1
|
Chen OCW, Siebel S, Colaco A, Nicoli ER, Platt N, Shepherd D, Newman S, Armitage AE, Farhat NY, Seligmann G, Smith C, Smith DA, Abdul-Sada A, Jeyakumar M, Drakesmith H, Porter FD, Platt FM. Defective iron homeostasis and hematological abnormalities in Niemann-Pick disease type C1. Wellcome Open Res 2023; 7:267. [PMID: 37065726 PMCID: PMC10090865 DOI: 10.12688/wellcomeopenres.17261.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Background: Niemann-Pick disease type C1 (NPC1) is a neurodegenerative lysosomal storage disorder characterized by the accumulation of multiple lipids in the late endosome/lysosomal system and reduced acidic store calcium. The lysosomal system regulates key aspects of iron homeostasis, which prompted us to investigate whether there are hematological abnormalities and iron metabolism defects in NPC1. Methods: Iron-related hematological parameters, systemic and tissue metal ion and relevant hormonal and proteins levels, expression of specific pro-inflammatory mediators and erythrophagocytosis were evaluated in an authentic mouse model and in a large cohort of NPC patients. Results: Significant changes in mean corpuscular volume and corpuscular hemoglobin were detected in Npc1 -/- mice from an early age. Hematocrit, red cell distribution width and hemoglobin changes were observed in late-stage disease animals. Systemic iron deficiency, increased circulating hepcidin, decreased ferritin and abnormal pro-inflammatory cytokine levels were also found. Furthermore, there is evidence of defective erythrophagocytosis in Npc1 -/- mice and in an in vitro NPC1 cellular model. Comparable hematological changes, including low normal serum iron and transferrin saturation and low cerebrospinal fluid ferritin were confirmed in NPC1 patients. Conclusions: These data suggest loss of iron homeostasis and hematological abnormalities in NPC1 may contribute to the pathophysiology of this disease.
Collapse
Affiliation(s)
- Oscar C W Chen
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| | - Stephan Siebel
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - Alexandria Colaco
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| | - Elena-Raluca Nicoli
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| | - Nick Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| | - Dawn Shepherd
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| | - Stephanie Newman
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| | - Andrew E Armitage
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, Oxfordshire, OX3 9DS, UK
| | - Nicole Y Farhat
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - George Seligmann
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| | - Claire Smith
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| | - David A Smith
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| | - Alaa Abdul-Sada
- Chemistry Department, School of Life Sciences, University of Sussex, Brighton, Sussex, BN1 9QJ, UK
| | - Mylvaganam Jeyakumar
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| | - Hal Drakesmith
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, Oxfordshire, OX3 9DS, UK
| | - Forbes D Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| |
Collapse
|
2
|
Chen OCW, Siebel S, Colaco A, Nicoli ER, Platt N, Shepherd D, Newman S, Armitage AE, Farhat NY, Seligmann G, Smith C, Smith DA, Abdul-Sada A, Jeyakumar M, Drakesmith H, Porter FD, Platt FM. Defective iron homeostasis and hematological abnormalities in Niemann-Pick disease type C1. Wellcome Open Res 2022; 7:267. [PMID: 37065726 PMCID: PMC10090865 DOI: 10.12688/wellcomeopenres.17261.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Niemann-Pick disease type C1 (NPC1) is a neurodegenerative lysosomal storage disorder characterized by the accumulation of multiple lipids in the late endosome/lysosomal system and reduced acidic store calcium. The lysosomal system regulates key aspects of iron homeostasis, which prompted us to investigate whether there are hematological abnormalities and iron metabolism defects in NPC1. Methods: Iron-related hematological parameters, systemic and tissue metal ion and relevant hormonal and proteins levels, expression of specific pro-inflammatory mediators and erythrophagocytosis were evaluated in an authentic mouse model and in a large cohort of NPC patients. Results: Significant changes in mean corpuscular volume and corpuscular hemoglobin were detected in Npc1 -/- mice from an early age. Hematocrit, red cell distribution width and hemoglobin changes were observed in late-stage disease animals. Systemic iron deficiency, increased circulating hepcidin, decreased ferritin and abnormal pro-inflammatory cytokine levels were also found. Furthermore, there is evidence of defective erythrophagocytosis in Npc1 -/- mice and in an in vitro NPC1 cellular model. Comparable hematological changes, including low normal serum iron and transferrin saturation and low cerebrospinal fluid ferritin were confirmed in NPC1 patients. Conclusions: These data suggest loss of iron homeostasis and hematological abnormalities in NPC1 may contribute to the pathophysiology of this disease.
Collapse
Affiliation(s)
- Oscar C W Chen
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| | - Stephan Siebel
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - Alexandria Colaco
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| | - Elena-Raluca Nicoli
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| | - Nick Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| | - Dawn Shepherd
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| | - Stephanie Newman
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| | - Andrew E Armitage
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, Oxfordshire, OX3 9DS, UK
| | - Nicole Y Farhat
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - George Seligmann
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| | - Claire Smith
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| | - David A Smith
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| | - Alaa Abdul-Sada
- Chemistry Department, School of Life Sciences, University of Sussex, Brighton, Sussex, BN1 9QJ, UK
| | - Mylvaganam Jeyakumar
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| | - Hal Drakesmith
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, Oxfordshire, OX3 9DS, UK
| | - Forbes D Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| |
Collapse
|
3
|
Debnath M, Dey S, Sreenivas N, Pal PK, Yadav R. Genetic and Epigenetic Constructs of Progressive Supranuclear Palsy. Ann Neurosci 2022; 29:177-188. [PMID: 36419517 PMCID: PMC9676335 DOI: 10.1177/09727531221089396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/20/2022] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND Progressive supranuclear palsy (PSP) is a rapidly progressive primary tauopathy characterized by vertical gaze palsy, postural instability, and mild dementia. PSP shows high clinical and pathologic heterogeneity. Although a few risk factors exist, such as advanced age and environmental toxins, the precise etiology remains largely elusive. Compelling evidence now suggests that genetic background plays a pivotal role in the pathogenetic pathways of PSP. Notably, PSP is genetically and phenotypically a complex disorder. Given the tau pathology, several studies in the past have identified microtubule-associated protein tau (MAPT) gene mutations/variations and its haplotype as the major genetic risk factor of PSP, both in the sporadic and the familial forms. Subsequently, genome-wide association studies (GWAS) also identified several novel risk variants. However, these genetic risk determinants fail to explain the pathogenetic basis of PSP and its phenotypic spectrum in majority of the cases. Some genetic variants are known to confer the risk, while others seem to act as modifier genes. SUMMARY Besides the complex genetic basis of PSP, the pathobiological mechanisms, differential diagnosis, and management of patients with PSP have further been complicated by genetic conditions that mimic the phenotypes of PSP. This is now becoming increasingly apparent that interactions between genetic and environmental factors significantly contribute to PSP development. Further, the effect of environmental factors seems to be mediated through epigenetic modifications. KEY MESSAGE Herein, we provide a comprehensive overview of the genetic and epigenetic constructs of PSP and highlight the relevance of genetic and epigenetic findings in the pathobiology of PSP.
Collapse
Affiliation(s)
- Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
- These two authors have contributed equally
| | - Saikat Dey
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
- These two authors have contributed equally
| | - Nikhitha Sreenivas
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| |
Collapse
|
4
|
Lad M, Griffiths TD. Clinical Reasoning: A 72-year-old man with a progressive cognitive and cerebellar syndrome. Neurology 2020; 95:e2707-e2710. [PMID: 32753435 DOI: 10.1212/wnl.0000000000010467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Meher Lad
- From the Translational and Clinical Research Institute (M.L.) and Biosciences Institute (T.D.G.), Newcastle University, Newcastle upon Tyne, UK.
| | - Timothy D Griffiths
- From the Translational and Clinical Research Institute (M.L.) and Biosciences Institute (T.D.G.), Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|