1
|
Staudinger T. Is there still a place for ECCO 2R? Med Klin Intensivmed Notfmed 2024:10.1007/s00063-024-01197-x. [PMID: 39384620 DOI: 10.1007/s00063-024-01197-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 10/11/2024]
Abstract
The therapeutic target of extracorporeal carbon dioxide removal (ECCO2R) is the elimination of carbon dioxide (CO2) from the blood across a gas exchange membrane without influencing oxygenation to a clinically relevant extent. In acute respiratory distress syndrome (ARDS), ECCO2R has been used to reduce tidal volume, plateau pressure, and driving pressure ("ultraprotective ventilation"). Despite achieving these goals, no benefits in outcome could be shown. Thus, in ARDS, the use of ECCO2R to achieve ultraprotective ventilation can no longer be recommended. Furthermore, ECCO2R has also been used to avoid intubation or facilitate weaning in obstructive lung failure as well as to avoid mechanical ventilation in patients during bridging to lung transplantation. Although these goals can be achieved in many patients, the effects on outcome still remain unclear due to lack of evidence. Despite involving less blood flow, smaller cannulas, and smaller gas exchange membranes compared with extracorporeal membrane oxygenation, ECCO2R bears a comparable risk of complications, especially bleeding. Trials to define indications and analyze the risk-benefit balance are needed prior to implementation of ECCO2R as a standard therapy. Consequently, until then, ECCO2R should be used in clinical studies and experienced centers only. This article is freely available.
Collapse
Affiliation(s)
- Thomas Staudinger
- Dept. of Medicine I, Intensive Care Unit, General Hospital of Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
2
|
Stommel AM, Herkner H, Kienbacher CL, Wildner B, Hermann A, Staudinger T. Effects of extracorporeal CO 2 removal on gas exchange and ventilator settings: a systematic review and meta-analysis. Crit Care 2024; 28:146. [PMID: 38693569 PMCID: PMC11061932 DOI: 10.1186/s13054-024-04927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024] Open
Abstract
PURPOSE A systematic review and meta-analysis to evaluate the impact of extracorporeal carbon dioxide removal (ECCO2R) on gas exchange and respiratory settings in critically ill adults with respiratory failure. METHODS We conducted a comprehensive database search, including observational studies and randomized controlled trials (RCTs) from January 2000 to March 2022, targeting adult ICU patients undergoing ECCO2R. Primary outcomes were changes in gas exchange and ventilator settings 24 h after ECCO2R initiation, estimated as mean of differences, or proportions for adverse events (AEs); with subgroup analyses for disease indication and technology. Across RCTs, we assessed mortality, length of stay, ventilation days, and AEs as mean differences or odds ratios. RESULTS A total of 49 studies encompassing 1672 patients were included. ECCO2R was associated with a significant decrease in PaCO2, plateau pressure, and tidal volume and an increase in pH across all patient groups, at an overall 19% adverse event rate. In ARDS and lung transplant patients, the PaO2/FiO2 ratio increased significantly while ventilator settings were variable. "Higher extraction" systems reduced PaCO2 and respiratory rate more efficiently. The three available RCTs did not demonstrate an effect on mortality, but a significantly longer ICU and hospital stay associated with ECCO2R. CONCLUSIONS ECCO2R effectively reduces PaCO2 and acidosis allowing for less invasive ventilation. "Higher extraction" systems may be more efficient to achieve this goal. However, as RCTs have not shown a mortality benefit but increase AEs, ECCO2R's effects on clinical outcome remain unclear. Future studies should target patient groups that may benefit from ECCO2R. PROSPERO Registration No: CRD 42020154110 (on January 24, 2021).
Collapse
Affiliation(s)
- Alexandra-Maria Stommel
- Department of Emergency Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Harald Herkner
- Department of Emergency Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Calvin Lukas Kienbacher
- Department of Emergency Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Brigitte Wildner
- University Library, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Alexander Hermann
- Department of Medicine I, Intensive Care Unit 13i2, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Thomas Staudinger
- Department of Medicine I, Intensive Care Unit 13i2, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| |
Collapse
|
3
|
Tonetti T, Zanella A, Pérez-Torres D, Grasselli G, Ranieri VM. Current knowledge gaps in extracorporeal respiratory support. Intensive Care Med Exp 2023; 11:77. [PMID: 37962702 PMCID: PMC10645840 DOI: 10.1186/s40635-023-00563-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023] Open
Abstract
Extracorporeal life support (ECLS) for acute respiratory failure encompasses veno-venous extracorporeal membrane oxygenation (V-V ECMO) and extracorporeal carbon dioxide removal (ECCO2R). V-V ECMO is primarily used to treat severe acute respiratory distress syndrome (ARDS), characterized by life-threatening hypoxemia or ventilatory insufficiency with conventional protective settings. It employs an artificial lung with high blood flows, and allows improvement in gas exchange, correction of hypoxemia, and reduction of the workload on the native lung. On the other hand, ECCO2R focuses on carbon dioxide removal and ventilatory load reduction ("ultra-protective ventilation") in moderate ARDS, or in avoiding pump failure in acute exacerbated chronic obstructive pulmonary disease. Clinical indications for V-V ECLS are tailored to individual patients, as there are no absolute contraindications. However, determining the ideal timing for initiating extracorporeal respiratory support remains uncertain. Current ECLS equipment faces issues like size and durability. Innovations include intravascular lung assist devices (ILADs) and pumpless devices, though they come with their own challenges. Efficient gas exchange relies on modern oxygenators using hollow fiber designs, but research is exploring microfluidic technology to improve oxygenator size, thrombogenicity, and blood flow capacity. Coagulation management during V-V ECLS is crucial due to common bleeding and thrombosis complications; indeed, anticoagulation strategies and monitoring systems require improvement, while surface coatings and new materials show promise. Moreover, pharmacokinetics during ECLS significantly impact antibiotic therapy, necessitating therapeutic drug monitoring for precise dosing. Managing native lung ventilation during V-V ECMO remains complex, requiring a careful balance between benefits and potential risks for spontaneously breathing patients. Moreover, weaning from V-V ECMO is recognized as an area of relevant uncertainty, requiring further research. In the last decade, the concept of Extracorporeal Organ Support (ECOS) for patients with multiple organ dysfunction has emerged, combining ECLS with other organ support therapies to provide a more holistic approach for critically ill patients. In this review, we aim at providing an in-depth overview of V-V ECMO and ECCO2R, addressing various aspects of their use, challenges, and potential future directions in research and development.
Collapse
Affiliation(s)
- Tommaso Tonetti
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Anesthesiology and General Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico di S.Orsola, Bologna, Italy
| | - Alberto Zanella
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - David Pérez-Torres
- Servicio de Medicina Intensiva, Hospital Universitario Río Hortega, Gerencia Regional de Salud de Castilla y León (SACYL), Calle Dulzaina, 2, 47012, Valladolid, Spain
| | - Giacomo Grasselli
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| | - V Marco Ranieri
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Anesthesiology and General Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico di S.Orsola, Bologna, Italy
| |
Collapse
|
4
|
Florio G, Valsecchi C, Vivona L, Battistin M, Colombo SM, Cattaneo E, Protti I, DI Feliciantonio M, Castelli G, Dondossola D, Biancolilli O, Carlin A, Gatti S, Pesenti AM, Zanella A, Grasselli G. Enhanced extracorporeal carbon dioxide removal by acidification and metabolic control. Minerva Anestesiol 2023; 89:773-782. [PMID: 36951601 DOI: 10.23736/s0375-9393.23.17142-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
BACKGROUND Extracorporeal carbon dioxide removal (ECCO2R) promotes protective ventilation in patients with acute respiratory failure, but devices with high CO2 extraction capacity are required for clinically relevant impact. This study evaluates three novel low-flow techniques based on dialysate acidification, also combined with renal replacement therapy, and metabolic control. METHODS Eight swine were connected to a low-flow (350 mL/min) extracorporeal circuit including a dialyzer with a closed-loop dialysate circuit, and two membrane lungs on blood (MLb) and dialysate (MLd), respectively. The following 2-hour steps were performed: 1) MLb-start (MLb ventilated); 2) MLbd-start (MLb and MLd ventilated); 3) HLac (lactic acid infusion before MLd); 4) HCl-NaLac (hydrochloric acid infusion before MLd combined with renal replacement therapy and reinfusion of sodium lactate); 5) HCl-βHB-NaLac (hydrochloric acid infusion before MLd combined with renal replacement therapy and reinfusion of sodium lactate and sodium 3-hydroxybutyrate). Caloric and fluid inputs, temperature, blood glucose and arterial carbon dioxide pressure were kept constant. RESULTS The total MLs CO2 removal in HLac (130±25 mL/min), HCl-NaLac (130±21 mL/min) and HCl-βHB-NaLac (124±18 mL/min) were higher compared with MLbd-start (81±15 mL/min, P<0.05) and MLb-start (55±7 mL/min, P<0.05). Minute ventilation in HLac (4.3±0.9 L/min), HCl-NaLac (3.6±0.8 L/min) and HCl-βHB-NaLac (3.6±0.8 L/min) were lower compared to MLb-start (6.2±1.1 L/min, P<0.05) and MLbd-start (5.8±2.1 L/min, P<0.05). Arterial pH was 7.40±0.03 at MLb-start and decreased only during HCl-βHB-NaLac (7.35±0.03, P<0.05). No relevant changes in electrolyte concentrations, hemodynamics and significant adverse events were detected. CONCLUSIONS The three techniques achieved a significant extracorporeal CO2 removal allowing a relevant reduction in minute ventilation with a sufficient safety profile.
Collapse
Affiliation(s)
- Gaetano Florio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Carlo Valsecchi
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Luigi Vivona
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Michele Battistin
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Sebastiano M Colombo
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Emanuele Cattaneo
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Ilaria Protti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | | | - Gloria Castelli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Daniele Dondossola
- Liver Transplant and General Surgery Unit, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Osvaldo Biancolilli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Carlin
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Gatti
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio M Pesenti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Zanella
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy -
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Grasselli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
5
|
Tiruvoipati R, Ludski J, Gupta S, Subramaniam A, Ponnapa Reddy M, Paul E, Haji K. Evaluation of the safety and efficacy of extracorporeal carbon dioxide removal in the critically ill using the PrismaLung+ device. Eur J Med Res 2023; 28:291. [PMID: 37596670 PMCID: PMC10436516 DOI: 10.1186/s40001-023-01269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/05/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Several extracorporeal carbon dioxide removal (ECCO2R) devices are currently in use with variable efficacy and safety profiles. PrismaLung+ is an ECCO2R device that was recently introduced into clinical practice. It is a minimally invasive, low flow device that provides partial respiratory support with or without renal replacement therapy. Our aim was to describe the clinical characteristics, efficacy, and safety of PrismaLung+ in patients with acute hypercapnic respiratory failure. METHODS All adult patients who required ECCO2R with PrismaLung+ for hypercapnic respiratory failure in our intensive care unit (ICU) during a 6-month period between March and September 2022 were included. RESULTS Ten patients were included. The median age was 55.5 (IQR 41-68) years, with 8 (80%) male patients. Six patients had acute respiratory distress syndrome (ARDS), and two patients each had exacerbations of asthma and chronic obstructive pulmonary disease (COPD). All patients were receiving invasive mechanical ventilation at the time of initiation of ECCO2R. The median duration of ECCO2R was 71 h (IQR 57-219). A significant improvement in pH and PaCO2 was noted within 30 min of initiation of ECCO2R. Nine patients (90%) survived to weaning of ECCO2R, eight (80%) survived to ICU discharge and seven (70%) survived to hospital discharge. The median duration of ICU and hospital stays were 14.5 (IQR 8-30) and 17 (IQR 11-38) days, respectively. There were no patient-related complications with the use of ECCO2R. A total of 18 circuits were used in ten patients (median 2 per patient; IQR 1-2). Circuit thrombosis was noted in five circuits (28%) prior to reaching the expected circuit life with no adverse clinical consequences. CONCLUSION(S) PrismaLung+ rapidly improved PaCO2 and pH with a good clinical safety profile. Circuit thrombosis was the only complication. This data provides insight into the safety and efficacy of PrismaLung+ that could be useful for centres aspiring to introduce ECCO2R into their clinical practice.
Collapse
Affiliation(s)
- Ravindranath Tiruvoipati
- Department of Intensive Care Medicine, Frankston Hospital, Peninsula Health, Frankston, VIC, 3199, Australia.
- Division of Medicine, Peninsula Clinical School, Monash University, Frankston, VIC, Australia.
- ANZIC-RC, School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, VIC, 3004, Australia.
| | - Jarryd Ludski
- Department of Intensive Care Medicine, Frankston Hospital, Peninsula Health, Frankston, VIC, 3199, Australia
| | - Sachin Gupta
- Department of Intensive Care Medicine, Frankston Hospital, Peninsula Health, Frankston, VIC, 3199, Australia
- Division of Medicine, Peninsula Clinical School, Monash University, Frankston, VIC, Australia
| | - Ashwin Subramaniam
- Department of Intensive Care Medicine, Frankston Hospital, Peninsula Health, Frankston, VIC, 3199, Australia
- Division of Medicine, Peninsula Clinical School, Monash University, Frankston, VIC, Australia
- ANZIC-RC, School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
- Department of Intensive Care Medicine, Dandenong Hospital, Dandenong, Australia
| | - Mallikarjuna Ponnapa Reddy
- Department of Intensive Care Medicine, Frankston Hospital, Peninsula Health, Frankston, VIC, 3199, Australia
- Division of Medicine, Peninsula Clinical School, Monash University, Frankston, VIC, Australia
- Department of Intensive Care, Calvary Hospital, Canberra, ACT, Australia
| | - Eldho Paul
- ANZIC-RC, School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
- Alfred Hospital, Melbourne, VIC, Australia
| | - Kavi Haji
- Department of Intensive Care Medicine, Frankston Hospital, Peninsula Health, Frankston, VIC, 3199, Australia
- Division of Medicine, Peninsula Clinical School, Monash University, Frankston, VIC, Australia
- Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Taccone FS, Rinaldi S, Annoni F, Nobile L, Di Nardo M, Maccieri J, Aliberti A, Malfertheiner MV, Marudi A, Broman LM, Belliato M. Safety and Effectiveness of Carbon Dioxide Removal CO2RESET Device in Critically Ill Patients. MEMBRANES 2023; 13:686. [PMID: 37505051 PMCID: PMC10385949 DOI: 10.3390/membranes13070686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/01/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND In this retrospective study, we report the effectiveness and safety of a dedicated extracorporeal carbon dioxide removal (ECCO2R) device in critically ill patients. METHODS Adult patients on mechanical ventilation due to acute respiratory distress syndrome (ARDS) or decompensated chronic obstructive pulmonary disease (dCOPD), who were treated with a dedicated ECCO2R device (CO2RESET, Eurosets, Medolla, Italy) in case of hypercapnic acidemia, were included. Repeated measurements of CO2 removal (VCO2) at baseline and 1, 12, and 24 h after the initiation of therapy were recorded. RESULTS Over a three-year period, 11 patients received ECCO2R (median age 60 [43-72] years) 3 (2-39) days after ICU admission; nine patients had ARDS and two had dCOPD. Median baseline pH and PaCO2 levels were 7.27 (7.12-7.33) and 65 (50-84) mmHg, respectively. With a median ECCO2R blood flow of 800 (500-800) mL/min and maximum gas flow of 6 (2-14) L/min, the VCO2 at 12 h after ECCO2R initiation was 157 (58-183) mL/min. Tidal volume, respiratory rate, and driving pressure were significantly reduced over time. Few side effects were reported. CONCLUSIONS In this study, a dedicated ECCO2R device provided a high VCO2 with a favorable risk profile.
Collapse
Affiliation(s)
- Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Lennik Road 808, 1070 Brussels, Belgium
| | - Simone Rinaldi
- Struttura Complessa di Anestesia e Rianimazione, Ospedale Civile di Baggiovara, 41100 Modena, Italy
| | - Filippo Annoni
- Department of Intensive Care, Erasme Hospital, Lennik Road 808, 1070 Brussels, Belgium
| | - Leda Nobile
- Department of Intensive Care, Erasme Hospital, Lennik Road 808, 1070 Brussels, Belgium
| | - Matteo Di Nardo
- Pediatric Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Jessica Maccieri
- Struttura Complessa di Anestesia e Rianimazione, Ospedale Civile di Baggiovara, 41100 Modena, Italy
| | - Anna Aliberti
- SC AR2 Anestesia e Terapia Intensiva Cardiotoracica, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | | | - Andrea Marudi
- Struttura Complessa di Anestesia e Rianimazione, Ospedale Civile di Baggiovara, 41100 Modena, Italy
| | - Lars Mikael Broman
- ECMO Centre Karolinska, Karolinska University Hospital, 171 77 Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Mirko Belliato
- SC AR2 Anestesia e Terapia Intensiva Cardiotoracica, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
7
|
Tiruvoipati R, Akkanti B, Dinh K, Barrett N, May A, Kimmel J, Conrad SA. Extracorporeal Carbon Dioxide Removal With the Hemolung in Patients With Acute Respiratory Failure: A Multicenter Retrospective Cohort Study. Crit Care Med 2023; 51:892-902. [PMID: 36942957 PMCID: PMC10262985 DOI: 10.1097/ccm.0000000000005845] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
OBJECTIVES Extracorporeal carbon dioxide removal (ECCO 2 R) devices are effective in reducing hypercapnia and mechanical ventilation support but have not been shown to reduce mortality. This may be due to case selection, device performance, familiarity, or the management. The objective of this study is to investigate the effectiveness and safety of a single ECCO 2 R device (Hemolung) in patients with acute respiratory failure and identify variables associated with survival that could help case selection in clinical practice as well as future research. DESIGN Multicenter, multinational, retrospective review. SETTING Data from the Hemolung Registry between April 2013 and June 2021, where 57 ICUs contributed deidentified data. PATIENTS Patients with acute respiratory failure treated with the Hemolung. The characteristics of patients who survived to ICU discharge were compared with those who died. Multivariable logistical regression analysis was used to identify variables associated with ICU survival. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Of the 159 patients included, 65 (41%) survived to ICU discharge. The survival was highest in status asthmaticus (86%), followed by acute respiratory distress syndrome (ARDS) (52%) and COVID-19 ARDS (31%). All patients had a significant reduction in Pa co2 and improvement in pH with reduction in mechanical ventilation support. Patients who died were older, had a lower Pa o2 :F io2 (P/F) and higher use of adjunctive therapies. There was no difference in the complications between patients who survived to those who died. Multivariable regression analysis showed non-COVID-19 ARDS, age less than 65 years, and P/F at initiation of ECCO 2 R to be independently associated with survival to ICU discharge (P/F 100-200 vs <100: odds ratio, 6.57; 95% CI, 2.03-21.33). CONCLUSIONS Significant improvement in hypercapnic acidosis along with reduction in ventilation supports was noted within 4 hours of initiating ECCO 2 R. Non-COVID-19 ARDS, age, and P/F at commencement of ECCO 2 R were independently associated with survival.
Collapse
Affiliation(s)
| | - Bindu Akkanti
- Department of Medicine, Division of Critical Care, Pulmonary and Sleep, University of Texas McGovern Medical School, Houston, TX
- Advanced Cardiopulmonary Therapeutics and Transplantation, University of Texas Health-Houston, Houston, TX
| | - Kha Dinh
- Department of Medicine, Division of Critical Care, Pulmonary and Sleep, University of Texas McGovern Medical School, Houston, TX
- Advanced Cardiopulmonary Therapeutics and Transplantation, University of Texas Health-Houston, Houston, TX
| | - Nicholas Barrett
- Department of Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- Centre for Human & Applied Physiological Sciences (CHAPS), School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | | | | | - Steven A Conrad
- Department of Medicine, Louisiana State University Health Sciences Center, Shreveport, LA
| |
Collapse
|
8
|
Abrams D, Fan E. Lower Flow, Higher Costs? Recognizing Tradeoffs on the Spectrum of Extracorporeal Support for Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2023; 207:1116-1118. [PMID: 36913243 PMCID: PMC10161738 DOI: 10.1164/rccm.202303-0354ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Affiliation(s)
- Darryl Abrams
- Columbia University College of Physicians and Surgeons/New York-Presbyterian Hospital New York, New York
- Center for Acute Respiratory Failure Columbia University Medical Center New York, New York
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine
- Institute of Health Policy, Management and Evaluation University of Toronto Toronto, Ontario, Canada
- Extracorporeal Life Support Program University Health Network Toronto, Ontario, Canada
| |
Collapse
|
9
|
Combes A, Brodie D, Aissaoui N, Bein T, Capellier G, Dalton HJ, Diehl JL, Kluge S, McAuley DF, Schmidt M, Slutsky AS, Jaber S. Extracorporeal carbon dioxide removal for acute respiratory failure: a review of potential indications, clinical practice and open research questions. Intensive Care Med 2022; 48:1308-1321. [PMID: 35943569 DOI: 10.1007/s00134-022-06796-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023]
Abstract
Extracorporeal carbon dioxide removal (ECCO2R) is a form of extracorporeal life support (ECLS) largely aimed at removing carbon dioxide in patients with acute hypoxemic or acute hypercapnic respiratory failure, so as to minimize respiratory acidosis, allowing more lung protective ventilatory settings which should decrease ventilator-induced lung injury. ECCO2R is increasingly being used despite the lack of high-quality evidence, while complications associated with the technique remain an issue of concern. This review explains the physiological basis underlying the use of ECCO2R, reviews the evidence regarding indications and contraindications, patient management and complications, and addresses organizational and ethical considerations. The indications and the risk-to-benefit ratio of this technique should now be carefully evaluated using structured national or international registries and large randomized trials.
Collapse
Affiliation(s)
- Alain Combes
- Sorbonne Université INSERM Unité Mixte de Recherche (UMRS) 1166, Institute of Cardiometabolism and Nutrition, Paris, France. .,Service de Médecine Intensive-Réanimation, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, 47, boulevard de l'Hôpital, 75013, Paris, France.
| | - Daniel Brodie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, NewYork-Presbyterian Hospital, New York, USA.,Center for Acute Respiratory Failure, NewYork-Presbyterian Hospital, New York, USA
| | - Nadia Aissaoui
- Assistance publique des hopitaux de Paris (APHP), Cochin Hospital, Intensive Care Medicine, Université de Paris and Paris Cardiovascular Research Center, INSERM U970, Paris, France
| | - Thomas Bein
- Faculty of Medicine, University of Regensburg, Regensburg, Germany
| | - Gilles Capellier
- CHU Besançon, Réanimation Médicale, 2500, Besançon, France.,Université de Franche Comte, EA, 3920, Besançon, France.,Department of Epidemiology and Preventive Medicine, Australian and New Zealand Intensive, Care Research Centre, Monash University, Melbourne, Australia
| | - Heidi J Dalton
- Heart and Vascular Institute and Department of Pediatrics, INOVA Fairfax Medical Center, Falls Church, VA, USA
| | - Jean-Luc Diehl
- Medical Intensive Care Unit and Biosurgical Research Lab (Carpentier Foundation), HEGP Hospital, Assistance Publique-Hôpitaux de Paris-Centre (APHP-Centre), Paris, France.,Université de Paris, INSERM, Innovative Therapies in Haemostasis, 75006, Paris, France
| | - Stefan Kluge
- Department of Intensive Care, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel F McAuley
- Belfast Health and Social Care Trust, Royal Victoria Hospital, Belfast, UK.,Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Matthieu Schmidt
- Sorbonne Université INSERM Unité Mixte de Recherche (UMRS) 1166, Institute of Cardiometabolism and Nutrition, Paris, France.,Service de Médecine Intensive-Réanimation, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, 47, boulevard de l'Hôpital, 75013, Paris, France
| | - Arthur S Slutsky
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.,Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Samir Jaber
- PhyMedExp, University of Montpellier, Institut National de La Santé Et de La Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Centre Hospitalier Universitaire (CHU) Montpellier, Montpellier, France.,Département d'Anesthésie-Réanimation, Hôpital Saint-Eloi, Montpellier Cedex, France
| |
Collapse
|
10
|
|
11
|
Zochios V, Brodie D, Shekar K, Schultz MJ, Parhar KKS. Invasive mechanical ventilation in patients with acute respiratory distress syndrome receiving extracorporeal support: a narrative review of strategies to mitigate lung injury. Anaesthesia 2022; 77:1137-1151. [PMID: 35864561 DOI: 10.1111/anae.15806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 11/28/2022]
Abstract
Veno-venous extracorporeal membrane oxygenation is indicated in patients with acute respiratory distress syndrome and severely impaired gas exchange despite evidence-based lung protective ventilation, prone positioning and other parts of the standard algorithm for treating such patients. Extracorporeal support can facilitate ultra-lung-protective ventilation, meaning even lower volumes and pressures than standard lung-protective ventilation, by directly removing carbon dioxide in patients needing injurious ventilator settings to maintain sufficient gas exchange. Injurious ventilation results in ventilator-induced lung injury, which is one of the main determinants of mortality in acute respiratory distress syndrome. Marked reductions in the intensity of ventilation to the lowest tolerable levels under extracorporeal support may be achieved and could thereby potentially mitigate ventilator-induced lung injury and theoretically patient self-inflicted lung injury in spontaneously breathing patients with high respiratory drive. However, the benefits of this strategy may be counterbalanced by the use of continuous deep sedation and even neuromuscular blocking drugs, which may impair physical rehabilitation and impact long-term outcomes. There are currently a lack of large-scale prospective data to inform optimal invasive ventilation practices and how to best apply a holistic approach to patients receiving veno-venous extracorporeal membrane oxygenation, while minimising ventilator-induced and patient self-inflicted lung injury. We aimed to review the literature relating to invasive ventilation strategies in patients with acute respiratory distress syndrome receiving extracorporeal support and discuss personalised ventilation approaches and the potential role of adjunctive therapies in facilitating lung protection.
Collapse
Affiliation(s)
- V Zochios
- Department of Cardiothoracic Critical Care Medicine and ECMO, Glenfield Hospital, University Hospitals of Leicester National Health Service Trust, Leicester, UK.,Department of Cardiovascular Sciences, University of Leicester, UK
| | - D Brodie
- Columbia University College of Physicians and Surgeons, New York, NY, USA.,Centre for Acute Respiratory Failure, New York-Presbyterian Hospital, New York, NY, USA
| | - K Shekar
- Adult Intensive Care Services and Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane and Bond University, Goldcoast, QLD, Australia
| | - M J Schultz
- Department of Intensive Care, Amsterdam University Medical Centres, Amsterdam, the Netherlands.,Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.,Nuffield Department of Medicine, Oxford University, Oxford, UK.,Department of Medical Affairs, Hamilton Medical AG, Bonaduz, Switzerland
| | - K K S Parhar
- Department of Critical Care Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
| |
Collapse
|
12
|
Chiumello D, Pozzi T, Mereto E, Fratti I, Chiodaroli E, Gattinoni L, Coppola S. Long term feasibility of ultraprotective lung ventilation with low-flow extracorporeal carbon dioxide removal in ARDS patients. J Crit Care 2022; 71:154092. [PMID: 35714453 DOI: 10.1016/j.jcrc.2022.154092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/02/2022] [Accepted: 05/26/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE To explore the feasibility of long-term application of ultraprotective ventilation with low flow ECCO2R support in moderate-severe ARDS patients and the reduction of mechanical power (MP) compared to lung protective ventilation. MATERIAL AND METHODS ARDS patients with PaO2/FiO2 < 200, PEEP of 10 cmH2O, tidal volume 6 ml/Kg of predicted body weight (PBW), plateau pressure > 24 cmH2O, MP > 17 J/min were prospectively enrolled. After 2 h tidal volume was reduced to 4-5 ml/kg, respiratory rate (RR) and PEEP were changed to maintain similar minute ventilation and mean airway pressure (MAP) to those obtained at baseline. After 2 h, ECCO2R support was started, RR was decreased and PEEP was increased to maintain similar PaCO2 and MAP, respectively. RESULTS The only reduction of tidal volume with the increase in RR did not decrease MP. The application of low flow ECCO2R support allowed a reduction of RR from 25 [24-30] to 11 [9-14] bpm and MP from 18 [13-23] to 8 [7-11] J/min. During the following 5 days no changes in mechanics variables and gas exchange occurred. CONCLUSIONS The application of low flow ECCO2R support with ultraprotective ventilation was feasible minimizing the MP without deterioration in oxygenation in ARDS patients.
Collapse
Affiliation(s)
- Davide Chiumello
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Via Di Rudini 9, Milan, Italy; Department of Health Sciences, University of Milan, Milano, Italy; Coordinated Research Center on Respiratory Failure, University of Milan, Milan, Italy.
| | - Tommaso Pozzi
- Department of Health Sciences, University of Milan, Milano, Italy
| | - Elisa Mereto
- Department of Health Sciences, University of Milan, Milano, Italy
| | - Isabella Fratti
- Department of Health Sciences, University of Milan, Milano, Italy
| | - Elena Chiodaroli
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Via Di Rudini 9, Milan, Italy
| | - Luciano Gattinoni
- Department of Anesthesiology, University Medical Center of Göttingen, Göttingen, Germany
| | - Silvia Coppola
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Via Di Rudini 9, Milan, Italy
| |
Collapse
|
13
|
Worku E, Brodie D, Ling RR, Ramanathan K, Combes A, Shekar K. Venovenous extracorporeal CO 2 removal to support ultraprotective ventilation in moderate-severe acute respiratory distress syndrome: A systematic review and meta-analysis of the literature. Perfusion 2022:2676591221096225. [PMID: 35656595 DOI: 10.1177/02676591221096225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND A strategy that limits tidal volumes and inspiratory pressures, improves outcomes in patients with the acute respiratory distress syndrome (ARDS). Extracorporeal carbon dioxide removal (ECCO2R) may facilitate ultra-protective ventilation. We conducted a systematic review and meta-analysis to evaluate the efficacy and safety of venovenous ECCO2R in supporting ultra-protective ventilation in moderate-to-severe ARDS. METHODS MEDLINE and EMBASE were interrogated for studies (2000-2021) reporting venovenous ECCO2R use in patients with moderate-to-severe ARDS. Studies reporting ≥10 adult patients in English language journals were included. Ventilatory parameters after 24 h of initiating ECCO2R, device characteristics, and safety outcomes were collected. The primary outcome measure was the change in driving pressure at 24 h of ECCO2R therapy in relation to baseline. Secondary outcomes included change in tidal volume, gas exchange, and safety data. RESULTS Ten studies reporting 421 patients (PaO2:FiO2 141.03 mmHg) were included. Extracorporeal blood flow rates ranged from 0.35-1.5 L/min. Random effects modelling indicated a 3.56 cmH2O reduction (95%-CI: 3.22-3.91) in driving pressure from baseline (p < .001) and a 1.89 mL/kg (95%-CI: 1.75-2.02, p < .001) reduction in tidal volume. Oxygenation, respiratory rate and PEEP remained unchanged. No significant interactions between driving pressure reduction and baseline driving pressure, partial pressure of arterial carbon dioxide or PaO2:FiO2 ratio were identified in metaregression analysis. Bleeding and haemolysis were the commonest complications of therapy. CONCLUSIONS Venovenous ECCO2R permitted significant reductions in ∆P in patients with moderate-to-severe ARDS. Heterogeneity amongst studies and devices, a paucity of randomised controlled trials, and variable safety reporting calls for standardisation of outcome reporting. Prospective evaluation of optimal device operation and anticoagulation in high quality studies is required before further recommendations can be made.
Collapse
Affiliation(s)
- Elliott Worku
- Adult Intensive Care Services, 67567The Prince Charles Hospital, Metro North Hospital and Health Service, Brisbane, QLD, Australia
- University of Queensland, Brisbane, QLD, Australia
| | - Daniel Brodie
- Department of Medicine, 12294Columbia University College of Physicians and Surgeons, NY, USA
- Center for Acute Respiratory Failure, 25065New York-Presbyterian Hospital, NY, USA
| | - Ryan Ruiyang Ling
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kollengode Ramanathan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cardiothoracic Intensive Care Unit, 375583National University Heart Centre, National University Hospital, Singapore
| | - Alain Combes
- Sorbonne Université, Institute of Cardiometabolism and Nutrition, Paris, France
- Medical Intensive Care Unit, Assistance Publique-Hôpitaux de Paris, 26933Pitié-Salpêtrière Hospital, Paris, France
| | - Kiran Shekar
- Adult Intensive Care Services, 67567The Prince Charles Hospital, Metro North Hospital and Health Service, Brisbane, QLD, Australia
- University of Queensland, Brisbane, QLD, Australia
- Queensland University of Technology, Brisbane and Bond University, Gold Coast, QLD, Australia
| |
Collapse
|
14
|
Abrams D, Agerstrand C, Beitler JR, Karagiannidis C, Madahar P, Yip NH, Pesenti A, Slutsky AS, Brochard L, Brodie D. Risks and Benefits of Ultra-Lung-Protective Invasive Mechanical Ventilation Strategies with a Focus on Extracorporeal Support. Am J Respir Crit Care Med 2022; 205:873-882. [PMID: 35044901 DOI: 10.1164/rccm.202110-2252cp] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lung-protective ventilation strategies are the current standard of care for patients with acute respiratory distress syndrome (ARDS) in an effort to provide adequate ventilatory requirements while minimizing ventilator-induced lung injury. Some patients may benefit from ultra-lung-protective ventilation, a strategy that achieves lower airway pressures and tidal volumes than the current standard. Specific physiological parameters beyond severity of hypoxemia, such as driving pressure and respiratory system elastance, may be predictive of those most likely to benefit. Since application of ultra-lung-protective ventilation is often limited by respiratory acidosis, extracorporeal membrane oxygenation (ECMO) or extracorporeal carbon dioxide removal (ECCO2R), which remove carbon dioxide from blood, are attractive options. These strategies are associated with hematological complications, especially when applied at low blood flow rates with devices designed for higher blood flows, and a recent large randomized, controlled trial failed to show a benefit from an ECCO2R-facilitated ultra-lung-protective ventilation strategy. Only in patients with very severe forms of ARDS has the use of an ultra-lung-protective ventilation strategy - accomplished with ECMO - been suggested to have a favorable risk-to-benefit profile. In this Critical Care Perspective, we address key areas of controversy related to ultra-lung-protective ventilation, including the trade-offs between minimizing ventilator-induced lung injury and the risks from strategies to achieve this added protection. In addition, we suggest which patients might benefit most from an ultra-lung-protective strategy and propose areas of future research.
Collapse
Affiliation(s)
- Darryl Abrams
- Columbia University Medical Center, Medicine, Division of Pulmonary, Allergy, & Critical Care, New York, New York, United States
| | - Cara Agerstrand
- Columbia University Medical Center, Medicine, Division of Pulmonary, Allergy, & Critical Care, New York, New York, United States
| | - Jeremy R Beitler
- Columbia University College of Physicians and Surgeons, 12294, Center for Acute Respiratory Failure and Division of Pulmonary, Allergy, and Critical Care Medicine, New York, New York, United States.,NewYork-Presbyterian Hospital, 25065, New York, New York, United States
| | - Christian Karagiannidis
- Hospital Cologne-Merheim, 61060, Department of Pneumology and Critical Care Medicine, Koln, Germany.,Witten/Herdecke University, 12263, Cologne, Germany
| | - Purnema Madahar
- Columbia University Medical Center, Medicine, Division of Pulmonary, Allergy, & Critical Care, New York, New York, United States
| | - Natalie H Yip
- Columbia University Medical Center, Dept of Medicine Pulmonary, New York City, New York, United States
| | - Antonio Pesenti
- Universita degli Studi di Milano, 9304, Department of Pathophysiology and Transplantation, Milano, Italy
| | | | - Laurent Brochard
- St Michael's Hospital in Toronto, Li Ka Shing Knowledge Institute, Keenan Research Centre, Toronto, Ontario, Canada.,University of Toronto, 7938, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada
| | - Daniel Brodie
- Columbia, Critical Care, New York, New York, United States;
| |
Collapse
|
15
|
Zanella A, Pesenti A, Busana M, De Falco S, Di Girolamo L, Scotti E, Protti I, Colombo SM, Scaravilli V, Biancolilli O, Carlin A, Gori F, Battistin M, Dondossola D, Pirrone F, Salerno D, Gatti S, Grasselli G. A Minimally Invasive and Highly Effective Extracorporeal CO2 Removal Device Combined With a Continuous Renal Replacement Therapy. Crit Care Med 2022; 50:e468-e476. [PMID: 35044966 DOI: 10.1097/ccm.0000000000005428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Extracorporeal carbon dioxide removal is used to treat patients suffering from acute respiratory failure. However, the procedure is hampered by the high blood flow required to achieve a significant CO2 clearance. We aimed to develop an ultralow blood flow device to effectively remove CO2 combined with continuous renal replacement therapy (CRRT). DESIGN Preclinical, proof-of-concept study. SETTING An extracorporeal circuit where 200 mL/min of blood flowed through a hemofilter connected to a closed-loop dialysate circuit. An ion-exchange resin acidified the dialysate upstream, a membrane lung to increase Pco2 and promote CO2 removal. PATIENTS Six, 38.7 ± 2.0-kg female pigs. INTERVENTIONS Different levels of acidification were tested (from 0 to 5 mEq/min). Two l/hr of postdilution CRRT were performed continuously. The respiratory rate was modified at each step to maintain arterial Pco2 at 50 mm Hg. MEASUREMENTS AND MAIN RESULTS Increasing acidification enhanced CO2 removal efficiency of the membrane lung from 30 ± 5 (0 mEq/min) up to 145 ± 8 mL/min (5 mEq/min), with a 483% increase, representing the 73% ± 7% of the total body CO2 production. Minute ventilation decreased accordingly from 6.5 ± 0.7 to 1.7 ± 0.5 L/min. No major side effects occurred, except for transient tachycardia episodes. As expected from the alveolar gas equation, the natural lung Pao2 dropped at increasing acidification steps, given the high dissociation between the oxygenation and CO2 removal capability of the device, thus Pao2 decreased. CONCLUSIONS This new extracorporeal ion-exchange resin-based multiple-organ support device proved extremely high efficiency in CO2 removal and continuous renal support in a preclinical setting. Further studies are required before clinical implementation.
Collapse
|
16
|
Tiruvoipati R, Peek G. Extracorporeal Carbon Dioxide Removal vs Standard Care Ventilation Effect on 90-Day Mortality in Patients With Acute Hypoxemic Respiratory Failure. JAMA 2022; 327:83-84. [PMID: 34982126 DOI: 10.1001/jama.2021.20996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Giles Peek
- UF Health Congenital Heart Center, Gainesville, Florida
| |
Collapse
|
17
|
Leypoldt JK, Kurz J, Echeverri J, Storr M, Harenski K. Targeting arterial partial pressure of carbon dioxide in acute respiratory distress syndrome patients using extracorporeal carbon dioxide removal. Artif Organs 2021; 46:677-687. [PMID: 34817074 DOI: 10.1111/aor.14127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/06/2021] [Accepted: 11/08/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND A retrospective analysis of SUPERNOVA trial data showed that reductions in tidal volume to ultraprotective levels without significant increases in arterial partial pressure of carbon dioxide (PaCO2 ) for critically ill, mechanically ventilated patients with acute respiratory distress syndrome (ARDS) depends on the rate of extracorporeal carbon dioxide removal (ECCO2 R). METHODS We used a whole-body mathematical model of acid-base balance to quantify the effect of altering carbon dioxide (CO2 ) removal rates using different ECCO2 R devices to achieve target PaCO2 levels in ARDS patients. Specifically, we predicted the effect of using a new, larger surface area PrismaLung+ device instead of the original PrismaLung device on the results from two multicenter clinical studies in critically ill, mechanically ventilated ARDS patients. RESULTS After calibrating model parameters to the clinical study data using the PrismaLung device, model predictions determined optimal extracorporeal blood flow rates for the PrismaLung+ and mechanical ventilation frequencies to obtain target PaCO2 levels of 45 and 50 mm Hg in mild and moderate ARDS patients treated at a tidal volume of 3.98 ml/kg predicted body weight (PW). Comparable model predictions showed that reductions in tidal volumes below 6 ml/kg PBW may be difficult for acidotic highly severe ARDS patients with acute kidney injury and high CO2 production rates using a PrismaLung+ device in-series with a continuous venovenous hemofiltration device. CONCLUSIONS The described model provides guidance on achieving target PaCO2 levels in mechanically ventilated ARDS patients using protective and ultraprotective tidal volumes when increasing CO2 removal rates from ECCO2 R devices.
Collapse
Affiliation(s)
- John K Leypoldt
- Department IV-Modeling and Supporting of Internal Functions, Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
| | - Jörg Kurz
- Medical Affairs, Baxter Deutschland GmbH, Unterschleissheim, Germany
| | - Jorge Echeverri
- Medical Affairs, Baxter Healthcare Corporation, Deerfield, Illinois, USA
| | - Markus Storr
- Research and Development, Baxter International, Hechingen, Germany
| | - Kai Harenski
- Medical Affairs, Baxter Deutschland GmbH, Unterschleissheim, Germany
| |
Collapse
|
18
|
Alkaline Liquid Ventilation of the Membrane Lung for Extracorporeal Carbon Dioxide Removal (ECCO 2R): In Vitro Study. MEMBRANES 2021; 11:membranes11070464. [PMID: 34206672 PMCID: PMC8306443 DOI: 10.3390/membranes11070464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 11/16/2022]
Abstract
Extracorporeal carbon dioxide removal (ECCO2R) is a promising strategy to manage acute respiratory failure. We hypothesized that ECCO2R could be enhanced by ventilating the membrane lung with a sodium hydroxide (NaOH) solution with high CO2 absorbing capacity. A computed mathematical model was implemented to assess NaOH–CO2 interactions. Subsequently, we compared NaOH infusion, named “alkaline liquid ventilation”, to conventional oxygen sweeping flows. We built an extracorporeal circuit with two polypropylene membrane lungs, one to remove CO2 and the other to maintain a constant PCO2 (60 ± 2 mmHg). The circuit was primed with swine blood. Blood flow was 500 mL × min−1. After testing the safety and feasibility of increasing concentrations of aqueous NaOH (up to 100 mmol × L−1), the CO2 removal capacity of sweeping oxygen was compared to that of 100 mmol × L−1 NaOH. We performed six experiments to randomly test four sweep flows (100, 250, 500, 1000 mL × min−1) for each fluid plus 10 L × min−1 oxygen. Alkaline liquid ventilation proved to be feasible and safe. No damages or hemolysis were detected. NaOH showed higher CO2 removal capacity compared to oxygen for flows up to 1 L × min−1. However, the highest CO2 extraction power exerted by NaOH was comparable to that of 10 L × min−1 oxygen. Further studies with dedicated devices are required to exploit potential clinical applications of alkaline liquid ventilation.
Collapse
|
19
|
Leypoldt JK, Kurz J, Echeverri J, Storr M, Harenski K. Modeling acid-base balance for in-series extracorporeal carbon dioxide removal and continuous venovenous hemofiltration devices. Artif Organs 2021; 45:1036-1049. [PMID: 33909323 DOI: 10.1111/aor.13969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/10/2021] [Accepted: 04/02/2021] [Indexed: 01/03/2023]
Abstract
Patients with acute respiratory distress syndrome and acute kidney injury (AKI) treated by kidney replacement therapy may also require treatment with extracorporeal carbon dioxide removal (ECCO2 R) devices to permit protective or ultraprotective mechanical ventilation. We developed a mathematical model of acid-base balance during extracorporeal therapy using ECCO2 R and continuous venovenous hemofiltration (CVVH) devices applied in series for the treatment of mechanically ventilated AKI patients. Published data from clinical studies of mechanically ventilated AKI patients treated by CVVH at known infusion rates of substitution fluid without ECCO2 R were used to adjust the model parameters to fit plasma levels of arterial partial pressure of carbon dioxide (PaCO2 ), arterial plasma bicarbonate concentration ([HCO3 ]), and plasma pH (as well as certain other unmeasured physiological variables). The effects of applying ECCO2 R at an unchanged and a reduced tidal volume on PaCO2 , [HCO3 ] and plasma pH were then simulated assuming carbon dioxide removal rates from the ECCO2 R device measured in the clinical studies. Agreement of such model predictions with clinical data was good whether the ECCO2 R device was positioned proximal or distal to the CVVH device in the extracorporeal circuit. Although carbon dioxide removal rates from the ECCO2 R device measured in one previous clinical study were higher when it was placed proximal to the CVVH device, suggesting that such in-series positioning was optimal, the current mathematical model demonstrates that proximal positioning of the ECCO2 R device also results in lower bicarbonate (and, therefore, total carbon dioxide) removal from the distal CVVH device. Thus, the removal of total carbon dioxide by such extracorporeal circuits is relatively independent of the position of the in-series devices. It is concluded that the described mathematical model has quantitative accuracy; these results suggest that the overall acid-base balance when using ECCO2 R and CVVH devices in a single extracorporeal circuit will be similar, independent of their in-series position.
Collapse
Affiliation(s)
- John K Leypoldt
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Jörg Kurz
- Medical Affairs, Baxter Deutschland GmbH, Unterschleissheim, Germany
| | - Jorge Echeverri
- Medical Affairs, Baxter Healthcare Corporation, Deerfield, IL, USA
| | - Markus Storr
- Research and Development, Baxter International, Hechingen, Germany
| | - Kai Harenski
- Medical Affairs, Baxter Deutschland GmbH, Unterschleissheim, Germany
| |
Collapse
|
20
|
Martin AK, Ramakrishna H. Extracorporeal Carbon Dioxide Removal (ECCO 2R): A Potential Perioperative Tool in End-Stage Lung Disease. J Cardiothorac Vasc Anesth 2021; 35:2245-2248. [PMID: 33994317 DOI: 10.1053/j.jvca.2021.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Archer Kilbourne Martin
- Division of Cardiovascular and Thoracic Anesthesiology, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic School of Medicine, Jacksonville, FL
| | - Harish Ramakrishna
- Division of Cardiovascular and Thoracic Anesthesiology, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic School of Medicine, Rochester, MN
| |
Collapse
|
21
|
Ronco C, Reis T. Continuous renal replacement therapy and extended indications. Semin Dial 2021; 34:550-560. [PMID: 33711166 DOI: 10.1111/sdi.12963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 01/16/2023]
Abstract
Extracorporeal blood purification (EBP) techniques provide support for critically ill patients with single or multiple organ dysfunction. Continuous renal replacement therapy (CRRT) is the modality of choice for kidney support for those patients and orchestrates the interactions between the different artificial organ support systems. Intensive care teams should be familiar with the concept of sequential extracorporeal therapy and plan on how to incorporate new treatment modalities into their daily practices. Importantly, scientific evidence should guide the decision-making process at the bedside and provide robust arguments to justify the costs of implementing new EBP treatments. In this narrative review, we explore the extended indications for CRRT as an adjunctive treatment to provide support for the heart, lung, liver, and immune system. We detail practicalities on how to run the treatments and how to tackle the most frequent complications regarding each of the therapies, whether applied alone or integrated. The physicochemical processes and technologies involved at the molecular level encompassing the interactions between the molecules, membranes, and resins are spotlighted. A clinical case will illustrate the timing for the initiation, maintenance, and discontinuation of EBP techniques.
Collapse
Affiliation(s)
- Claudio Ronco
- Department of Medicine (DIMED), University of Padova, Padova, Italy.,Department of Nephrology, Dialysis and Transplantation, International Renal Research Institute of Vicenza (IRRIV), San Bortolo Hospital, Vicenza, Italy.,National Academy of Medicine, Young Leadership Physicians Program, Rio de Janeiro, Brazil
| | - Thiago Reis
- Department of Nephrology, Dialysis and Transplantation, International Renal Research Institute of Vicenza (IRRIV), San Bortolo Hospital, Vicenza, Italy.,Department of Nephrology, Clínica de Doenças Renais de Brasília, Molecular Pharmacology Laboratory, University of Brasília, Brasilia, Brazil
| |
Collapse
|
22
|
Giraud R, Banfi C, Assouline B, De Charrière A, Cecconi M, Bendjelid K. The use of extracorporeal CO 2 removal in acute respiratory failure. Ann Intensive Care 2021; 11:43. [PMID: 33709318 PMCID: PMC7951130 DOI: 10.1186/s13613-021-00824-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/04/2021] [Indexed: 12/17/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) exacerbation and protective mechanical ventilation of acute respiratory distress syndrome (ARDS) patients induce hypercapnic respiratory acidosis. Main text Extracorporeal carbon dioxide removal (ECCO2R) aims to eliminate blood CO2 to fight against the adverse effects of hypercapnia and related acidosis. Hypercapnia has deleterious extrapulmonary consequences, particularly for the brain. In addition, in the lung, hypercapnia leads to: lower pH, pulmonary vasoconstriction, increases in right ventricular afterload, acute cor pulmonale. Moreover, hypercapnic acidosis may further damage the lungs by increasing both nitric oxide production and inflammation and altering alveolar epithelial cells. During an exacerbation of COPD, relieving the native lungs of at least a portion of the CO2 could potentially reduce the patient's respiratory work, Instead of mechanically increasing alveolar ventilation with MV in an already hyperinflated lung to increase CO2 removal, the use of ECCO2R may allow a decrease in respiratory volume and respiratory rate, resulting in improvement of lung mechanic. Thus, the use of ECCO2R may prevent noninvasive ventilation failure and allow intubated patients to be weaned off mechanical ventilation. In ARDS patients, ECCO2R may be used to promote an ultraprotective ventilation in allowing to lower tidal volume, plateau (Pplat) and driving pressures, parameters that have identified as a major risk factors for mortality. However, although ECCO2R appears to be effective in improving gas exchange and possibly in reducing the rate of endotracheal intubation and allowing more protective ventilation, its use may have pulmonary and hemodynamic consequences and may be associated with complications. Conclusion In selected patients, ECCO2R may be a promising adjunctive therapeutic strategy for the management of patients with severe COPD exacerbation and for the establishment of protective or ultraprotective ventilation in patients with ARDS without prognosis-threatening hypoxemia.
Collapse
Affiliation(s)
- Raphaël Giraud
- Intensive Care Unit, Geneva University Hospitals, 4, Rue Gabrielle Perret-Gentil, 1205, Geneva, Switzerland. .,Faculty of Medicine, University of Geneva, Geneva, Switzerland. .,Geneva Hemodynamic Research Group, Geneva, Switzerland.
| | - Carlo Banfi
- University of Milan, Gruppo Ospedaliero San Donato, Milan, Italy.,Department of Cardio-Thoracic Surgery, Istituto Clinico Sant'Ambrogio, Milan, Italy.,Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Geneva Hemodynamic Research Group, Geneva, Switzerland
| | - Benjamin Assouline
- Intensive Care Unit, Geneva University Hospitals, 4, Rue Gabrielle Perret-Gentil, 1205, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Geneva Hemodynamic Research Group, Geneva, Switzerland
| | - Amandine De Charrière
- Intensive Care Unit, Geneva University Hospitals, 4, Rue Gabrielle Perret-Gentil, 1205, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Geneva Hemodynamic Research Group, Geneva, Switzerland
| | - Maurizio Cecconi
- Humanitas Clinical and Research Center, IRCCS, via Manzoni 56, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini, Pieve Emanuele, 20090, Milan, Italy
| | - Karim Bendjelid
- Intensive Care Unit, Geneva University Hospitals, 4, Rue Gabrielle Perret-Gentil, 1205, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Geneva Hemodynamic Research Group, Geneva, Switzerland
| |
Collapse
|
23
|
Goursaud S, Valette X, Dupeyrat J, Daubin C, du Cheyron D. Ultraprotective ventilation allowed by extracorporeal CO 2 removal improves the right ventricular function in acute respiratory distress syndrome patients: a quasi-experimental pilot study. Ann Intensive Care 2021; 11:3. [PMID: 33411146 PMCID: PMC7788545 DOI: 10.1186/s13613-020-00784-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Background Right ventricular (RV) failure is a common complication in moderate-to-severe acute respiratory distress syndrome (ARDS). RV failure is exacerbated by hypercapnic acidosis and overdistension induced by mechanical ventilation. Veno-venous extracorporeal CO2 removal (ECCO2R) might allow ultraprotective ventilation with lower tidal volume (VT) and plateau pressure (Pplat). This study investigated whether ECCO2R therapy could affect RV function. Methods This was a quasi-experimental prospective observational pilot study performed in a French medical ICU. Patients with moderate-to-severe ARDS with PaO2/FiO2 ratio between 80 and 150 mmHg were enrolled. An ultraprotective ventilation strategy was used with VT at 4 mL/kg of predicted body weight during the 24 h following the start of a low-flow ECCO2R device. RV function was assessed by transthoracic echocardiography (TTE) during the study protocol. Results The efficacy of ECCO2R facilitated an ultraprotective strategy in all 18 patients included. We observed a significant improvement in RV systolic function parameters. Tricuspid annular plane systolic excursion (TAPSE) increased significantly under ultraprotective ventilation compared to baseline (from 22.8 to 25.4 mm; p < 0.05). Systolic excursion velocity (S’ wave) also increased after the 1-day protocol (from 13.8 m/s to 15.1 m/s; p < 0.05). A significant improvement in the aortic velocity time integral (VTIAo) under ultraprotective ventilation settings was observed (p = 0.05). There were no significant differences in the values of systolic pulmonary arterial pressure (sPAP) and RV preload. Conclusion Low-flow ECCO2R facilitates an ultraprotective ventilation strategy thatwould improve RV function in moderate-to-severe ARDS patients. Improvement in RV contractility appears to be mainly due to a decrease in intrathoracic pressure allowed by ultraprotective ventilation, rather than a reduction of PaCO2.
Collapse
Affiliation(s)
- Suzanne Goursaud
- CHU de Caen Normandie, Service de Réanimation Médicale, Av côte de Nacre, 14000, Caen, France. .,Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000, Caen, France.
| | - Xavier Valette
- CHU de Caen Normandie, Service de Réanimation Médicale, Av côte de Nacre, 14000, Caen, France
| | - Julien Dupeyrat
- CHU de Caen Normandie, Service de Réanimation Médicale, Av côte de Nacre, 14000, Caen, France
| | - Cédric Daubin
- CHU de Caen Normandie, Service de Réanimation Médicale, Av côte de Nacre, 14000, Caen, France
| | - Damien du Cheyron
- CHU de Caen Normandie, Service de Réanimation Médicale, Av côte de Nacre, 14000, Caen, France
| |
Collapse
|
24
|
Evaluation of a New Extracorporeal CO 2 Removal Device in an Experimental Setting. MEMBRANES 2020; 11:membranes11010008. [PMID: 33374762 PMCID: PMC7823796 DOI: 10.3390/membranes11010008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/04/2020] [Accepted: 12/21/2020] [Indexed: 01/26/2023]
Abstract
Background: Ultra-protective lung ventilation in acute respiratory distress syndrome or early weaning and/or avoidance of mechanical ventilation in decompensated chronic obstructive pulmonary disease may be facilitated by the use of extracorporeal CO2 removal (ECCO2R). We tested the CO2 removal performance of a new ECCO2R (CO2RESET) device in an experimental animal model. Methods: Three healthy pigs were mechanically ventilated and connected to the CO2RESET device (surface area = 1.8 m2, EUROSETS S.r.l., Medolla, Italy). Respiratory settings were adjusted to induce respiratory acidosis with the adjunct of an external source of pure CO2 (target pre membrane lung venous PCO2 (PpreCO2): 80–120 mmHg). The amount of CO2 removed (VCO2, mL/min) by the membrane lung was assessed directly by the ECCO2R device. Results: Before the initiation of ECCO2R, the median PpreCO2 was 102.50 (95.30–118.20) mmHg. Using fixed incremental steps of the sweep gas flow and maintaining a fixed blood flow of 600 mL/min, VCO2 progressively increased from 0 mL/min (gas flow of 0 mL/min) to 170.00 (160.00–200.00) mL/min at a gas flow of 10 L/min. In particular, a high increase of VCO2 was observed increasing the gas flow from 0 to 2 L/min, then, VCO2 tended to progressively achieve a steady-state for higher gas flows. No animal or pump complications were observed. Conclusions: Medium-flow ECCO2R devices with a blood flow of 600 mL/min and a high surface membrane lung (1.8 m2) provided a high VCO2 using moderate sweep gas flows (i.e., >2 L/min) in an experimental swine models with healthy lungs.
Collapse
|
25
|
Combes A, Schmidt M, Hodgson CL, Fan E, Ferguson ND, Fraser JF, Jaber S, Pesenti A, Ranieri M, Rowan K, Shekar K, Slutsky AS, Brodie D. Extracorporeal life support for adults with acute respiratory distress syndrome. Intensive Care Med 2020; 46:2464-2476. [PMID: 33140180 PMCID: PMC7605473 DOI: 10.1007/s00134-020-06290-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/10/2020] [Indexed: 12/28/2022]
Abstract
Extracorporeal life support (ECLS) can support gas exchange in patients with the acute respiratory distress syndrome (ARDS). During ECLS, venous blood is drained from a central vein via a cannula, pumped through a semipermeable membrane that permits diffusion of oxygen and carbon dioxide, and returned via a cannula to a central vein. Two related forms of ECLS are used. Venovenous extracorporeal membrane oxygenation (ECMO), which uses high blood flow rates to both oxygenate the blood and remove carbon dioxide, may be considered in patients with severe ARDS whose oxygenation or ventilation cannot be maintained adequately with best practice conventional mechanical ventilation and adjunctive therapies, including prone positioning. Extracorporeal carbon dioxide removal (ECCO2R) uses lower blood flow rates through smaller cannulae and provides substantial CO2 elimination (~ 20–70% of total CO2 production), albeit with marginal improvement in oxygenation. The rationale for using ECCO2R in ARDS is to facilitate lung-protective ventilation by allowing a reduction of tidal volume, respiratory rate, plateau pressure, driving pressure and mechanical power delivered by the mechanical ventilator. This narrative review summarizes physiological concepts related to ECLS, as well as the rationale and evidence supporting ECMO and ECCO2R for the treatment of ARDS. It also reviews complications, limitations, and the ethical dilemmas that can arise in treating patients with ECLS. Finally, it discusses future key research questions and challenges for this technology.
Collapse
Affiliation(s)
- Alain Combes
- Sorbonne Université, INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, 75013, Paris, France. .,Service de Médecine Intensive-Réanimation, Institut de Cardiologie, APHP Sorbonne Université Hôpital Pitié-Salpêtrière, 75013, Paris, France.
| | - Matthieu Schmidt
- Sorbonne Université, INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, 75013, Paris, France.,Service de Médecine Intensive-Réanimation, Institut de Cardiologie, APHP Sorbonne Université Hôpital Pitié-Salpêtrière, 75013, Paris, France
| | - Carol L Hodgson
- Australian and New Zealand Intensive Care-Research Centre, Monash University, Melbourne, Australia
| | - Eddy Fan
- Interdepartmenal Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.,Department of Medicine, Division of Respirology, University Health Network, Toronto, ON, Canada
| | - Niall D Ferguson
- Department of Medicine, Division of Respirology, University Health Network, Toronto, ON, Canada.,Interdepartmental Division of Critical Care Medicine and Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - John F Fraser
- Critical Care Research Group, Adult Intensive Care Services, Northside Medical School, The Prince Charles Hospital, University of Queensland, Brisbane, Australia
| | - Samir Jaber
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), From the PhyMedExp, University of Montpellier, Centre Hospitalier Universitaire (CHU) Montpellier, Montpellier, France.,Département d'Anesthésie-Réanimation, Hôpital Saint-Eloi, Montpellier Cedex, France
| | - Antonio Pesenti
- Department of Anesthesia, Critical Care and Emergency, Department of Pathophysiology and Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Marco Ranieri
- Intensive Care Unit, Policlinico di Sant'Orsola, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Kathryn Rowan
- Clinical Trials Unit, Intensive Care National Audit and Research Centre (ICNARC), London, UK
| | - Kiran Shekar
- Adult Intensive Care Services, Critical Care Research Group, the Prince Charles Hospital, Brisbane, QLD, Australia.,Queensland University of Technology, University of Queensland, Brisbane, QLD, Australia
| | - Arthur S Slutsky
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.,Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, St Michael's Hospital, Toronto, ON, Canada
| | - Daniel Brodie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, NewYork-Presbyterian Hospital, New York, USA.,Center for Acute Respiratory Failure, NewYork-Presbyterian Hospital, New York, USA
| |
Collapse
|
26
|
Tiruvoipati R, Gupta S, Pilcher D, Bailey M. Management of hypercapnia in critically ill mechanically ventilated patients-A narrative review of literature. J Intensive Care Soc 2020; 21:327-333. [PMID: 34093735 PMCID: PMC8142102 DOI: 10.1177/1751143720915666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The use of lower tidal volume ventilation was shown to improve survival in mechanically ventilated patients with acute lung injury. In some patients this strategy may cause hypercapnic acidosis. A significant body of recent clinical data suggest that hypercapnic acidosis is associated with adverse clinical outcomes including increased hospital mortality. We aimed to review the available treatment options that may be used to manage acute hypercapnic acidosis that may be seen with low tidal volume ventilation. The databases of MEDLINE and EMBASE were searched. Studies including animals or tissues were excluded. We also searched bibliographic references of relevant studies, irrespective of study design with the intention of finding relevant studies to be included in this review. The possible options to treat hypercapnia included optimising the use of low tidal volume mechanical ventilation to enhance carbon dioxide elimination. These include techniques to reduce dead space ventilation, and physiological dead space, use of buffers, airway pressure release ventilation and prone positon ventilation. In patients where hypercapnic acidosis could not be managed with lung protective mechanical ventilation, extracorporeal techniques may be used. Newer, minimally invasive low volume venovenous extracorporeal devices are currently being investigated for managing hypercapnia associated with low and ultra-low volume mechanical ventilation.
Collapse
Affiliation(s)
- Ravindranath Tiruvoipati
- Department of Intensive Care Medicine, Frankston Hospital, Frankston, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
- ANZIC-RC, Department of Epidemiology & Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- Ravindranath Tiruvoipati, Department of Intensive Care Medicine, Frankston Hospital, Frankston, Victoria 3199, Australia.
| | - Sachin Gupta
- Department of Intensive Care Medicine, Frankston Hospital, Frankston, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - David Pilcher
- ANZIC-RC, Department of Epidemiology & Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- The ANZICS Centre for Outcome and Resource Evaluation (ANZICS CORE), Melbourne, Australia
- Department of Intensive Care, The Alfred Hospital, Melbourne, Australia
| | - Michael Bailey
- ANZIC-RC, Department of Epidemiology & Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- The ANZICS Centre for Outcome and Resource Evaluation (ANZICS CORE), Melbourne, Australia
| |
Collapse
|
27
|
Physiological effects of adding ECCO 2R to invasive mechanical ventilation for COPD exacerbations. Ann Intensive Care 2020; 10:126. [PMID: 32990836 PMCID: PMC7523267 DOI: 10.1186/s13613-020-00743-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/18/2020] [Indexed: 11/13/2022] Open
Abstract
Background Extracorporeal CO2 removal (ECCO2R) could be a valuable additional modality for invasive mechanical ventilation (IMV) in COPD patients suffering from severe acute exacerbation (AE). We aimed to evaluate in such patients the effects of a low-to-middle extracorporeal blood flow device on both gas exchanges and dynamic hyperinflation, as well as on work of breathing (WOB) during the IMV weaning process. Study design and methods Open prospective interventional study in 12 deeply sedated IMV AE-COPD patients studied before and after ECCO2R initiation. Gas exchange and dynamic hyperinflation were compared after stabilization without and with ECCO2R (Hemolung, Alung, Pittsburgh, USA) combined with a specific adjustment algorithm of the respiratory rate (RR) designed to improve arterial pH. When possible, WOB with and without ECCO2R was measured at the end of the weaning process. Due to study size, results are expressed as median (IQR) and a non-parametric approach was adopted. Results An improvement in PaCO2, from 68 (63; 76) to 49 (46; 55) mmHg, p = 0.0005, and in pH, from 7.25 (7.23; 7.29) to 7.35 (7.32; 7.40), p = 0.0005, was observed after ECCO2R initiation and adjustment of respiratory rate, while intrinsic PEEP and Functional Residual Capacity remained unchanged, from 9.0 (7.0; 10.0) to 8.0 (5.0; 9.0) cmH2O and from 3604 (2631; 4850) to 3338 (2633; 4848) mL, p = 0.1191 and p = 0.3013, respectively. WOB measurements were possible in 5 patients, indicating near-significant higher values after stopping ECCO2R: 11.7 (7.5; 15.0) versus 22.6 (13.9; 34.7) Joules/min., p = 0.0625 and 1.1 (0.8; 1.4) versus 1.5 (0.9; 2.8) Joules/L, p = 0.0625. Three patients died in-ICU. Other patients were successfully hospital-discharged. Conclusions Using a formalized protocol of RR adjustment, ECCO2R permitted to effectively improve pH and diminish PaCO2 at the early phase of IMV in 12 AE-COPD patients, but not to diminish dynamic hyperinflation in the whole group. A trend toward a decrease in WOB was also observed during the weaning process. Trial registration ClinicalTrials.gov: Identifier: NCT02586948.
Collapse
|
28
|
Combes A, Auzinger G, Capellier G, du Cheyron D, Clement I, Consales G, Dabrowski W, De Bels D, de Molina Ortiz FJG, Gottschalk A, Hilty MP, Pestaña D, Sousa E, Tully R, Goldstein J, Harenski K. ECCO 2R therapy in the ICU: consensus of a European round table meeting. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:490. [PMID: 32768001 PMCID: PMC7412288 DOI: 10.1186/s13054-020-03210-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/28/2020] [Indexed: 01/19/2023]
Abstract
Background With recent advances in technology, patients with acute respiratory distress syndrome (ARDS) and severe acute exacerbations of chronic obstructive pulmonary disease (ae-COPD) could benefit from extracorporeal CO2 removal (ECCO2R). However, current evidence in these indications is limited. A European ECCO2R Expert Round Table Meeting was convened to further explore the potential for this treatment approach. Methods A modified Delphi-based method was used to collate European experts’ views to better understand how ECCO2R therapy is applied, identify how patients are selected and how treatment decisions are made, as well as to identify any points of consensus. Results Fourteen participants were selected based on known clinical expertise in critical care and in providing respiratory support with ECCO2R or extracorporeal membrane oxygenation. ARDS was considered the primary indication for ECCO2R therapy (n = 7), while 3 participants considered ae-COPD the primary indication. The group agreed that the primary treatment goal of ECCO2R therapy in patients with ARDS was to apply ultra-protective lung ventilation via managing CO2 levels. Driving pressure (≥ 14 cmH2O) followed by plateau pressure (Pplat; ≥ 25 cmH2O) was considered the most important criteria for ECCO2R initiation. Key treatment targets for patients with ARDS undergoing ECCO2R included pH (> 7.30), respiratory rate (< 25 or < 20 breaths/min), driving pressure (< 14 cmH2O) and Pplat (< 25 cmH2O). In ae-COPD, there was consensus that, in patients at risk of non-invasive ventilation (NIV) failure, no decrease in PaCO2 and no decrease in respiratory rate were key criteria for initiating ECCO2R therapy. Key treatment targets in ae-COPD were patient comfort, pH (> 7.30–7.35), respiratory rate (< 20–25 breaths/min), decrease of PaCO2 (by 10–20%), weaning from NIV, decrease in HCO3− and maintaining haemodynamic stability. Consensus was reached on weaning protocols for both indications. Anticoagulation with intravenous unfractionated heparin was the strategy preferred by the group. Conclusions Insights from this group of experienced physicians suggest that ECCO2R therapy may be an effective supportive treatment for adults with ARDS or ae-COPD. Further evidence from randomised clinical trials and/or high-quality prospective studies is needed to better guide decision making.
Collapse
Affiliation(s)
- Alain Combes
- Sorbonne Université, INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, 47, Boulevard de l'Hôpital, F-75013, Paris, France. .,Service de Médecine Intensive-Réanimation, Institut de Cardiologie, APHP Hôpital Pitié-Salpêtrière, F-75013, Paris, France.
| | - Georg Auzinger
- Department of Critical Care, King's College Hospital, London, SE5 9RS, UK.,Department of Critical Care, Cleveland Clinic, London, SW1Y 7AW, UK
| | - Gilles Capellier
- Service de Médecine Intensive-Réanimation CHRU Besançon, EA 3920 University of Franche Comte, Besançon, France.,Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Damien du Cheyron
- Service de Médecine Intensive-Réanimation, Caen University Hospital, 14000, Caen, France
| | - Ian Clement
- Critical Care Unit, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
| | - Guglielmo Consales
- Department Emergency and Critical Care, Prato Hospital, Azienda Toscana Centro, Prato, Italy
| | - Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, Jaczewskiego Street 8, 20-954, Lublin, Poland
| | - David De Bels
- Service des Soins Intensifs Médico-chirurgicaux, CHU Brugmann, 4 Place A Van Gehuchten, 1020, Brussels, Belgium
| | - Francisco Javier González de Molina Ortiz
- Department of Critical Care, University Hospital Mútua Terrassa, Universitat de Barcelona, Terrassa, Barcelona, Spain.,Department of Critical Care, University Hospital Quirón Dexeus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antje Gottschalk
- Department of Anaesthesiology, Intensive Care Medicine and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Matthias P Hilty
- Institute of Intensive Care Medicine, University Hospital of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - David Pestaña
- Department of Anesthesiology and Surgical Critical Care, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo km 9, 28034, Madrid, Spain.,Universidad de Alcalá de Henares, Madrid, Spain
| | - Eduardo Sousa
- Serviço de Medicina Intensiva, Centro Hospitalar e Universitário de Coimbra, Praceta Mota Pinto, 3000-075, Coimbra, Portugal
| | - Redmond Tully
- Department of Intensive Care, Royal Oldham Hospital, Northern Care Alliance, Oldham, OL1 2JH, UK
| | - Jacques Goldstein
- Baxter World Trade SPRL, Acute Therapies Global, Braine-l'Alleud, Belgium
| | - Kai Harenski
- Baxter, Baxter Deutschland GmbH, Unterschleissheim, Germany
| |
Collapse
|
29
|
Staudinger T. Update on extracorporeal carbon dioxide removal: a comprehensive review on principles, indications, efficiency, and complications. Perfusion 2020; 35:492-508. [PMID: 32156179 DOI: 10.1177/0267659120906048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
TECHNOLOGY Extracorporeal carbon dioxide removal means the removal of carbon dioxide from the blood across a gas exchange membrane without substantially improving oxygenation. Carbon dioxide removal is possible with substantially less extracorporeal blood flow than needed for oxygenation. Techniques for extracorporeal carbon dioxide removal include (1) pumpless arterio-venous circuits, (2) low-flow venovenous circuits based on the technology of continuous renal replacement therapy, and (3) venovenous circuits based on extracorporeal membrane oxygenation technology. INDICATIONS Extracorporeal carbon dioxide removal has been shown to enable more protective ventilation in acute respiratory distress syndrome patients, even beyond the so-called "protective" level. Although experimental data suggest a benefit on ventilator induced lung injury, no hard clinical evidence with respect to improved outcome exists. In addition, extracorporeal carbon dioxide removal is a tool to avoid intubation and mechanical ventilation in patients with acute exacerbated chronic obstructive pulmonary disease failing non-invasive ventilation. This concept has been shown to be effective in 56-90% of patients. Extracorporeal carbon dioxide removal has also been used in ventilated patients with hypercapnic respiratory failure to correct acidosis, unload respiratory muscle burden, and facilitate weaning. In patients suffering from terminal fibrosis awaiting lung transplantation, extracorporeal carbon dioxide removal is able to correct acidosis and enable spontaneous breathing during bridging. Keeping these patients awake, ambulatory, and breathing spontaneously is associated with favorable outcome. COMPLICATIONS Complications of extracorporeal carbon dioxide removal are mostly associated with vascular access and deranged hemostasis leading to bleeding. Although the spectrum of complications may differ, no technology offers advantages with respect to rate and severity of complications. So called "high-extraction systems" working with higher blood flows and larger membranes may be more effective with respect to clinical goals.
Collapse
Affiliation(s)
- Thomas Staudinger
- Department of Medicine I, Intensive Care Unit, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| |
Collapse
|
30
|
Abrams D, Schmidt M, Pham T, Beitler JR, Fan E, Goligher EC, McNamee JJ, Patroniti N, Wilcox ME, Combes A, Ferguson ND, McAuley DF, Pesenti A, Quintel M, Fraser J, Hodgson CL, Hough CL, Mercat A, Mueller T, Pellegrino V, Ranieri VM, Rowan K, Shekar K, Brochard L, Brodie D. Mechanical Ventilation for Acute Respiratory Distress Syndrome during Extracorporeal Life Support. Research and Practice. Am J Respir Crit Care Med 2020; 201:514-525. [DOI: 10.1164/rccm.201907-1283ci] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Darryl Abrams
- Columbia University College of Physicians & Surgeons/New York-Presbyterian Hospital, New York, New York
- Center for Acute Respiratory Failure, Columbia University Medical Center, New York, New York
| | - Matthieu Schmidt
- INSERM, UMRS_1166-ICAN, Sorbonne Université, Paris, France
- Service de Médecine Intensive-Réanimation, Institut de Cardiologie, Assistance Publique–Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Tài Pham
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
- Service de Médecine Intensive-Réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicêtre, France
| | - Jeremy R. Beitler
- Columbia University College of Physicians & Surgeons/New York-Presbyterian Hospital, New York, New York
- Center for Acute Respiratory Failure, Columbia University Medical Center, New York, New York
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, University Health Network, Toronto General Hospital, Toronto, Ontario, Canada
| | - Ewan C. Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, University Health Network, Toronto General Hospital, Toronto, Ontario, Canada
| | - James J. McNamee
- Centre for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
- Regional Intensive Care Unit, Royal Victoria Hospital, Belfast, United Kingdom
| | - Nicolò Patroniti
- Anaesthesia and Intensive Care, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) for Oncology, San Martino Policlinico Hospital, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - M. Elizabeth Wilcox
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, University Health Network, Toronto General Hospital, Toronto, Ontario, Canada
| | - Alain Combes
- INSERM, UMRS_1166-ICAN, Sorbonne Université, Paris, France
- Service de Médecine Intensive-Réanimation, Institut de Cardiologie, Assistance Publique–Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Niall D. Ferguson
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, University Health Network, Toronto General Hospital, Toronto, Ontario, Canada
| | - Danny F. McAuley
- Centre for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
- Regional Intensive Care Unit, Royal Victoria Hospital, Belfast, United Kingdom
| | - Antonio Pesenti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Anesthesia, Critical Care and Emergency Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milan, Milan, Italy
| | - Michael Quintel
- Department of Anesthesiology, University Medical Center, Georg August University, Goettingen, Germany
| | - John Fraser
- Critical Care Research Group, Prince Charles Hospital, Brisbane, Australia
- University of Queensland, Brisbane, Australia
| | - Carol L. Hodgson
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
- Physiotherapy Department and
| | - Catherine L. Hough
- Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington
| | - Alain Mercat
- Département de Médecine Intensive-Réanimation et Médecine Hyperbare, Centre Hospitalier Universitaire d’Angers, Université d’Angers, Angers, France
| | - Thomas Mueller
- Department of Internal Medicine II, University Hospital of Regensburg, Regensburg, Germany
| | - Vin Pellegrino
- Intensive Care Unit, The Alfred Hospital, Melbourne, Australia
| | - V. Marco Ranieri
- Alma Mater Studiorum–Dipartimento di Scienze Mediche e Chirurgiche, Anesthesia and Intensive Care Medicine, Policlinico di Sant’Orsola, Università di Bologna, Bologna, Italy; and
| | - Kathy Rowan
- Clinical Trials Unit, Intensive Care National Audit & Research Centre, London, United Kingdom
| | - Kiran Shekar
- Critical Care Research Group, Prince Charles Hospital, Brisbane, Australia
- University of Queensland, Brisbane, Australia
| | - Laurent Brochard
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Daniel Brodie
- Columbia University College of Physicians & Surgeons/New York-Presbyterian Hospital, New York, New York
- Center for Acute Respiratory Failure, Columbia University Medical Center, New York, New York
| |
Collapse
|
31
|
Leypoldt JK, Goldstein J, Pouchoulin D, Harenski K. Extracorporeal carbon dioxide removal requirements for ultraprotective mechanical ventilation: Mathematical model predictions. Artif Organs 2019; 44:488-496. [PMID: 31769043 PMCID: PMC7187447 DOI: 10.1111/aor.13601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/02/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022]
Abstract
Extracorporeal carbon dioxide (CO2) removal (ECCO2R) facilitates the use of low tidal volumes during protective or ultraprotective mechanical ventilation when managing patients with acute respiratory distress syndrome (ARDS); however, the rate of ECCO2R required to avoid hypercapnia remains unclear. We calculated ECCO2R rate requirements to maintain arterial partial pressure of CO2 (PaCO2) at clinically desirable levels in mechanically ventilated ARDS patients using a six‐compartment mathematical model of CO2 and oxygen (O2) biochemistry and whole‐body transport with the inclusion of an ECCO2R device for extracorporeal veno‐venous removal of CO2. The model assumes steady state conditions. Model compartments were lung capillary blood, arterial blood, venous blood, post‐ECCO2R venous blood, interstitial fluid and tissue cells, with CO2 and O2 distribution within each compartment; biochemistry included equilibrium among bicarbonate and non‐bicarbonate buffers and CO2 and O2 binding to hemoglobin to elucidate Bohr and Haldane effects. O2 consumption and CO2 production rates were assumed proportional to predicted body weight (PBW) and adjusted to achieve reported arterial partial pressure of O2 and a PaCO2 level of 46 mmHg at a tidal volume of 7.6 mL/kg PBW in the absence of an ECCO2R device based on average data from LUNG SAFE. Model calculations showed that ECCO2R rates required to achieve mild permissive hypercapnia (PaCO2 of 46 mmHg) at a ventilation frequency or respiratory rate of 20.8/min during mechanical ventilation increased when tidal volumes decreased from 7.6 to 3 mL/kg PBW. Higher ECCO2R rates were required to achieve normocapnia (PaCO2 of 40 mmHg). Model calculations also showed that required ECCO2R rates were lower when ventilation frequencies were increased from 20.8/min to 26/min. The current mathematical model predicts that ECCO2R rates resulting in clinically desirable PaCO2 levels at tidal volumes of 5‐6 mL/kg PBW can likely be achieved in mechanically ventilated ARDS patients with current technologies; use of ultraprotective tidal volumes (3‐4 mL/kg PBW) may be challenging unless high mechanical ventilation frequencies are used.
Collapse
Affiliation(s)
- John Kenneth Leypoldt
- Polish Academy of Sciences, Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | | | | | - Kai Harenski
- Baxter Deutschland GmbH, Unterschleissheim, Germany
| |
Collapse
|