1
|
Kumawat P, Agarwal LK, Sharma K. An Overview of SARS-CoV-2 Potential Targets, Inhibitors, and Computational Insights to Enrich the Promising Treatment Strategies. Curr Microbiol 2024; 81:169. [PMID: 38733424 DOI: 10.1007/s00284-024-03671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/18/2024] [Indexed: 05/13/2024]
Abstract
The rapid spread of the SARS-CoV-2 virus has emphasized the urgent need for effective therapies to combat COVID-19. Investigating the potential targets, inhibitors, and in silico approaches pertinent to COVID-19 are of utmost need to develop novel therapeutic agents and reprofiling of existing FDA-approved drugs. This article reviews the viral enzymes and their counter receptors involved in the entry of SARS-CoV-2 into host cells, replication of genomic RNA, and controlling the host cell physiology. In addition, the study provides an overview of the computational techniques such as docking simulations, molecular dynamics, QSAR modeling, and homology modeling that have been used to find the FDA-approved drugs and other inhibitors against SARS-CoV-2. Furthermore, a comprehensive overview of virus-based and host-based druggable targets from a structural point of view, together with the reported therapeutic compounds against SARS-CoV-2 have also been presented. The current study offers future perspectives for research in the field of network pharmacology investigating the large unexplored molecular libraries. Overall, the present in-depth review aims to expedite the process of identifying and repurposing drugs for researchers involved in the field of COVID-19 drug discovery.
Collapse
Affiliation(s)
- Pooja Kumawat
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Lokesh Kumar Agarwal
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.
| | - Kuldeep Sharma
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| |
Collapse
|
2
|
Zheng B, Zhao Q, Yang W, Feng P, Xin C, Ying Y, Yang B, Han B, Zhu J, Zhang M, Li G. Small-molecule antiviral treatments for COVID-19: A systematic review and network meta-analysis. Int J Antimicrob Agents 2024; 63:107096. [PMID: 38244811 DOI: 10.1016/j.ijantimicag.2024.107096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
OBJECTIVE This study aimed to explore the efficacy and safety of small-molecule antivirals for treating coronavirus disease 2019 (COVID-19). METHODS Seven databases were searched from their inception to 01 June 2023. The risk of bias in randomised controlled trials and retrospective studies was evaluated individually using the Cochrane risk-of-bias tool and Newcastle Ottawa Scale. RESULTS In total, 160 studies involving 933 409 COVID-19 patients were evaluated. Compared with placebo or standard of care, proxalutamide demonstrated remarkable efficacy in reducing mortality rates, hospitalisation rates, serious adverse events, and the need for mechanical ventilation. Furthermore, it significantly enhanced both the rate of clinical improvement and expedited the duration of clinical recovery when compared with control groups. In patients with mild-to-moderate COVID-19, proxalutamide exhibited the above advantages, except for mortality reduction. Triazavirin was the most effective treatment for reducing the time required for viral clearance and improving the discharge rate. Leritrelvir and VV116 were ranked first in terms of enhancing the viral clearance rate on days 7 and 14, respectively. Molnupiravir was the most effective treatment for reducing the need for oxygen support. Overall, these findings remained consistent across the various subgroups. CONCLUSIONS A thorough evaluation of effectiveness, applicable to both mild-to-moderate and unstratified populations, highlights the specific advantages of proxalutamide, nirmatrelvir/ritonavir, triazavirin, azvudine, molnupiravir, and VV116 in combating COVID-19. Additional clinical data are required to confirm the efficacy and safety of simnotrelvir/ritonavir and leritrelvir. The safety profiles of these antivirals were deemed acceptable.
Collapse
Affiliation(s)
- Bei Zheng
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China; Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Qinqin Zhao
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China; Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Wenjuan Yang
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China; Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Pinpin Feng
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China; Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Chuanwei Xin
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China; Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Yin Ying
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China; Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Bo Yang
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China; Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Bing Han
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China; Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Jun Zhu
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China; Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Meiling Zhang
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China; Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China.
| | - Gonghua Li
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China; Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Gupta Y, Savytskyi OV, Coban M, Venugopal A, Pleqi V, Weber CA, Chitale R, Durvasula R, Hopkins C, Kempaiah P, Caulfield TR. Protein structure-based in-silico approaches to drug discovery: Guide to COVID-19 therapeutics. Mol Aspects Med 2023; 91:101151. [PMID: 36371228 PMCID: PMC9613808 DOI: 10.1016/j.mam.2022.101151] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
With more than 5 million fatalities and close to 300 million reported cases, COVID-19 is the first documented pandemic due to a coronavirus that continues to be a major health challenge. Despite being rapid, uncontrollable, and highly infectious in its spread, it also created incentives for technology development and redefined public health needs and research agendas to fast-track innovations to be translated. Breakthroughs in computational biology peaked during the pandemic with renewed attention to making all cutting-edge technology deliver agents to combat the disease. The demand to develop effective treatments yielded surprising collaborations from previously segregated fields of science and technology. The long-standing pharmaceutical industry's aversion to repurposing existing drugs due to a lack of exponential financial gain was overrun by the health crisis and pressures created by front-line researchers and providers. Effective vaccine development even at an unprecedented pace took more than a year to develop and commence trials. Now the emergence of variants and waning protections during the booster shots is resulting in breakthrough infections that continue to strain health care systems. As of now, every protein of SARS-CoV-2 has been structurally characterized and related host pathways have been extensively mapped out. The research community has addressed the druggability of a multitude of possible targets. This has been made possible due to existing technology for virtual computer-assisted drug development as well as new tools and technologies such as artificial intelligence to deliver new leads. Here in this article, we are discussing advances in the drug discovery field related to target-based drug discovery and exploring the implications of known target-specific agents on COVID-19 therapeutic management. The current scenario calls for more personalized medicine efforts and stratifying patient populations early on for their need for different combinations of prognosis-specific therapeutics. We intend to highlight target hotspots and their potential agents, with the ultimate goal of using rational design of new therapeutics to not only end this pandemic but also uncover a generalizable platform for use in future pandemics.
Collapse
Affiliation(s)
- Yash Gupta
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Oleksandr V Savytskyi
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; In Vivo Biosystems, Eugene, OR, USA
| | - Matt Coban
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Vasili Pleqi
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Caleb A Weber
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Rohit Chitale
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA; The Council on Strategic Risks, 1025 Connecticut Ave NW, Washington, DC, USA
| | - Ravi Durvasula
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | | | - Prakasha Kempaiah
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Thomas R Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of QHS Computational Biology, Mayo Clinic, Jacksonville, FL, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA; Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
4
|
Moustafa AH, Pasha HF, Abas MA, Aboregela AM. The ameliorating role of sofosbuvir and daclatasvir on thioacetamide-induced kidney injury in adult albino rats. Anat Cell Biol 2023; 56:109-121. [PMID: 36543744 PMCID: PMC9989782 DOI: 10.5115/acb.22.200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Thioacetamide (TAA) exposure and hepatitis C virus infection are usually associated with renal dysfunction. Sofosbuvir (SFV) and daclatasvir (DAC) drugs combination has great value in the treatment of hepatitis C. The study aimed to identify the nephrotoxic effects of TAA and to evaluate the ameliorative role of SFV and DAC in this condition. Forty-eight adult male albino rats were divided into eight groups and received saline (control), SFV, DAC, SFV+DAC, TAA, TAA+SFV, TAA+DAC and TAA+SFV+DAC for eight weeks. Kidney and blood samples were retrieved and processed for histological (Hematoxylin and Eosin and Masson's trichrome), immunohistochemical (α-smooth muscle actin), and biochemical analysis (urea, creatinine, total protein, albumin, malondialdehyde, reduced glutathione, superoxide dismutase, and tumor necrosis factor-α). Examination revealed marked destruction of renal tubules on exposure to TAA with either hypertrophy or atrophy of glomeruli, increase in collagen deposition, and wide expression of α-smooth muscle actin. Also, significant disturbance in kidney functions, oxidative stress markers, and tumor necrosis factor-α. Supplementation with either SFV or DAC produced mild improvement in the tissue and laboratory markers. Moreover, the combination of both drugs greatly refined the pathology induced by TAA at the cellular and laboratory levels. However, there are still significant differences when compared to the control. In conclusion, SFV and DAC combination partially but greatly ameliorated the renal damage induced by TAA which might be enhanced with further supplementations to give new hope for those with nephropathy associated with hepatitis.
Collapse
Affiliation(s)
- Ahmed H Moustafa
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Heba F Pasha
- Department of Medical Biochemistry and Genetics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Manar A Abas
- Department of Biochemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Adel M Aboregela
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.,Department of Basic Medical Sciences, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
5
|
Kale A, Shelke V, Dagar N, Anders HJ, Gaikwad AB. How to use COVID-19 antiviral drugs in patients with chronic kidney disease. Front Pharmacol 2023; 14:1053814. [PMID: 36843922 PMCID: PMC9947246 DOI: 10.3389/fphar.2023.1053814] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Antiviral drugs such as Remdesivir (Veklury), Nirmatrelvir with Ritonavir (Paxlovid), Azvudine, and Molnupiravir (Lagevrio) can reduce the risk for severe and fatal Coronavirus Disease (COVID)-19. Although chronic kidney disease is a highly prevalent risk factor for severe and fatal COVID-19, most clinical trials with these drugs excluded patients with impaired kidney function. Advanced CKD is associated with a state of secondary immunodeficiency (SIDKD), which increases the susceptibility to severe COVID-19, COVID-19 complications, and the risk of hospitalization and mortality among COVID-19 patients. The risk to develop COVID-19 related acute kidney injury is higher in patients with precedent CKD. Selecting appropriate therapies for COVID-19 patients with impaired kidney function is a challenge for healthcare professionals. Here, we discuss the pharmacokinetics and pharmacodynamics of COVID-19-related antiviral drugs with a focus on their potential use and dosing in COVID-19 patients with different stages of CKD. Additionally, we describe the adverse effects and precautions to be taken into account when using these antivirals in COVID-19 patients with CKD. Lastly, we also discuss about the use of monoclonal antibodies in COVID-19 patients with kidney disease and related complications.
Collapse
Affiliation(s)
- Ajinath Kale
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| | - Vishwadeep Shelke
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| | - Neha Dagar
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Internal Medicine IV, Hospital of the Ludwig Maximilians University Munich, Munich, Germany
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| |
Collapse
|
6
|
Sokhela S, Bosch B, Hill A, Simmons B, Woods J, Johnstone H, Akpomiemie G, Ellis L, Owen A, Casas CP, Venter WDF. Randomized clinical trial of nitazoxanide or sofosbuvir/daclatasvir for the prevention of SARS-CoV-2 infection. J Antimicrob Chemother 2022; 77:2706-2712. [PMID: 35953881 PMCID: PMC9384711 DOI: 10.1093/jac/dkac266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The COVER trial evaluated whether nitazoxanide or sofosbuvir/daclatasvir could lower the risk of SARS-CoV-2 infection. Nitazoxanide was selected given its favourable pharmacokinetics and in vitro antiviral effects against SARS-CoV-2. Sofosbuvir/daclatasvir had shown favourable results in early clinical trials. METHODS In this clinical trial in Johannesburg, South Africa, healthcare workers and others at high risk of infection were randomized to 24 weeks of either nitazoxanide or sofosbuvir/daclatasvir as prevention, or standard prevention advice only. Participants were evaluated every 4 weeks for COVID-19 symptoms and had antibody and PCR testing. The primary endpoint was positive SARS-CoV-2 PCR and/or serology ≥7 days after randomization, regardless of symptoms. A Poisson regression model was used to estimate the incidence rate ratios of confirmed SARS-CoV-2 between each experimental arm and control. RESULTS Between December 2020 and January 2022, 828 participants were enrolled. COVID-19 infections were confirmed in 100 participants on nitazoxanide (2234 per 1000 person-years; 95% CI 1837-2718), 87 on sofosbuvir/daclatasvir (2125 per 1000 person-years; 95% CI 1722-2622) and 111 in the control arm (1849 per 1000 person-years; 95% CI 1535-2227). There were no significant differences in the primary endpoint between the treatment arms, and the results met the criteria for futility. In the safety analysis, the frequency of grade 3 or 4 adverse events was low and similar across arms. CONCLUSIONS In this randomized trial, nitazoxanide and sofosbuvir/daclatasvir had no significant preventative effect on infection with SARS-CoV-2 among healthcare workers and others at high risk of infection.
Collapse
Affiliation(s)
- Simiso Sokhela
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Bronwyn Bosch
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Andrew Hill
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Bryony Simmons
- LSE Health, London School of Economics & Political Science, London, UK
| | - Joana Woods
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Godspower Akpomiemie
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Leah Ellis
- Imperial College London, School of Public Health, London, UK
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Carmen Perez Casas
- Unitaid, Global Health Campus, Chem. du Pommier 40, 1218 Le Grand-Saconnex, Switzerland
| | | |
Collapse
|
7
|
Wattanakul T, Chotsiri P, Scandale I, Hoglund RM, Tarning J. A pharmacometric approach to evaluate drugs for potential repurposing as COVID-19 therapeutics. Expert Rev Clin Pharmacol 2022; 15:945-958. [PMID: 36017624 DOI: 10.1080/17512433.2022.2113388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Developing and evaluating novel compounds for treatment or prophylaxis of emerging infectious diseases is costly and time-consuming. Repurposing of already available marketed compounds is an appealing option as they already have an established safety profile. This approach could substantially reduce cost and time required to make effective treatments available to fight the COVID-19 pandemic. However, this approach is challenging since many drug candidates show efficacy in in vitro experiments, but fail to deliver effect when evaluated in clinical trials. Better approaches to evaluate in vitro data are needed, in order to prioritize drugs for repurposing. AREAS COVERED This article evaluates potential drugs that might be of interest for repurposing in the treatment of patients with COVID-19 disease. A pharmacometric simulation-based approach was developed to evaluate in vitro activity data in combination with expected clinical drug exposure, in order to evaluate the likelihood of achieving effective concentrations in patients. EXPERT OPINION The presented pharmacometric approach bridges in vitro activity data to clinically expected drug exposures, and could therefore be a useful compliment to other methods in order to prioritize repurposed drugs for evaluation in prospective randomized controlled clinical trials.
Collapse
Affiliation(s)
- Thanaporn Wattanakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Palang Chotsiri
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Richard M Hoglund
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Glab-ampai K, Kaewchim K, Thavorasak T, Saenlom T, Thepsawat W, Mahasongkram K, Thueng-In K, Sookrung N, Chaicumpa W, Chulanetra M. Targeting Emerging RNA Viruses by Engineered Human Superantibody to Hepatitis C Virus RNA-Dependent RNA Polymerase. Front Microbiol 2022; 13:926929. [PMID: 35935185 PMCID: PMC9355540 DOI: 10.3389/fmicb.2022.926929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
RNA-dependent RNA polymerase (RdRp) is a unique and highly conserved enzyme across all members of the RNA virus superfamilies. Besides, humans do not have a homolog of this protein. Therefore, the RdRp is an attractive target for a broadly effective therapeutic agent against RNA viruses. In this study, a formerly generated cell-penetrating human single-chain antibody variable fragment (superantibody) to a conformational epitope of hepatitis C virus (HCV) RdRp, which inhibited the polymerase activity leading to the HCV replication inhibition and the host innate immunity restoration, was tested against emerging/reemerging RNA viruses. The superantibody could inhibit the replication of the other members of the Flaviviridae (DENV serotypes 1−4, ZIKV, and JEV), Picornaviridae (genus Enterovirus: EV71, CVA16), and Coronaviridae (genus Alphacoronavirus: PEDV, and genus Betacoronavirus: SARS-CoV-2 (Wuhan wild-type and the variants of concern), in a dose-dependent manner, as demonstrated by the reduction of intracellular viral RNAs and numbers of the released infectious particles. Computerized simulation indicated that the superantibody formed contact interfaces with many residues at the back of the thumb domain (thumb II site, T2) of DENV, ZIKV, JEV, EV71, and CVA16 and fingers and thumb domains of the HCV and coronaviruses (PEDV and SARS-CoV-2). The superantibody binding may cause allosteric change in the spatial conformation of the enzyme and disrupt the catalytic activity, leading to replication inhibition. Although the speculated molecular mechanism of the superantibody needs experimental support, existing data indicate that the superantibody has high potential as a non-chemical broadly effective anti-positive sense-RNA virus agent.
Collapse
Affiliation(s)
- Kittirat Glab-ampai
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanasap Kaewchim
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Techit Thavorasak
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanatsaran Saenlom
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Watayagorn Thepsawat
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kodchakorn Mahasongkram
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanyarat Thueng-In
- School of Pathology, Translational Medicine Program, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Nitat Sookrung
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Monrat Chulanetra
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Monrat Chulanetra,
| |
Collapse
|
9
|
Ahmed YM, Badawy SS, Abdel-Haleem FM. Dibenzo-18-Crown-6-based Carbon Paste Sensors for the Nanomolar Potentiometric Determination of Daclatasvir Dihydrochloride: An Anti-HCV Drug and a Potential Candidate for Treatment of SARS-CoV-2. Microchem J 2022; 177:107276. [PMID: 35169329 PMCID: PMC8830182 DOI: 10.1016/j.microc.2022.107276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/13/2022] [Accepted: 02/07/2022] [Indexed: 12/24/2022]
Abstract
Daclatasvir dihydrochloride (DAC) is an anti-hepatitis C virus (HCV) drug that has recently proven to be a promising candidate for the treatment of SARS-CoV-2. Still, there is a lack of sensitive potentiometric methods for its determination. In this work, carbon paste sensors based on dibenzo-18-crown-6 (DB18C6) were fabricated and optimized for the sensitive and selective potentiometric determination of DAC in Daclavirocyrl® tablets, serum, and urine samples. The best performance was obtained by two sensors referred to as sensor I and sensor II. Both sensors exhibited a wide linear response range of 5×10−9 − 1×10−3 mol/L, and Nernstian slopes of 29.8 ± 1.18 and 29.5 ± 1.00 mV/decade, with limits of detection, 4.8×10−9 and 3.2×10−9 mol/L, for the sensors I and II, respectively. Sensors I and II displayed fast response times of 5–8 and 5–6 s, respectively, with great reversibility and no memory effect. Moreover, the sensors exhibited a lifetime of 16 days. For the study of sensors morphology and elucidation of the interaction mechanism, the scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), and nuclear magnetic resonance (1H NMR) techniques were performed. A selectivity study was performed, and the proposed sensors exhibited good discrimination between DAC and potentially coexisting interferents with sensor II displaying better selectivity. Finally, sensor II was successfully applied for the determination of DAC in the above-mentioned samples, with recovery values ranging from 99.25 to 101.42%, and relative standard deviation (RSD) values ranging from 0.79 to 1.53% which reflected the high accuracy and precision.
Collapse
Affiliation(s)
- Yomna M Ahmed
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Sayed S Badawy
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Fatehy M Abdel-Haleem
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.,Center for Hazards Mitigation, Environmental Studies and Research (CHMESR), Cairo University, Giza, Egypt
| |
Collapse
|
10
|
Hsu CK, Chen CY, Chen WC, Lai CC, Hung SH, Lin WT. The effect of sofosbuvir-based treatment on the clinical outcomes of patients with COVID-19: a systematic review and meta-analysis of randomized controlled trials. Int J Antimicrob Agents 2022; 59:106545. [PMID: 35134505 PMCID: PMC8817946 DOI: 10.1016/j.ijantimicag.2022.106545] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/16/2021] [Accepted: 01/27/2022] [Indexed: 11/18/2022]
Abstract
This systematic review and meta-analysis examined the efficacy of sofosbuvir-based antiviral treatment against COVID-19 (coronavirus disease 2019). PubMed, Embase, Cochrane Central Register of Controlled Trials and ClinicalTrials.gov were searched from inception to 15 August 2021. Studies comparing the clinical efficacy and safety of sofosbuvir-based antiviral regimens (study group) with other antivirals or standard of care (control group) in patients with COVID-19 were included. Overall, 687 patients with COVID-19 were included, of which 377 patients received sofosbuvir-based treatment. Mortality was lower in the study group than in the control group [odds ratio (OR) = 0.49, 95% confidence interval (CI) 0.30–0.79; I2 = 0%]. The overall clinical recovery rate was higher in the study group than in the control group (OR = 1.82, 95% CI 1.20–2.76; I2 = 28%). The study group presented a lower requirement for mechanical ventilation (OR = 0.33, 95% CI 0.13–0.89; I2 = 0%) and intensive care unit admission (OR = 0.42, 95% CI 0.25–0.70; I2 = 0%) than the control group. Furthermore, the study group exhibited a shorter hospital length of stay [mean deviation (MD), –1.49, 95% CI –2.62 to –0.37; I2 = 56%] and recovery time (MD, –1.34, 95% CI –2.29 to –0.38; I2 = 46%) than the control group. Sofosbuvir-based treatment may help reduce mortality in patients with COVID-19 and improve associated clinical outcomes. Furthermore, sofosbuvir-based treatment was as safe as the comparator in patients with COVID-19. However, further large-scale studies are warranted to validate these findings.
Collapse
|
11
|
Niknam Z, Jafari A, Golchin A, Danesh Pouya F, Nemati M, Rezaei-Tavirani M, Rasmi Y. Potential therapeutic options for COVID-19: an update on current evidence. Eur J Med Res 2022; 27:6. [PMID: 35027080 PMCID: PMC8755901 DOI: 10.1186/s40001-021-00626-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
SARS-CoV-2, a novel coronavirus, is the agent responsible for the COVID-19 pandemic and is a major public health concern nowadays. The rapid and global spread of this coronavirus leads to an increase in hospitalizations and thousands of deaths in many countries. To date, great efforts have been made worldwide for the efficient management of this crisis, but there is still no effective and specific treatment for COVID-19. The primary therapies to treat the disease are antivirals, anti-inflammatories and respiratory therapy. In addition, antibody therapies currently have been a many active and essential part of SARS-CoV-2 infection treatment. Ongoing trials are proposed different therapeutic options including various drugs, convalescent plasma therapy, monoclonal antibodies, immunoglobulin therapy, and cell therapy. The present study summarized current evidence of these therapeutic approaches to assess their efficacy and safety for COVID-19 treatment. We tried to provide comprehensive information about the available potential therapeutic approaches against COVID-19 to support researchers and physicians in any current and future progress in treating COVID-19 patients.
Collapse
Affiliation(s)
- Zahra Niknam
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Ali Golchin
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Fahima Danesh Pouya
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohadeseh Nemati
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|