Q5 tasks and patents issued. We also present key challenges and open problems in this research domain.
Collapse
|
15
|
Beeche C, Gezer NS, Iyer K, Almetwali O, Yu J, Zhang Y, Dhupar R, Leader JK, Pu J. Assessing retinal vein occlusion based on color fundus photographs using neural understanding network (NUN). Med Phys 2023; 50:449-464. [PMID: 36184848 PMCID: PMC9868057 DOI: 10.1002/mp.16012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE To develop and validate a novel deep learning architecture to classify retinal vein occlusion (RVO) on color fundus photographs (CFPs) and reveal the image features contributing to the classification. METHODS The neural understanding network (NUN) is formed by two components: (1) convolutional neural network (CNN)-based feature extraction and (2) graph neural networks (GNN)-based feature understanding. The CNN-based image features were transformed into a graph representation to encode and visualize long-range feature interactions to identify the image regions that significantly contributed to the classification decision. A total of 7062 CFPs were classified into three categories: (1) no vein occlusion ("normal"), (2) central RVO, and (3) branch RVO. The area under the receiver operative characteristic (ROC) curve (AUC) was used as the metric to assess the performance of the trained classification models. RESULTS The AUC, accuracy, sensitivity, and specificity for NUN to classify CFPs as normal, central occlusion, or branch occlusion were 0.975 (± 0.003), 0.911 (± 0.007), 0.983 (± 0.010), and 0.803 (± 0.005), respectively, which outperformed available classical CNN models. CONCLUSION The NUN architecture can provide a better classification performance and a straightforward visualization of the results compared to CNNs.
Collapse
Affiliation(s)
- Cameron Beeche
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Naciye S Gezer
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kartik Iyer
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Omar Almetwali
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Juezhao Yu
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yanchun Zhang
- Shaan’xi Eye Hospital, Xi’an, Shaanxi, 710004, China
| | - Rajeev Dhupar
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Surgical Services Division, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240
| | - Joseph K. Leader
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jiantao Pu
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
16
|
Okolo GI, Katsigiannis S, Ramzan N. IEViT: An enhanced vision transformer architecture for chest X-ray image classification. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107141. [PMID: 36162246 DOI: 10.1016/j.cmpb.2022.107141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/02/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE Chest X-ray imaging is a relatively cheap and accessible diagnostic tool that can assist in the diagnosis of various conditions, including pneumonia, tuberculosis, COVID-19, and others. However, the requirement for expert radiologists to view and interpret chest X-ray images can be a bottleneck, especially in remote and deprived areas. Recent advances in machine learning have made possible the automated diagnosis of chest X-ray scans. In this work, we examine the use of a novel Transformer-based deep learning model for the task of chest X-ray image classification. METHODS We first examine the performance of the Vision Transformer (ViT) state-of-the-art image classification machine learning model for the task of chest X-ray image classification, and then propose and evaluate the Input Enhanced Vision Transformer (IEViT), a novel enhanced Vision Transformer model that can achieve improved performance on chest X-ray images associated with various pathologies. RESULTS Experiments on four chest X-ray image data sets containing various pathologies (tuberculosis, pneumonia, COVID-19) demonstrated that the proposed IEViT model outperformed ViT for all the data sets and variants examined, achieving an F1-score between 96.39% and 100%, and an improvement over ViT of up to +5.82% in terms of F1-score across the four examined data sets. IEViT's maximum sensitivity (recall) ranged between 93.50% and 100% across the four data sets, with an improvement over ViT of up to +3%, whereas IEViT's maximum precision ranged between 97.96% and 100% across the four data sets, with an improvement over ViT of up to +6.41%. CONCLUSIONS Results showed that the proposed IEViT model outperformed all ViT's variants for all the examined chest X-ray image data sets, demonstrating its superiority and generalisation ability. Given the relatively low cost and the widespread accessibility of chest X-ray imaging, the use of the proposed IEViT model can potentially offer a powerful, but relatively cheap and accessible method for assisting diagnosis using chest X-ray images.
Collapse
Affiliation(s)
| | | | - Naeem Ramzan
- University of the West of Scotland, High St., Paisley, PA1 2BE, UK
| |
Collapse
|
17
|
Huang Y, Si Y, Hu B, Zhang Y, Wu S, Wu D, Wang Q. Transformer-based factorized encoder for classification of pneumoconiosis on 3D CT images. Comput Biol Med 2022; 150:106137. [PMID: 36191395 DOI: 10.1016/j.compbiomed.2022.106137] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 11/22/2022]
Abstract
In the past decade, deep learning methods have been implemented in the medical image fields and have achieved good performance. Recently, deep learning algorithms have been successful in the evaluation of diagnosis on lung images. Although chest radiography (CR) is the standard data modality for diagnosing pneumoconiosis, computed tomography (CT) typically provides more details of the lesions in the lung. Thus, a transformer-based factorized encoder (TBFE) was proposed and first applied for the classification of pneumoconiosis depicted on 3D CT images. Specifically, a factorized encoder consists of two transformer encoders. The first transformer encoder enables the interaction of intra-slice by encoding feature maps from the same slice of CT. The second transformer encoder explores the inter-slice interaction by encoding feature maps from different slices. In addition, the lack of grading standards on CT for labeling the pneumoconiosis lesions. Thus, an acknowledged CR-based grading system was applied to mark the corresponding pneumoconiosis CT stage. Then, we pre-trained the 3D convolutional autoencoder on the public LIDC-IDRI dataset and fixed the parameters of the last convolutional layer of the encoder to extract CT feature maps with underlying spatial structural information from our 3D CT dataset. Experimental results demonstrated the superiority of the TBFE over other 3D-CNN networks, achieving an accuracy of 97.06%, a recall of 89.33%, precision of 90%, and an F1-score of 93.33%, using 10-fold cross-validation.
Collapse
Affiliation(s)
- Yingying Huang
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, Shanxi, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key laboratory of Biomedical Spectroscopy, Xi'an 710119, Shanxi, China.
| | - Yang Si
- Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Department of Neurology, Chengdu, Sichuan, China; University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Bingliang Hu
- Key laboratory of Biomedical Spectroscopy, Xi'an 710119, Shanxi, China.
| | - Yan Zhang
- Department of Radiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Shuang Wu
- Department of Radiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Dongsheng Wu
- Department of Radiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Research Center of Artificial Intelligence in Medicine, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China.
| | - Quan Wang
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, Shanxi, China; Key laboratory of Biomedical Spectroscopy, Xi'an 710119, Shanxi, China.
| |
Collapse
|
18
|
Hu M, Wang Z, Hu X, Wang Y, Wang G, Ding H, Bian M. High-resolution computed tomography diagnosis of pneumoconiosis complicated with pulmonary tuberculosis based on cascading deep supervision U-Net. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107151. [PMID: 36179657 DOI: 10.1016/j.cmpb.2022.107151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Pulmonary tuberculosis can promote pneumoconiosis deterioration, leading to higher mortality. This study aims to explore the diagnostic value of the cascading deep supervision U-Net (CSNet) model in pneumoconiosis complicated with pulmonary tuberculosis. METHODS A total of 162 patients with pneumoconiosis treated in our hospital were collected as the research objects. Patients were randomly divided into a training set (n = 113) and a test set (n = 49) in proportion (7:3). Based on the high-resolution computed tomography (HRCT), the traditional U-Net, supervision U-Net (SNet), and CSNet prediction models were constructed. Dice similarity coefficients, precision, recall, volumetric overlap error, and relative volume difference were used to evaluate the segmentation model. The area under the receiver operating characteristic curve (AUC) value represents the prediction efficiency of the model. RESULTS There were no statistically significant differences in gender, age, number of positive patients, and dust contact time between patients in the training set and test set (P > 0.05). The segmentation results of CSNet are better than the traditional U-Net model and the SNet model. The AUC value of the CSNet model was 0.947 (95% CI: 0.900∼0.994), which was higher than the traditional U-Net model. CONCLUSION The CSNet based on chest HRCT proposed in this study is superior to the traditional U-Net segmentation method in segmenting pneumoconiosis complicated with pulmonary tuberculosis. It has good prediction efficiency and can provide more clinical diagnostic value.
Collapse
Affiliation(s)
- Maoneng Hu
- Imaging Center, The Third Clinical College of Hefei of Anhui Medical University, The Third People's Hospital of Hefei, Hefei 230022, China.
| | - Zichen Wang
- Imaging Center, The Third Clinical College of Hefei of Anhui Medical University, The Third People's Hospital of Hefei, Hefei 230022, China
| | - Xinxin Hu
- Imaging Center, The Third Clinical College of Hefei of Anhui Medical University, The Third People's Hospital of Hefei, Hefei 230022, China
| | - Yi Wang
- Imaging Center, The Third Clinical College of Hefei of Anhui Medical University, The Third People's Hospital of Hefei, Hefei 230022, China
| | - Guoliang Wang
- Imaging Center, The Third Clinical College of Hefei of Anhui Medical University, The Third People's Hospital of Hefei, Hefei 230022, China
| | - Huanhuan Ding
- Imaging Center, The Third Clinical College of Hefei of Anhui Medical University, The Third People's Hospital of Hefei, Hefei 230022, China
| | - Mingmin Bian
- Imaging Center, The Third Clinical College of Hefei of Anhui Medical University, The Third People's Hospital of Hefei, Hefei 230022, China
| |
Collapse
|
19
|
Ehrlich R, Barker S, te Water Naude J, Rees D, Kistnasamy B, Naidoo J, Yassi A. Accuracy of Computer-Aided Detection of Occupational Lung Disease: Silicosis and Pulmonary Tuberculosis in Ex-Miners from the South African Gold Mines. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12402. [PMID: 36231700 PMCID: PMC9565035 DOI: 10.3390/ijerph191912402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Computer-aided detection (CAD) of pulmonary tuberculosis (TB) and silicosis among ex-miners from the South African gold mines has the potential to ease the backlog of lung examinations in clinical screening and medical adjudication for miners' compensation. This study aimed to determine whether CAD systems developed to date primarily for TB were able to identify TB (without distinction between prior and active disease) and silicosis (or "other abnormality") in this population. METHODS A total of 501 chest X-rays (CXRs) from a screening programme were submitted to two commercial CAD systems for detection of "any abnormality", TB (any) and silicosis. The outcomes were tested against the readings of occupational medicine specialists with experience in reading miners' CXRs. Accuracy of CAD against the readers was calculated as the area under the curve (AUC) of the receiver operating characteristic (ROC) curve. Sensitivity and specificity were derived using a threshold requiring at least 90% sensitivity. RESULTS One system was able to detect silicosis and/or TB with high AUCs (>0.85) against both readers, and specificity > 70% in most of the comparisons. The other system was able to detect "any abnormality" and TB with high AUCs, but with specificity < 70%. CONCLUSION CAD systems have the potential to come close to expert readers in the identification of TB and silicosis in this population. The findings underscore the need for CAD systems to be developed and validated in specific use-case settings.
Collapse
Affiliation(s)
- Rodney Ehrlich
- Division of Occupational Medicine, School of Public Health and Family Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Stephen Barker
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jim te Water Naude
- Division of Occupational Medicine, School of Public Health and Family Medicine, University of Cape Town, Cape Town 7925, South Africa
- Diagnostic Medicine, Cape Town 7708, South Africa
| | - David Rees
- School of Public Health, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Barry Kistnasamy
- Office of the Compensation Commissioner for Occupational Diseases, Johannesburg 2001, South Africa
| | - Julian Naidoo
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Annalee Yassi
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
20
|
Koul A, Bawa RK, Kumar Y. Artificial Intelligence Techniques to Predict the Airway Disorders Illness: A Systematic Review. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2022; 30:831-864. [PMID: 36189431 PMCID: PMC9516534 DOI: 10.1007/s11831-022-09818-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
Airway disease is a major healthcare issue that causes at least 3 million fatalities every year. It is also considered one of the foremost causes of death all around the globe by 2030. Numerous studies have been undertaken to demonstrate the latest advances in artificial intelligence algorithms to assist in identifying and classifying these diseases. This comprehensive review aims to summarise the state-of-the-art machine and deep learning-based systems for detecting airway disorders, envisage the trends of the recent work in this domain, and analyze the difficulties and potential future paths. This systematic literature review includes the study of one hundred fifty-five articles on airway diseases such as cystic fibrosis, emphysema, lung cancer, Mesothelioma, covid-19, pneumoconiosis, asthma, pulmonary edema, tuberculosis, pulmonary embolism as well as highlights the automated learning techniques to predict them. The study concludes with a discussion and challenges about expanding the efficiency and machine and deep learning-assisted airway disease detection applications.
Collapse
Affiliation(s)
- Apeksha Koul
- Department of Computer Science and Engineering, Punjabi University, Patiala, Punjab India
| | - Rajesh K. Bawa
- Department of Computer Science, Punjabi University, Patiala, Punjab India
| | - Yogesh Kumar
- Department of Computer Science and Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat India
| |
Collapse
|
21
|
Deep Ensemble Learning for the Automatic Detection of Pneumoconiosis in Coal Worker’s Chest X-ray Radiography. J Clin Med 2022; 11:jcm11185342. [PMID: 36142989 PMCID: PMC9506413 DOI: 10.3390/jcm11185342] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/27/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Globally, coal remains one of the natural resources that provide power to the world. Thousands of people are involved in coal collection, processing, and transportation. Particulate coal dust is produced during these processes, which can crush the lung structure of workers and cause pneumoconiosis. There is no automated system for detecting and monitoring diseases in coal miners, except for specialist radiologists. This paper proposes ensemble learning techniques for detecting pneumoconiosis disease in chest X-ray radiographs (CXRs) using multiple deep learning models. Three ensemble learning techniques (simple averaging, multi-weighted averaging, and majority voting (MVOT)) were proposed to investigate performances using randomised cross-folds and leave-one-out cross-validations datasets. Five statistical measurements were used to compare the outcomes of the three investigations on the proposed integrated approach with state-of-the-art approaches from the literature for the same dataset. In the second investigation, the statistical combination was marginally enhanced in the ensemble of multi-weighted averaging on a robust model, CheXNet. However, in the third investigation, the same model elevated accuracies from 87.80 to 90.2%. The investigated results helped us identify a robust deep learning model and ensemble framework that outperformed others, achieving an accuracy of 91.50% in the automated detection of pneumoconiosis.
Collapse
|
22
|
Devnath L, Fan Z, Luo S, Summons P, Wang D. Detection and Visualisation of Pneumoconiosis Using an Ensemble of Multi-Dimensional Deep Features Learned from Chest X-rays. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11193. [PMID: 36141457 PMCID: PMC9517617 DOI: 10.3390/ijerph191811193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 06/16/2023]
Abstract
Pneumoconiosis is a group of occupational lung diseases induced by mineral dust inhalation and subsequent lung tissue reactions. It can eventually cause irreparable lung damage, as well as gradual and permanent physical impairments. It has affected millions of workers in hazardous industries throughout the world, and it is a leading cause of occupational death. It is difficult to diagnose early pneumoconiosis because of the low sensitivity of chest radiographs, the wide variation in interpretation between and among readers, and the scarcity of B-readers, which all add to the difficulty in diagnosing these occupational illnesses. In recent years, deep machine learning algorithms have been extremely successful at classifying and localising abnormality of medical images. In this study, we proposed an ensemble learning approach to improve pneumoconiosis detection in chest X-rays (CXRs) using nine machine learning classifiers and multi-dimensional deep features extracted using CheXNet-121 architecture. There were eight evaluation metrics utilised for each high-level feature set of the associated cross-validation datasets in order to compare the ensemble performance and state-of-the-art techniques from the literature that used the same cross-validation datasets. It is observed that integrated ensemble learning exhibits promising results (92.68% accuracy, 85.66% Matthews correlation coefficient (MCC), and 0.9302 area under the precision-recall (PR) curve), compared to individual CheXNet-121 and other state-of-the-art techniques. Finally, Grad-CAM was used to visualise the learned behaviour of individual dense blocks within CheXNet-121 and their ensembles into three-color channels of CXRs. We compared the Grad-CAM-indicated ROI to the ground-truth ROI using the intersection of the union (IOU) and average-precision (AP) values for each classifier and their ensemble. Through the visualisation of the Grad-CAM within the blue channel, the average IOU passed more than 90% of the pneumoconiosis detection in chest radiographs.
Collapse
Affiliation(s)
- Liton Devnath
- School of Information and Physical Sciences, The University of Newcastle, Newcastle 2308, Australia
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada
| | - Zongwen Fan
- College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China
| | - Suhuai Luo
- School of Information and Physical Sciences, The University of Newcastle, Newcastle 2308, Australia
| | - Peter Summons
- School of Information and Physical Sciences, The University of Newcastle, Newcastle 2308, Australia
| | - Dadong Wang
- Quantitative Imaging, CSIRO Data61, Marsfield 2122, Australia
| |
Collapse
|
23
|
Dong H, Zhu B, Zhang X, Kong X. Use data augmentation for a deep learning classification model with chest X-ray clinical imaging featuring coal workers' pneumoconiosis. BMC Pulm Med 2022; 22:271. [PMID: 35840945 PMCID: PMC9284687 DOI: 10.1186/s12890-022-02068-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE This paper aims to develop a successful deep learning model with data augmentation technique to discover the clinical uniqueness of chest X-ray imaging features of coal workers' pneumoconiosis (CWP). PATIENTS AND METHODS We enrolled 149 CWP patients and 68 dust-exposure workers for a prospective cohort observational study between August 2021 and December 2021 at First Hospital of Shanxi Medical University. Two hundred seventeen chest X-ray images were collected for this study, obtaining reliable diagnostic results through the radiologists' team, and confirming clinical imaging features. We segmented regions of interest with diagnosis reports, then classified them into three categories. To identify these clinical features, we developed a deep learning model (ShuffleNet V2-ECA Net) with data augmentation through performances of different deep learning models by assessment with Receiver Operation Characteristics (ROC) curve and area under the curve (AUC), accuracy (ACC), and Loss curves. RESULTS We selected the ShuffleNet V2-ECA Net as the optimal model. The average AUC of this model was 0.98, and all classifications of clinical imaging features had an AUC above 0.95. CONCLUSION We performed a study on a small dataset to classify the chest X-ray clinical imaging features of pneumoconiosis using a deep learning technique. A deep learning model of ShuffleNet V2 and ECA-Net was successfully constructed using data augmentation, which achieved an average accuracy of 98%. This method uncovered the uniqueness of the chest X-ray imaging features of CWP, thus supplying additional reference material for clinical application.
Collapse
Affiliation(s)
- Hantian Dong
- The First College for Clinical Medicine, Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Biaokai Zhu
- Network Security Department, Shanxi Police College, No. 799 Qingdong Road, Qingxu Country, Taiyuan, 030021, Shanxi, People's Republic of China
| | - Xinri Zhang
- National Health Commission Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, Shanxi, People's Republic of China.
| | - Xiaomei Kong
- National Health Commission Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, Shanxi, People's Republic of China
| |
Collapse
|
24
|
Computer-Aided Diagnosis of Coal Workers' Pneumoconiosis in Chest X-ray Radiographs Using Machine Learning: A Systematic Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116439. [PMID: 35682023 PMCID: PMC9180284 DOI: 10.3390/ijerph19116439] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 02/01/2023]
Abstract
Computer-aided diagnostic (CAD) systems can assist radiologists in detecting coal workers' pneumoconiosis (CWP) in their chest X-rays. Early diagnosis of the CWP can significantly improve workers' survival rate. The development of the CAD systems will reduce risk in the workplace and improve the quality of chest screening for CWP diseases. This systematic literature review (SLR) amis to categorise and summarise the feature extraction and detection approaches of computer-based analysis in CWP using chest X-ray radiographs (CXR). We conducted the SLR method through 11 databases that focus on science, engineering, medicine, health, and clinical studies. The proposed SLR identified and compared 40 articles from the last 5 decades, covering three main categories of computer-based CWP detection: classical handcrafted features-based image analysis, traditional machine learning, and deep learning-based methods. Limitations of this review and future improvement of the review are also discussed.
Collapse
|
25
|
Pu J, Leader JK, Sechrist J, Beeche CA, Singh JP, Ocak IK, Risbano MG. Automated identification of pulmonary arteries and veins depicted in non-contrast chest CT scans. Med Image Anal 2022; 77:102367. [PMID: 35066393 PMCID: PMC8901546 DOI: 10.1016/j.media.2022.102367] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 12/01/2022]
Abstract
We present a novel integrative computerized solution to automatically identify and differentiate pulmonary arteries and veins depicted on chest computed tomography (CT) without iodinated contrast agents. We first identified the central extrapulmonary arteries and veins using a convolutional neural network (CNN) model. Then, a computational differential geometry method was used to automatically identify the tubular-like structures in the lungs with high densities, which we believe are the intrapulmonary vessels. Beginning with the extrapulmonary arteries and veins, we progressively traced the intrapulmonary vessels by following their skeletons and differentiated them into arteries and veins. Instead of manually labeling the numerous arteries and veins in the lungs for machine learning, this integrative strategy limits the manual effort only to the large extrapulmonary vessels. We used a dataset consisting of 120 chest CT scans acquired on different subjects using various protocols to develop, train, and test the algorithms. Our experiments on an independent test set (n = 15) showed promising performance. The computer algorithm achieved a sensitivity of ∼98% in labeling the pulmonary artery and vein branches when compared with a human expert's results, demonstrating the feasibility of our computerized solution in pulmonary artery/vein labeling.
Collapse
Affiliation(s)
- Jiantao Pu
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, United States of America.
| | - Joseph K Leader
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Jacob Sechrist
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Cameron A Beeche
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Jatin P Singh
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Iclal K Ocak
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Michael G Risbano
- Division of Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| |
Collapse
|
26
|
Intelligent Image Diagnosis of Pneumoconiosis Based on Wavelet Transform-Derived Texture Features. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2037019. [PMID: 35341000 PMCID: PMC8947888 DOI: 10.1155/2022/2037019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/22/2021] [Accepted: 02/28/2022] [Indexed: 11/17/2022]
Abstract
Objective. Early diagnosis and treatment of occupational pneumoconiosis can delay the development of the disease. This study is aimed at investigating the intelligent diagnosis of occupational pneumoconiosis by wavelet transform-derived entropy. Method. From June 2013 to June 2020, the high KV digital radiographs (DR) and computed tomography (CT) images from a total of 60 patients with occupational pneumoconiosis in our department were selected. The wavelet transform-derived texture features were extracted from all images, and the decision tree was used for feature selection. The support vector machines (SVM) with three kernel functions were selected to classify the two kinds of images, and their diagnostic efficiency was compared. Result. After eight times of wavelet decomposition, eight wavelet entropy texture features (feature set) were extracted, and six were selected to form the feature subset. The classification effect of linear kernel function SVM is better than those of other functions, with an accuracy of 84.2%. The diagnostic values of DR and CT for occupational pneumoconiosis were the same (
). The detection rate of CT for stage I of occupational pneumoconiosis was significantly higher than that of DR (
). Conclusion. It is helpful to improve the early diagnosis level of pneumoconiosis by using SVM to make an intelligent diagnosis based on the wavelet entropy.
Collapse
|
27
|
Jones CM, Danaher L, Milne MR, Tang C, Seah J, Oakden-Rayner L, Johnson A, Buchlak QD, Esmaili N. Assessment of the effect of a comprehensive chest radiograph deep learning model on radiologist reports and patient outcomes: a real-world observational study. BMJ Open 2021; 11:e052902. [PMID: 34930738 PMCID: PMC8689166 DOI: 10.1136/bmjopen-2021-052902] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Artificial intelligence (AI) algorithms have been developed to detect imaging features on chest X-ray (CXR) with a comprehensive AI model capable of detecting 124 CXR findings being recently developed. The aim of this study was to evaluate the real-world usefulness of the model as a diagnostic assistance device for radiologists. DESIGN This prospective real-world multicentre study involved a group of radiologists using the model in their daily reporting workflow to report consecutive CXRs and recording their feedback on level of agreement with the model findings and whether this significantly affected their reporting. SETTING The study took place at radiology clinics and hospitals within a large radiology network in Australia between November and December 2020. PARTICIPANTS Eleven consultant diagnostic radiologists of varying levels of experience participated in this study. PRIMARY AND SECONDARY OUTCOME MEASURES Proportion of CXR cases where use of the AI model led to significant material changes to the radiologist report, to patient management, or to imaging recommendations. Additionally, level of agreement between radiologists and the model findings, and radiologist attitudes towards the model were assessed. RESULTS Of 2972 cases reviewed with the model, 92 cases (3.1%) had significant report changes, 43 cases (1.4%) had changed patient management and 29 cases (1.0%) had further imaging recommendations. In terms of agreement with the model, 2569 cases showed complete agreement (86.5%). 390 (13%) cases had one or more findings rejected by the radiologist. There were 16 findings across 13 cases (0.5%) deemed to be missed by the model. Nine out of 10 radiologists felt their accuracy was improved with the model and were more positive towards AI poststudy. CONCLUSIONS Use of an AI model in a real-world reporting environment significantly improved radiologist reporting and showed good agreement with radiologists, highlighting the potential for AI diagnostic support to improve clinical practice.
Collapse
Affiliation(s)
- Catherine M Jones
- Annalise-AI, Sydney, New South Wales, Australia
- I-Med Radiology Network, Sydney, New South Wales, Australia
| | - Luke Danaher
- I-Med Radiology Network, Sydney, New South Wales, Australia
| | - Michael R Milne
- Annalise-AI, Sydney, New South Wales, Australia
- I-Med Radiology Network, Sydney, New South Wales, Australia
| | - Cyril Tang
- Annalise-AI, Sydney, New South Wales, Australia
| | - Jarrel Seah
- Annalise-AI, Sydney, New South Wales, Australia
- Department of Radiology, Alfred Health, Melbourne, Victoria, Australia
| | - Luke Oakden-Rayner
- Australian Institute for Machine Learning, The University of Adelaide, Adelaide, South Australia, Australia
| | | | - Quinlan D Buchlak
- Annalise-AI, Sydney, New South Wales, Australia
- School of Medicine, The University of Notre Dame Australia School of Medicine Sydney Campus, Darlinghurst, New South Wales, Australia
| | - Nazanin Esmaili
- School of Medicine, The University of Notre Dame Australia School of Medicine Sydney Campus, Darlinghurst, New South Wales, Australia
- Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
28
|
Yang F, Tang ZR, Chen J, Tang M, Wang S, Qi W, Yao C, Yu Y, Guo Y, Yu Z. Pneumoconiosis computer aided diagnosis system based on X-rays and deep learning. BMC Med Imaging 2021; 21:189. [PMID: 34879818 PMCID: PMC8653800 DOI: 10.1186/s12880-021-00723-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The objective of this study is to construct a computer aided diagnosis system for normal people and pneumoconiosis using X-raysand deep learning algorithms. MATERIALS AND METHODS 1760 anonymous digital X-ray images of real patients between January 2017 and June 2020 were collected for this experiment. In order to concentrate the feature extraction ability of the model more on the lung region and restrain the influence of external background factors, a two-stage pipeline from coarse to fine was established. First, the U-Net model was used to extract the lung regions on each sides of the collection images. Second, the ResNet-34 model with transfer learning strategy was implemented to learn the image features extracted in the lung region to achieve accurate classification of pneumoconiosis patients and normal people. RESULTS Among the 1760 cases collected, the accuracy and the area under curve of the classification model were 92.46% and 89% respectively. CONCLUSION The successful application of deep learning in the diagnosis of pneumoconiosis further demonstrates the potential of medical artificial intelligence and proves the effectiveness of our proposed algorithm. However, when we further classified pneumoconiosis patients and normal subjects into four categories, we found that the overall accuracy decreased to 70.1%. We will use the CT modality in future studies to provide more details of lung regions.
Collapse
Affiliation(s)
- Fan Yang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Taiping Street, Luzhou, 646000, Sichuan, China
- Key Laboratory of Industrial Dust Prevention and Control and Occupational Health and Safety, Ministry of Education, Huainan, China
| | - Zhi-Ri Tang
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Key Laboratory of Industrial Dust Prevention and Control and Occupational Health and Safety, Ministry of Education, Huainan, China
| | - Jing Chen
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Taiping Street, Luzhou, 646000, Sichuan, China
| | - Min Tang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Taiping Street, Luzhou, 646000, Sichuan, China
| | - Shengchun Wang
- Luzhou Center for Disease Control and Prevention, Luzhou, 646000, Sichuan, China
| | - Wanyin Qi
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Taiping Street, Luzhou, 646000, Sichuan, China
| | - Chong Yao
- Key Laboratory of Industrial Dust Prevention and Control and Occupational Health and Safety, Ministry of Education, Huainan, China
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Yuanyuan Yu
- Key Laboratory of Industrial Dust Prevention and Control and Occupational Health and Safety, Ministry of Education, Huainan, China
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Yinan Guo
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Zekuan Yu
- Key Laboratory of Industrial Dust Prevention and Control and Occupational Health and Safety, Ministry of Education, Huainan, China.
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai, 200040, China.
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China.
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments (Guilin University of Electronic Technology), Guilin, China.
| |
Collapse
|
29
|
Hao C, Jin N, Qiu C, Ba K, Wang X, Zhang H, Zhao Q, Huang B. Balanced Convolutional Neural Networks for Pneumoconiosis Detection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179091. [PMID: 34501684 PMCID: PMC8431598 DOI: 10.3390/ijerph18179091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 01/10/2023]
Abstract
Pneumoconiosis remains one of the most common and harmful occupational diseases in China, leading to huge economic losses to society with its high prevalence and costly treatment. Diagnosis of pneumoconiosis still strongly depends on the experience of radiologists, which affects rapid detection on large populations. Recent research focuses on computer-aided detection based on machine learning. These have achieved high accuracy, among which artificial neural network (ANN) shows excellent performance. However, due to imbalanced samples and lack of interpretability, wide utilization in clinical practice meets difficulty. To address these problems, we first establish a pneumoconiosis radiograph dataset, including both positive and negative samples. Second, deep convolutional diagnosis approaches are compared in pneumoconiosis detection, and a balanced training is adopted to promote recall. Comprehensive experiments conducted on this dataset demonstrate high accuracy (88.6%). Third, we explain diagnosis results by visualizing suspected opacities on pneumoconiosis radiographs, which could provide solid diagnostic reference for surgeons.
Collapse
Affiliation(s)
- Chaofan Hao
- Department of Automation, Tsinghua University, Beijing 100084, China; (C.H.); (K.B.)
| | - Nan Jin
- Chongqing Center for Disease Control and Prevention, Department of Occupational Health and Radiation Health, Chongqing 400042, China; (N.J.); (C.Q.); (X.W.); (H.Z.)
| | - Cuijuan Qiu
- Chongqing Center for Disease Control and Prevention, Department of Occupational Health and Radiation Health, Chongqing 400042, China; (N.J.); (C.Q.); (X.W.); (H.Z.)
| | - Kun Ba
- Department of Automation, Tsinghua University, Beijing 100084, China; (C.H.); (K.B.)
| | - Xiaoxi Wang
- Chongqing Center for Disease Control and Prevention, Department of Occupational Health and Radiation Health, Chongqing 400042, China; (N.J.); (C.Q.); (X.W.); (H.Z.)
| | - Huadong Zhang
- Chongqing Center for Disease Control and Prevention, Department of Occupational Health and Radiation Health, Chongqing 400042, China; (N.J.); (C.Q.); (X.W.); (H.Z.)
| | - Qi Zhao
- Chongqing Center for Disease Control and Prevention, Department of Occupational Health and Radiation Health, Chongqing 400042, China; (N.J.); (C.Q.); (X.W.); (H.Z.)
- Correspondence: (Q.Z.); (B.H.)
| | - Biqing Huang
- Department of Automation, Tsinghua University, Beijing 100084, China; (C.H.); (K.B.)
- Correspondence: (Q.Z.); (B.H.)
| |
Collapse
|
30
|
Jones CM, Buchlak QD, Oakden‐Rayner L, Milne M, Seah J, Esmaili N, Hachey B. Chest radiographs and machine learning - Past, present and future. J Med Imaging Radiat Oncol 2021; 65:538-544. [PMID: 34169648 PMCID: PMC8453538 DOI: 10.1111/1754-9485.13274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/08/2021] [Indexed: 01/15/2023]
Abstract
Despite its simple acquisition technique, the chest X-ray remains the most common first-line imaging tool for chest assessment globally. Recent evidence for image analysis using modern machine learning points to possible improvements in both the efficiency and the accuracy of chest X-ray interpretation. While promising, these machine learning algorithms have not provided comprehensive assessment of findings in an image and do not account for clinical history or other relevant clinical information. However, the rapid evolution in technology and evidence base for its use suggests that the next generation of comprehensive, well-tested machine learning algorithms will be a revolution akin to early advances in X-ray technology. Current use cases, strengths, limitations and applications of chest X-ray machine learning systems are discussed.
Collapse
Affiliation(s)
- Catherine M Jones
- I‐MED Radiology NetworkBrisbaneQueenslandAustralia
- Annalise.aiSydneyNew South WalesAustralia
| | - Quinlan D Buchlak
- Annalise.aiSydneyNew South WalesAustralia
- School of MedicineThe University of Notre Dame AustraliaSydneyNew South WalesAustralia
- Harrison.aiSydneyNew South WalesAustralia
| | - Luke Oakden‐Rayner
- Australian Institute for Machine LearningThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Michael Milne
- I‐MED Radiology NetworkBrisbaneQueenslandAustralia
- Annalise.aiSydneyNew South WalesAustralia
| | - Jarrel Seah
- Annalise.aiSydneyNew South WalesAustralia
- Harrison.aiSydneyNew South WalesAustralia
- Department of RadiologyAlfred HealthMelbourneVictoriaAustralia
| | - Nazanin Esmaili
- School of MedicineThe University of Notre Dame AustraliaSydneyNew South WalesAustralia
- Faculty of Engineering and Information TechnologyUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Ben Hachey
- Annalise.aiSydneyNew South WalesAustralia
- Harrison.aiSydneyNew South WalesAustralia
| |
Collapse
|
31
|
Seah JCY, Tang CHM, Buchlak QD, Holt XG, Wardman JB, Aimoldin A, Esmaili N, Ahmad H, Pham H, Lambert JF, Hachey B, Hogg SJF, Johnston BP, Bennett C, Oakden-Rayner L, Brotchie P, Jones CM. Effect of a comprehensive deep-learning model on the accuracy of chest x-ray interpretation by radiologists: a retrospective, multireader multicase study. Lancet Digit Health 2021; 3:e496-e506. [PMID: 34219054 DOI: 10.1016/s2589-7500(21)00106-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/02/2021] [Accepted: 05/12/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Chest x-rays are widely used in clinical practice; however, interpretation can be hindered by human error and a lack of experienced thoracic radiologists. Deep learning has the potential to improve the accuracy of chest x-ray interpretation. We therefore aimed to assess the accuracy of radiologists with and without the assistance of a deep-learning model. METHODS In this retrospective study, a deep-learning model was trained on 821 681 images (284 649 patients) from five data sets from Australia, Europe, and the USA. 2568 enriched chest x-ray cases from adult patients (≥16 years) who had at least one frontal chest x-ray were included in the test dataset; cases were representative of inpatient, outpatient, and emergency settings. 20 radiologists reviewed cases with and without the assistance of the deep-learning model with a 3-month washout period. We assessed the change in accuracy of chest x-ray interpretation across 127 clinical findings when the deep-learning model was used as a decision support by calculating area under the receiver operating characteristic curve (AUC) for each radiologist with and without the deep-learning model. We also compared AUCs for the model alone with those of unassisted radiologists. If the lower bound of the adjusted 95% CI of the difference in AUC between the model and the unassisted radiologists was more than -0·05, the model was considered to be non-inferior for that finding. If the lower bound exceeded 0, the model was considered to be superior. FINDINGS Unassisted radiologists had a macroaveraged AUC of 0·713 (95% CI 0·645-0·785) across the 127 clinical findings, compared with 0·808 (0·763-0·839) when assisted by the model. The deep-learning model statistically significantly improved the classification accuracy of radiologists for 102 (80%) of 127 clinical findings, was statistically non-inferior for 19 (15%) findings, and no findings showed a decrease in accuracy when radiologists used the deep-learning model. Unassisted radiologists had a macroaveraged mean AUC of 0·713 (0·645-0·785) across all findings, compared with 0·957 (0·954-0·959) for the model alone. Model classification alone was significantly more accurate than unassisted radiologists for 117 (94%) of 124 clinical findings predicted by the model and was non-inferior to unassisted radiologists for all other clinical findings. INTERPRETATION This study shows the potential of a comprehensive deep-learning model to improve chest x-ray interpretation across a large breadth of clinical practice. FUNDING Annalise.ai.
Collapse
Affiliation(s)
- Jarrel C Y Seah
- Annalise.ai, Sydney, NSW, Australia; Department of Radiology, Alfred Health, Melbourne, VIC, Australia
| | | | | | | | | | | | - Nazanin Esmaili
- School of Medicine, University of Notre Dame Australia, Sydney, NSW, Australia; Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, Australia
| | | | | | | | | | | | | | - Christine Bennett
- School of Medicine, University of Notre Dame Australia, Sydney, NSW, Australia
| | - Luke Oakden-Rayner
- Australian Institute for Machine Learning, The University of Adelaide, Adelaide, SA, Australia
| | - Peter Brotchie
- Annalise.ai, Sydney, NSW, Australia; Department of Radiology, St Vincent's Health Australia, Melbourne, VIC, Australia
| | | |
Collapse
|
32
|
Pu J, Sechrist J, Meng X, Leader JK, Sciurba FC. A pilot study: Quantify lung volume and emphysema extent directly from two-dimensional scout images. Med Phys 2021; 48:4316-4325. [PMID: 34077564 DOI: 10.1002/mp.15019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The potential to compute volume metrics of emphysema from planar scout images was investigated in this study. The successful implementation of this concept will have a wide impact in different fields, and specifically, maximize the diagnostic potential of the planar medical images. METHODS We investigated our premise using a well-characterized chronic obstructive pulmonary disease (COPD) cohort. In this cohort, planar scout images from computed tomography (CT) scans were used to compute lung volume and percentage of emphysema. Lung volume and percentage of emphysema were quantified on the volumetric CT images and used as the "ground truth" for developing the models to compute the variables from the corresponding scout images. We trained two classical convolutional neural networks (CNNs), including VGG19 and InceptionV3, to compute lung volume and the percentage of emphysema from the scout images. The scout images (n = 1,446) were split into three subgroups: (1) training (n = 1,235), (2) internal validation (n = 99), and (3) independent test (n = 112) at the subject level in a ratio of 8:1:1. The mean absolute difference (MAD) and R-square (R2) were the performance metrics to evaluate the prediction performance of the developed models. RESULTS The lung volumes and percentages of emphysema computed from a single planar scout image were significantly linear correlated with the measures quantified using volumetric CT images (VGG19: R2 = 0.934 for lung volume and R2 = 0.751 for emphysema percentage, and InceptionV3: R2 = 0.977 for lung volume and R2 = 0.775 for emphysema percentage). The mean absolute differences (MADs) for lung volume and percentage of emphysema were 0.302 ± 0.247L and 2.89 ± 2.58%, respectively, for VGG19, and 0.366 ± 0.287L and 3.19 ± 2.14, respectively, for InceptionV3. CONCLUSIONS Our promising results demonstrated the feasibility of inferring volume metrics from planar images using CNNs.
Collapse
Affiliation(s)
- Jiantao Pu
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jacob Sechrist
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xin Meng
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph K Leader
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Frank C Sciurba
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
33
|
Moses DA. Deep learning applied to automatic disease detection using chest X-rays. J Med Imaging Radiat Oncol 2021; 65:498-517. [PMID: 34231311 DOI: 10.1111/1754-9485.13273] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022]
Abstract
Deep learning (DL) has shown rapid advancement and considerable promise when applied to the automatic detection of diseases using CXRs. This is important given the widespread use of CXRs across the world in diagnosing significant pathologies, and the lack of trained radiologists to report them. This review article introduces the basic concepts of DL as applied to CXR image analysis including basic deep neural network (DNN) structure, the use of transfer learning and the application of data augmentation. It then reviews the current literature on how DNN models have been applied to the detection of common CXR abnormalities (e.g. lung nodules, pneumonia, tuberculosis and pneumothorax) over the last few years. This includes DL approaches employed for the classification of multiple different diseases (multi-class classification). Performance of different techniques and models and their comparison with human observers are presented. Some of the challenges facing DNN models, including their future implementation and relationships to radiologists, are also discussed.
Collapse
Affiliation(s)
- Daniel A Moses
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, New South Wales, Australia.,Department of Medical Imaging, Prince of Wales Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
34
|
Fu R, Leader JK, Pradeep T, Shi J, Meng X, Zhang Y, Pu J. Automated delineation of orbital abscess depicted on CT scan using deep learning. Med Phys 2021; 48:3721-3729. [PMID: 33906264 PMCID: PMC8600964 DOI: 10.1002/mp.14907] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES To develop and validate a deep learning algorithm to automatically detect and segment an orbital abscess depicted on computed tomography (CT). METHODS We retrospectively collected orbital CT scans acquired on 67 pediatric subjects with a confirmed orbital abscess in the setting of infectious orbital cellulitis. A context-aware convolutional neural network (CA-CNN) was developed and trained to automatically segment orbital abscess. To reduce the requirement for a large dataset, transfer learning was used by leveraging a pre-trained model for CT-based lung segmentation. An ophthalmologist manually delineated orbital abscesses depicted on the CT images. The classical U-Net and the CA-CNN models with and without transfer learning were trained and tested on the collected dataset using the 10-fold cross-validation method. Dice coefficient, Jaccard index, and Hausdorff distance were used as performance metrics to assess the agreement between the computerized and manual segmentations. RESULTS The context-aware U-Net with transfer learning achieved an average Dice coefficient and Jaccard index of 0.78 ± 0.12 and 0.65 ± 0.13, which were consistently higher than the classical U-Net or the context-aware U-Net without transfer learning (P < 0.01). The average differences of the abscess between the computerized results and the experts in terms of volume and Hausdorff distance were 0.10 ± 0.11 mL and 1.94 ± 1.21 mm, respectively. The context-aware U-Net detected all orbital abscess without false positives. CONCLUSIONS The deep learning solution demonstrated promising performance in detecting and segmenting orbital abscesses on CT images in strong agreement with a human observer.
Collapse
Affiliation(s)
- Roxana Fu
- Department of Ophthalmology University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Joseph K. Leader
- Departments of Radiology and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tejus Pradeep
- Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Junli Shi
- Departments of Radiology and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xin Meng
- Departments of Radiology and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yanchun Zhang
- Departments of Radiology and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jiantao Pu
- Departments of Radiology and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
35
|
Gowda V, Cheng G, Saito K. The B Reader Program, Silicosis, and Physician Workload Management: A Niche for AI Technologies. J Occup Environ Med 2021; 63:e471-e473. [PMID: 34016915 DOI: 10.1097/jom.0000000000002271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | - Glen Cheng
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Kenji Saito
- MedLaw LLC
- Dartmouth College Geisel School of Medicine
- University of New England
| |
Collapse
|
36
|
Çallı E, Sogancioglu E, van Ginneken B, van Leeuwen KG, Murphy K. Deep learning for chest X-ray analysis: A survey. Med Image Anal 2021; 72:102125. [PMID: 34171622 DOI: 10.1016/j.media.2021.102125] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022]
Abstract
Recent advances in deep learning have led to a promising performance in many medical image analysis tasks. As the most commonly performed radiological exam, chest radiographs are a particularly important modality for which a variety of applications have been researched. The release of multiple, large, publicly available chest X-ray datasets in recent years has encouraged research interest and boosted the number of publications. In this paper, we review all studies using deep learning on chest radiographs published before March 2021, categorizing works by task: image-level prediction (classification and regression), segmentation, localization, image generation and domain adaptation. Detailed descriptions of all publicly available datasets are included and commercial systems in the field are described. A comprehensive discussion of the current state of the art is provided, including caveats on the use of public datasets, the requirements of clinically useful systems and gaps in the current literature.
Collapse
Affiliation(s)
- Erdi Çallı
- Radboud University Medical Center, Institute for Health Sciences, Department of Medical Imaging, Nijmegen, the Netherlands.
| | - Ecem Sogancioglu
- Radboud University Medical Center, Institute for Health Sciences, Department of Medical Imaging, Nijmegen, the Netherlands
| | - Bram van Ginneken
- Radboud University Medical Center, Institute for Health Sciences, Department of Medical Imaging, Nijmegen, the Netherlands
| | - Kicky G van Leeuwen
- Radboud University Medical Center, Institute for Health Sciences, Department of Medical Imaging, Nijmegen, the Netherlands
| | - Keelin Murphy
- Radboud University Medical Center, Institute for Health Sciences, Department of Medical Imaging, Nijmegen, the Netherlands
| |
Collapse
|