1
|
Martí-Carvajal AJ, Gemmato-Valecillos MA, Monge Martín D, Dayer M, Alegría-Barrero E, De Sanctis JB, Parise Vasco JM, Riera Lizardo RJ, Nicola S, Martí-Amarista CE, Correa-Pérez A. Interleukin-receptor antagonist and tumour necrosis factor inhibitors for the primary and secondary prevention of atherosclerotic cardiovascular diseases. Cochrane Database Syst Rev 2024; 9:CD014741. [PMID: 39297531 PMCID: PMC11411914 DOI: 10.1002/14651858.cd014741.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
BACKGROUND Atherosclerotic cardiovascular disease (ACVD) is worsened by chronic inflammatory diseases. Interleukin receptor antagonists (IL-RAs) and tumour necrosis factor-alpha (TNF) inhibitors have been studied to see if they can prevent cardiovascular events. OBJECTIVES The purpose of this study was to assess the clinical benefits and harms of IL-RAs and TNF inhibitors in the primary and secondary prevention of ACVD. SEARCH METHODS The Cochrane Heart Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), Ovid MEDLINE (including In-Process & Other Non-Indexed Citations), Ovid Embase, EBSCO CINAHL plus, and clinical trial registries for ongoing and unpublished studies were searched in February 2024. The reference lists of relevant studies, reviews, meta-analyses and health technology reports were searched to identify additional studies. No limitations on language, date of publication or study type were set. SELECTION CRITERIA RCTs that recruited people with and without pre-existing ACVD, comparing IL-RAs or TNF inhibitors versus placebo or usual care, were selected. The primary outcomes considered were all-cause mortality, myocardial infarction, unstable angina, and adverse events. DATA COLLECTION AND ANALYSIS Two or more review authors, working independently at each step, selected studies, extracted data, assessed the risk of bias and used GRADE to judge the certainty of evidence. MAIN RESULTS We included 58 RCTs (22,053 participants; 21,308 analysed), comparing medication efficacy with placebo or usual care. Thirty-four trials focused on primary prevention and 24 on secondary prevention. The interventions included IL-1 RAs (anakinra, canakinumab), IL-6 RA (tocilizumab), TNF-inhibitors (etanercept, infliximab) compared with placebo or usual care. The certainty of evidence was low to very low due to biases and imprecision; all trials had a high risk of bias. Primary prevention: IL-1 RAs The evidence is very uncertain about the effects of the intervention on all-cause mortality(RR 0.33, 95% CI 0.01 to 7.58, 1 trial), myocardial infarction (RR 0.71, 95% CI 0.04 to 12.48, I² = 39%, 2 trials), unstable angina (RR 0.24, 95% CI 0.03 to 2.11, I² = 0%, 2 trials), stroke (RR 2.42, 95% CI 0.12 to 50.15; 1 trial), adverse events (RR 0.85, 95% CI 0.59 to 1.22, I² = 54%, 3 trials), or infection (rate ratio 0.84, 95% 0.55 to 1.29, I² = 0%, 4 trials). Evidence is very uncertain about whether anakinra and cankinumab may reduce heart failure (RR 0.21, 95% CI 0.05 to 0.94, I² = 0%, 3 trials). Peripheral vascular disease (PVD) was not reported as an outcome. IL-6 RAs The evidence is very uncertain about the effects of the intervention on all-cause mortality (RR 0.68, 95% CI 0.12 to 3.74, I² = 30%, 3 trials), myocardial infarction (RR 0.27, 95% CI 0.04 to1.68, I² = 0%, 3 trials), heart failure (RR 1.02, 95% CI 0.11 to 9.63, I² = 0%, 2 trials), PVD (RR 2.94, 95% CI 0.12 to 71.47, 1 trial), stroke (RR 0.34, 95% CI 0.01 to 8.14, 1 trial), or any infection (rate ratio 1.10, 95% CI: 0.88 to 1.37, I2 = 18%, 5 trials). Adverse events may increase (RR 1.13, 95% CI 1.04 to 1.23, I² = 33%, 5 trials). No trial assessed unstable angina. TNF inhibitors The evidence is very uncertain about the effects of the intervention on all-cause mortality (RR 1.78, 95% CI 0.63 to 4.99, I² = 10%, 3 trials), myocardial infarction (RR 2.61, 95% CI 0.11 to 62.26, 1 trial), stroke (RR 0.46, 95% CI 0.08 to 2.80, I² = 0%; 3 trials), heart failure (RR 0.85, 95% CI 0.06 to 12.76, 1 trial). Adverse events may increase (RR 1.13, 95% CI 1.01 to 1.25, I² = 51%, 13 trials). No trial assessed unstable angina or PVD. Secondary prevention: IL-1 RAs The evidence is very uncertain about the effects of the intervention on all-cause mortality (RR 0.94, 95% CI 0.84 to 1.06, I² = 0%, 8 trials), unstable angina (RR 0.88, 95% CI 0.65 to 1.19, I² = 0%, 3 trials), PVD (RR 0.85, 95% CI 0.19 to 3.73, I² = 38%, 3 trials), stroke (RR 0.94, 95% CI 0.74 to 1.2, I² = 0%; 7 trials), heart failure (RR 0.91, 95% 0.5 to 1.65, I² = 0%; 7 trials), or adverse events (RR 0.92, 95% CI 0.78 to 1.09, I² = 3%, 4 trials). There may be little to no difference between the groups in myocardial infarction (RR 0.88, 95% CI 0.0.75 to 1.04, I² = 0%, 6 trials). IL6-RAs The evidence is very uncertain about the effects of the intervention on all-cause mortality (RR 1.09, 95% CI 0.61 to 1.96, I² = 0%, 2 trials), myocardial infarction (RR 0.46, 95% CI 0.07 to 3.04, I² = 45%, 3 trials), unstable angina (RR 0.33, 95% CI 0.01 to 8.02, 1 trial), stroke (RR 1.03, 95% CI 0.07 to 16.25, 1 trial), adverse events (RR 0.89, 95% CI 0.76 to 1.05, I² = 0%, 2 trials), or any infection (rate ratio 0.66, 95% CI 0.32 to 1.36, I² = 0%, 4 trials). No trial assessed PVD or heart failure. TNF inhibitors The evidence is very uncertain about the effect of the intervention on all-cause mortality (RR 1.16, 95% CI 0.69 to 1.95, I² = 47%, 5 trials), heart failure (RR 0.92, 95% 0.75 to 1.14, I² = 0%, 4 trials), or adverse events (RR 1.15, 95% CI 0.84 to 1.56, I² = 32%, 2 trials). No trial assessed myocardial infarction, unstable angina, PVD or stroke. Adverse events may be underestimated and benefits inflated due to inadequate reporting. AUTHORS' CONCLUSIONS This Cochrane review assessed the benefits and harms of using interleukin-receptor antagonists and tumour necrosis factor inhibitors for primary and secondary prevention of atherosclerotic diseases compared with placebo or usual care. However, the evidence for the predetermined outcomes was deemed low or very low certainty, so there is still a need to determine whether these interventions provide clinical benefits or cause harm from this perspective. In summary, the different biases and imprecision in the included studies limit their external validity and represent a limitation to determining the effectiveness of the intervention for both primary and secondary prevention of ACVD.
Collapse
Key Words
- humans
- angina, unstable
- angina, unstable/mortality
- angina, unstable/prevention & control
- antibodies, monoclonal, humanized
- antibodies, monoclonal, humanized/administration & dosage
- antibodies, monoclonal, humanized/adverse effects
- atherosclerosis
- atherosclerosis/mortality
- atherosclerosis/prevention & control
- bias
- cause of death
- myocardial infarction
- myocardial infarction/mortality
- myocardial infarction/prevention & control
- primary prevention
- primary prevention/methods
- randomized controlled trials as topic
- receptors, interleukin-1
- receptors, interleukin-1/antagonists & inhibitors
- secondary prevention
- secondary prevention/methods
- tumor necrosis factor-alpha
- tumor necrosis factor-alpha/antagonists & inhibitors
Collapse
Affiliation(s)
- Arturo J Martí-Carvajal
- Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Centro Asociado Cochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Quito, Ecuador
- Facultad de Medicina (Centro Cochrane Madrid), Universidad Francisco de Vitoria, Madrid, Spain
- Cátedra Rectoral de Medicina Basada en la Evidencia, Universidad de Carabobo, Valencia , Venezuela
| | - Mario A Gemmato-Valecillos
- Icahn School of Medicine at Mount Sinai/ NYCHH Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, New York 11373, USA
| | | | - Mark Dayer
- Cardiovascular Research Institute, Mater Private Network, Dublin, Ireland
- Faculty of Health, University of Plymouth, Plymouth, UK
| | | | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Palacky University, Faculty of Medicine and Dentistry, Olomouc, Czech Republic
| | - Juan Marcos Parise Vasco
- Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Centro Asociado Cochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Quito, Ecuador
| | - Ricardo J Riera Lizardo
- Cátedra Rectoral de Medicina Basada en la Evidencia, Universidad de Carabobo, Valencia, Venezuela
| | - Susana Nicola
- Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Centro Asociado Cochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Quito, Ecuador
| | | | - Andrea Correa-Pérez
- Faculty of Medicine, Universidad Francisco de Vitoria, Madrid, Spain
- Hospital Pharmacy and Medical Devices Department, Hospital Central de la Defensa "Gómez Ulla" CSVE, Madrid, Spain
| |
Collapse
|
2
|
Mangarova DB, Reimann C, Kaufmann JO, Möckel J, Kader A, Adams LC, Ludwig A, Onthank D, Robinson S, Karst U, Helmer R, Botnar R, Hamm B, Makowski MR, Brangsch J. Elastin-specific MR probe for visualization and evaluation of an interleukin-1β targeted therapy for atherosclerosis. Sci Rep 2024; 14:20648. [PMID: 39232217 PMCID: PMC11375012 DOI: 10.1038/s41598-024-71716-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory condition of the arteries and represents the primary cause of various cardiovascular diseases. Despite ongoing progress, finding effective anti-inflammatory therapeutic strategies for atherosclerosis remains a challenge. Here, we assessed the potential of molecular magnetic resonance imaging (MRI) to visualize the effects of 01BSUR, an anti-interleukin-1β monoclonal antibody, for treating atherosclerosis in a murine model. Male apolipoprotein E-deficient mice were divided into a therapy group (01BSUR, 2 × 0.3 mg/kg subcutaneously, n = 10) and control group (no treatment, n = 10) and received a high-fat diet for eight weeks. The plaque burden was assessed using an elastin-targeted gadolinium-based contrast probe (0.2 mmol/kg intravenously) on a 3 T MRI scanner. T1-weighted imaging showed a significantly lower contrast-to-noise (CNR) ratio in the 01BSUR group (pre: 3.93042664; post: 8.4007067) compared to the control group (pre: 3.70679168; post: 13.2982156) following administration of the elastin-specific MRI probe (p < 0.05). Histological examinations demonstrated a significant reduction in plaque size (p < 0.05) and a significant decrease in plaque elastin content (p < 0.05) in the treatment group compared to control animals. This study demonstrated that 01BSUR hinders the progression of atherosclerosis in a mouse model. Using an elastin-targeted MRI probe, we could quantify these therapeutic effects in MRI.
Collapse
Affiliation(s)
- Dilyana Branimirova Mangarova
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| | - Carolin Reimann
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Jan Ole Kaufmann
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Division 1.5 Protein Analysis, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Jana Möckel
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Avan Kader
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Lisa Christine Adams
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Antje Ludwig
- Department of Cardiology and Angiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany
| | - David Onthank
- Lantheus Medical Imaging, 331 Treble Cove Road, North Billerica, MA, United States of America
| | - Simon Robinson
- Lantheus Medical Imaging, 331 Treble Cove Road, North Billerica, MA, United States of America
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Rebecca Helmer
- Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Rene Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital Westminster Bridge Road, London, SE1 7EH, United Kingdom
- Wellcome Trust/EPSRC Centre for Medical Engineering, King's College London, London, United Kingdom
- BHF Centre of Excellence, King's College London, Denmark Hill Campus, 125 Coldharbour Lane, London, SE5 9NU, United Kingdom
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bernd Hamm
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Marcus Richard Makowski
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Julia Brangsch
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
3
|
Kindberg KM, Broch K, Andersen GØ, Anstensrud AK, Åkra S, Woxholt S, Tøllefsen IM, Ueland T, Amundsen BH, Kløw NE, Halvorsen B, Dahl TB, Huse C, Murphy SL, Damås JK, Opdahl A, Wiseth R, Gullestad L, Aukrust P, Santos-Gallego C, Seljeflot I, Stokke MK, Helseth R. Neutrophil Extracellular Traps in ST-Segment Elevation Myocardial Infarction: Reduced by Tocilizumab and Associated With Infarct Size. JACC. ADVANCES 2024; 3:101193. [PMID: 39247678 PMCID: PMC11378880 DOI: 10.1016/j.jacadv.2024.101193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/11/2024] [Accepted: 06/27/2024] [Indexed: 09/10/2024]
Abstract
Background Interleukin-6-receptor inhibition with tocilizumab improves myocardial salvage in patients with ST-segment elevation myocardial infarction (STEMI). Reduced levels of neutrophil extracellular traps (NETs), which consist of nuclear material studded with proteins released upon neutrophil activation, might contribute to this effect. Objectives The purpose of this study was to evaluate the effect of tocilizumab on NETs and investigate the association between NETs and myocardial injury in patients with STEMI. Methods In the ASSAIL-MI study, 199 patients with STEMI were randomized to tocilizumab or placebo during percutaneous coronary intervention. In this substudy, we analyzed blood levels of the NET markers double-stranded deoxyribonucleic acid (dsDNA), myeloperoxidase-DNA, and citrullinated histone 3 (H3Cit) at admission and after 24 hours and 3 to 7 days. In a subgroup of patients, we assessed regulation of transcripts related to the formation of NETs. We also investigated associations between NET markers and the myocardial salvage index (MSI). Results All NET markers were lower in the tocilizumab group than in the placebo group at 3 to 7 days (all P < 0.04). Several NET-related pathways were downregulated in the tocilizumab group. The beneficial effect of tocilizumab on the MSI seemed to be partly dependent on reduction of NETs (structural equation modeling: 0.05, P = 0.001 [dsDNA] and 0.02, P = 0.055 [H3Cit]). Patients with NETs in the 3 lowest quartiles had higher MSI than patients in quartile 4 (10.9 [95% CI: 4.0-15.0] [dsDNA] and 8.9 [95% CI: 2.0-15.9] [H3Cit], both P = 0.01). Conclusions NETs were reduced by tocilizumab and associated with myocardial injury. The effect of tocilizumab on MSI might be mediated through reduced NETs. (ASSessing the Effect of Anti-IL-6 Treatment in Myocardial Infarction: The ASSAIL-MI Trial [ASSAIL-MI]; NCT03004703).
Collapse
Affiliation(s)
- Kristine Mørk Kindberg
- Department of Cardiology, Center for Clinical Heart Research, Oslo University Hospital Ullevaal, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kaspar Broch
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- K. G. Jebsen Cardiac Research Centre, University of Oslo, Oslo, Norway
| | | | - Anne Kristine Anstensrud
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Sissel Åkra
- Department of Cardiology, Center for Clinical Heart Research, Oslo University Hospital Ullevaal, Oslo, Norway
| | - Sindre Woxholt
- Clinic of Cardiology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- K. G. Jebsen Thrombosis Research and Expertise Center (TREC), The Arctic University of Norway, Tromsø, Norway
| | - Brage Høyem Amundsen
- Clinic of Cardiology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Nils-Einar Kløw
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Radiology, Oslo University Hospital Ullevaal, Oslo, Norway
| | - Bente Halvorsen
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Tuva B Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Camilla Huse
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Louise Murphy
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Jan Kristian Damås
- Department of Infectious Disease, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Anders Opdahl
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Rune Wiseth
- Clinic of Cardiology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Lars Gullestad
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- K. G. Jebsen Cardiac Research Centre, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Carlos Santos-Gallego
- AtheroThrombosis Research Unit, Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ingebjørg Seljeflot
- Department of Cardiology, Center for Clinical Heart Research, Oslo University Hospital Ullevaal, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mathis Korseberg Stokke
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ragnhild Helseth
- Department of Cardiology, Center for Clinical Heart Research, Oslo University Hospital Ullevaal, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway
| |
Collapse
|
4
|
Dimosiari A, Patoulias D, Kitas GD, Dimitroulas T. Do Interleukin-1 and Interleukin-6 Antagonists Hold Any Place in the Treatment of Atherosclerotic Cardiovascular Disease and Related Co-Morbidities? An Overview of Available Clinical Evidence. J Clin Med 2023; 12:jcm12041302. [PMID: 36835838 PMCID: PMC9962740 DOI: 10.3390/jcm12041302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Cardiovascular disease (CVD) constitutes a real pandemic of the 21st century. According to data from the Centers for Disease Control and Prevention, one person dies every 34 min due to some form of CVD in the United States. Apart from the extremely high morbidity and mortality accompanying CVD, the economic burden seems to be unbearable even for developed countries in the Western World. The role of inflammation in the development and progression of CVD appears to be crucial, while, various inflammatory pathways, such as the Nod-like receptor protein 3 (NLRP3) inflammasome-interleukin (IL)-1/IL-6 pathway of the innate immunity, have attracted scientific interest during the last decade, as a potential treatment target in primary and/or secondary prevention of CVD. Whereas there is a significant amount of evidence, stemming mainly from observational studies, concerning the cardiovascular safety of IL-1 and IL-6 antagonists in patients with rheumatic diseases, evidence from relevant randomized controlled trials (RCTs) is rather scarce and conflicting, especially for patients without underlying rheumatic disease. In this review, we summarize and critically present the currently available evidence, both from RCTs and observational studies, concerning the place that IL-1 and IL-6 antagonists may hold in the treatment of CVD.
Collapse
Affiliation(s)
- Athina Dimosiari
- Second Department of Internal Medicine, European Interbalkan Medical Center, 57001 Thessaloniki, Greece
| | - Dimitrios Patoulias
- Second Department of Internal Medicine, European Interbalkan Medical Center, 57001 Thessaloniki, Greece
- Outpatient Department of Cardiometabolic Medicine, Second Department of Cardiology, General Hospital Hippokration, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
- Correspondence:
| | - George D. Kitas
- Department of Rheumatology, Russells Hall Hospital, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK
| | - Theodoros Dimitroulas
- Fourth Department of Internal Medicine, General Hospital Hippokration, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| |
Collapse
|
5
|
Tsioufis P, Theofilis P, Tsioufis K, Tousoulis D. The Impact of Cytokines in Coronary Atherosclerotic Plaque: Current Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms232415937. [PMID: 36555579 PMCID: PMC9788180 DOI: 10.3390/ijms232415937] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Coronary atherosclerosis is a chronic pathological process that involves inflammation together with endothelial dysfunction and lipoprotein dysregulation. Experimental studies during the past decades have established the role of inflammatory cytokines in coronary artery disease, namely interleukins (ILs), tumor necrosis factor (TNF)-α, interferon-γ, and chemokines. Moreover, their value as biomarkers in disease development and progression further enhance the validity of this interaction. Recently, cytokine-targeted treatment approaches have emerged as potential tools in the management of atherosclerotic disease. IL-1β, based on the results of the CANTOS trial, remains the most validated option in reducing the residual cardiovascular risk. Along the same line, colchicine was also proven efficacious in preventing major adverse cardiovascular events in large clinical trials of patients with acute and chronic coronary syndrome. Other commercially available agents targeting IL-6 (tocilizumab), TNF-α (etanercept, adalimumab, infliximab), or IL-1 receptor antagonist (anakinra) have mostly been assessed in the setting of other inflammatory diseases and further testing in atherosclerosis is required. In the future, potential targeting of the NLRP3 inflammasome, anti-inflammatory IL-10, or atherogenic chemokines could represent appealing options, provided that patient safety is proven to be of no concern.
Collapse
|
6
|
Ngo ATP, Gollomp K. Building a better
NET
: Neutrophil extracellular trap targeted therapeutics in the treatment of infectious and inflammatory disorders. Res Pract Thromb Haemost 2022. [DOI: 10.1002/rth2.12808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Anh T. P. Ngo
- Division of Hematology Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
| | - Kandace Gollomp
- Division of Hematology Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
- Department of Pediatrics, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
| |
Collapse
|
7
|
Huse C, Anstensrud AK, Michelsen AE, Ueland T, Broch K, Woxholt S, Yang K, Sharma K, Tøllefsen IM, Bendz B, Amundsen BH, Damås JK, Berg ES, Bjørkelund E, Quiles-Jiménez A, Bjerkeli V, Bendz C, Kleveland O, Stensaeth KH, Opdahl A, Kløw NE, Andersen GØ, Wiseth R, Halvorsen B, Gullestad L, Seljeflot I, Aukrust P, Osnes L, Dahl TB. Interleukin-6 inhibition in ST-elevation myocardial infarction: Immune cell profile in the randomised ASSAIL-MI trial. EBioMedicine 2022; 80:104013. [PMID: 35504178 PMCID: PMC9079006 DOI: 10.1016/j.ebiom.2022.104013] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 12/31/2022] Open
Abstract
Background We recently showed that interleukin (IL)-6 inhibition by tocilizumab improves myocardial salvage in ST-elevation myocardial infarction (STEMI). However, the mechanisms for this effect are not clear. Methods In this exploratory sub-study of the ASSAIL-MI trial, we examined leukocyte differential counts and their relation to myocardial salvage and peak troponin T (TnT) in STEMI patients randomised to tocilizumab (n = 101) or placebo (n = 98). We performed RNA-sequencing on whole blood (n = 40) and T cells (n = 20). B and T cell subpopulations were examined by flow cytometry (n = 69). Findings (i) STEMI patients had higher neutrophil counts at hospitalisation compared with stable angina patients. (ii) After percutaneous coronary intervention there was a gradual decline in neutrophils, which was significantly more pronounced in the tocilizumab group. (iii) The decrease in neutrophils in the tocilizumab group was associated with improved myocardial salvage and lower peak TnT. (iv) RNA-sequencing suggested that neutrophil function was also attenuated by tocilizumab. (v) B and T cell sub-populations changed only minimally after STEMI with minor effects of tocilizumab, supported as well by RNA-sequencing analyses of T cells. (vi) However, a low CD8+ count was associated with improved myocardial salvage in patients admitted to the hospital > 3 h after symptom onset. Interpretation Tocilizumab induced a rapid reduction in neutrophils and seemed to attenuate neutrophil function in STEMI patients potentially related to the beneficial effects of tocilizumab on myocardial salvage. Funding South-Eastern Norway Regional Health Authority (Nos. 2019067, 2017084), the Central Norway Regional Health Authority and Norwegian Research Council (No. 283867).
Collapse
Affiliation(s)
- Camilla Huse
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anne Kristine Anstensrud
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Annika E Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; K. G. Jebsen Thrombosis Research and Expertise Centre (TREC), The Arctic University of Norway, Tromsø, Norway
| | - Kaspar Broch
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway; K. G. Jebsen Cardiac Research Centre and Centre for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Sindre Woxholt
- Clinic of Cardiology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kuan Yang
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kapil Sharma
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | | | - Bjørn Bendz
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Brage Høyem Amundsen
- Clinic of Cardiology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jan Kristian Damås
- Department of Infectious Disease, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Erlend Sturle Berg
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | - Ana Quiles-Jiménez
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vigdis Bjerkeli
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Christina Bendz
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Ola Kleveland
- Clinic of Cardiology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Knut Haakon Stensaeth
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Radiology and Nuclear Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Anders Opdahl
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Nils-Einar Kløw
- Department of Radiology, Oslo University Hospital Ullevål, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Geir Øystein Andersen
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway; Department of Cardiology, Center for Clinical Heart Research, Oslo University Hospital Ullevål, Oslo, Norway
| | - Rune Wiseth
- Clinic of Cardiology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars Gullestad
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway; K. G. Jebsen Cardiac Research Centre and Centre for Heart Failure Research, University of Oslo, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingebjørg Seljeflot
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cardiology, Center for Clinical Heart Research, Oslo University Hospital Ullevål, Oslo, Norway
| | - Pål Aukrust
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Rheumatology, Dermatology and Infectious Disease, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Liv Osnes
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Tuva B Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital, Norway.
| |
Collapse
|