1
|
Gilchrist JM, Yang ND, Jiang V, Moyer BD. Pharmacologic Characterization of LTGO-33, a Selective Small Molecule Inhibitor of the Voltage-Gated Sodium Channel Na V1.8 with a Unique Mechanism of Action. Mol Pharmacol 2024; 105:233-249. [PMID: 38195157 DOI: 10.1124/molpharm.123.000789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Discovery and development of new molecules directed against validated pain targets is required to advance the treatment of pain disorders. Voltage-gated sodium channels (NaVs) are responsible for action potential initiation and transmission of pain signals. NaV1.8 is specifically expressed in peripheral nociceptors and has been genetically and pharmacologically validated as a human pain target. Selective inhibition of NaV1.8 can ameliorate pain while minimizing effects on other NaV isoforms essential for cardiac, respiratory, and central nervous system physiology. Here we present the pharmacology, interaction site, and mechanism of action of LTGO-33, a novel NaV1.8 small molecule inhibitor. LTGO-33 inhibited NaV1.8 in the nM potency range and exhibited over 600-fold selectivity against human NaV1.1-NaV1.7 and NaV1.9. Unlike prior reported NaV1.8 inhibitors that preferentially interacted with an inactivated state via the pore region, LTGO-33 was state-independent with similar potencies against closed and inactivated channels. LTGO-33 displayed species specificity for primate NaV1.8 over dog and rodent NaV1.8 and inhibited action potential firing in human dorsal root ganglia neurons. Using chimeras combined with mutagenesis, the extracellular cleft of the second voltage-sensing domain was identified as the key site required for channel inhibition. Biophysical mechanism of action studies demonstrated that LTGO-33 inhibition was relieved by membrane depolarization, suggesting the molecule stabilized the deactivated state to prevent channel opening. LTGO-33 equally inhibited wild-type and multiple NaV1.8 variants associated with human pain disorders. These collective results illustrate LTGO-33 inhibition via both a novel interaction site and mechanism of action previously undescribed in NaV1.8 small molecule pharmacologic space. SIGNIFICANCE STATEMENT: NaV1.8 sodium channels primarily expressed in peripheral pain-sensing neurons represent a validated target for the development of novel analgesics. Here we present the selective small molecule NaV1.8 inhibitor LTGO-33 that interdicts a distinct site in a voltage-sensor domain to inhibit channel opening. These results inform the development of new analgesics for pain disorders.
Collapse
Affiliation(s)
| | - Nien-Du Yang
- Latigo Biotherapeutics, Inc., Thousand Oaks, California
| | | | - Bryan D Moyer
- Latigo Biotherapeutics, Inc., Thousand Oaks, California
| |
Collapse
|
2
|
Adalbert R, Cahalan S, Hopkins EL, Almuhanna A, Loreto A, Pór E, Körmöczy L, Perkins J, Coleman MP, Piercy RJ. Cultured dissociated primary dorsal root ganglion neurons from adult horses enable study of axonal transport. J Anat 2022; 241:1211-1218. [PMID: 35728923 PMCID: PMC9558156 DOI: 10.1111/joa.13719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Neurological disorders are prevalent in horses, but their study is challenging due to anatomic constraints and the large body size; very few host‐specific in vitro models have been established to study these types of diseases, particularly from adult donor tissue. Here we report the generation of primary neuronal dorsal root ganglia (DRG) cultures from adult horses: the mixed, dissociated cultures, containing neurons and glial cells, remained viable for at least 90 days. Similar to DRG neurons in vivo, cultured neurons varied in size, and they developed long neurites. The mitochondrial movement was detected in cultured cells and was significantly slower in glial cells compared to DRG‐derived neurons. In addition, mitochondria were more elongated in glial cells than those in neurons. Our culture model will be a useful tool to study the contribution of axonal transport defects to specific neurodegenerative diseases in horses as well as comparative studies aimed at evaluating species‐specific differences in axonal transport and survival.
Collapse
Affiliation(s)
- Robert Adalbert
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, UK.,Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Stephen Cahalan
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, UK
| | - Eleanor L Hopkins
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Abdulaziz Almuhanna
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, UK
| | - Andrea Loreto
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Andrea Loreto, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Erzsébet Pór
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Laura Körmöczy
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Justin Perkins
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, UK
| | - Michael P Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Richard J Piercy
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, UK
| |
Collapse
|
3
|
Evidence of p75 Neurotrophin Receptor Involvement in the Central Nervous System Pathogenesis of Classical Scrapie in Sheep and a Transgenic Mouse Model. Int J Mol Sci 2021; 22:ijms22052714. [PMID: 33800240 PMCID: PMC7962525 DOI: 10.3390/ijms22052714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 11/17/2022] Open
Abstract
Neurotrophins constitute a group of growth factor that exerts important functions in the nervous system of vertebrates. They act through two classes of transmembrane receptors: tyrosine-kinase receptors and the p75 neurotrophin receptor (p75NTR). The activation of p75NTR can favor cell survival or apoptosis depending on diverse factors. Several studies evidenced a link between p75NTR and the pathogenesis of prion diseases. In this study, we investigated the distribution of several neurotrophins and their receptors, including p75NTR, in the brain of naturally scrapie-affected sheep and experimentally infected ovinized transgenic mice and its correlation with other markers of prion disease. No evident changes in infected mice or sheep were observed regarding neurotrophins and their receptors except for the immunohistochemistry against p75NTR. Infected mice showed higher abundance of p75NTR immunostained cells than their non-infected counterparts. The astrocytic labeling correlated with other neuropathological alterations of prion disease. Confocal microscopy demonstrated the co-localization of p75NTR and the astrocytic marker GFAP, suggesting an involvement of astrocytes in p75NTR-mediated neurodegeneration. In contrast, p75NTR staining in sheep lacked astrocytic labeling. However, digital image analyses revealed increased labeling intensities in preclinical sheep compared with non-infected and terminal sheep in several brain nuclei. This suggests that this receptor is overexpressed in early stages of prion-related neurodegeneration in sheep. Our results confirm a role of p75NTR in the pathogenesis of classical ovine scrapie in both the natural host and in an experimental transgenic mouse model.
Collapse
|
4
|
Neurotrophic effects of G M1 ganglioside, NGF, and FGF2 on canine dorsal root ganglia neurons in vitro. Sci Rep 2020; 10:5380. [PMID: 32214122 PMCID: PMC7096396 DOI: 10.1038/s41598-020-61852-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/04/2020] [Indexed: 01/26/2023] Open
Abstract
Dogs share many chronic morbidities with humans and thus represent a powerful model for translational research. In comparison to rodents, the canine ganglioside metabolism more closely resembles the human one. Gangliosides are components of the cell plasma membrane playing a role in neuronal development, intercellular communication and cellular differentiation. The present in vitro study aimed to characterize structural and functional changes induced by GM1 ganglioside (GM1) in canine dorsal root ganglia (DRG) neurons and interactions of GM1 with nerve growth factor (NGF) and fibroblast growth factor (FGF2) using immunofluorescence for several cellular proteins including neurofilaments, synaptophysin, and cleaved caspase 3, transmission electron microscopy, and electrophysiology. GM1 supplementation resulted in increased neurite outgrowth and neuronal survival. This was also observed in DRG neurons challenged with hypoxia mimicking neurodegenerative conditions due to disruptions of energy homeostasis. Immunofluorescence indicated an impact of GM1 on neurofilament phosphorylation, axonal transport, and synaptogenesis. An increased number of multivesicular bodies in GM1 treated neurons suggested metabolic changes. Electrophysiological changes induced by GM1 indicated an increased neuronal excitability. Summarized, GM1 has neurotrophic and neuroprotective effects on canine DRG neurons and induces functional changes. However, further studies are needed to clarify the therapeutic value of gangliosides in neurodegenerative diseases.
Collapse
|
5
|
Ganchingco JRC, Fukuyama T, Yoder JA, Bäumer W. Calcium imaging of primary canine sensory neurons: Small-diameter neurons responsive to pruritogens and algogens. Brain Behav 2019; 9:e01428. [PMID: 31571393 PMCID: PMC6908857 DOI: 10.1002/brb3.1428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/28/2019] [Accepted: 08/31/2019] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Rodent primary sensory neurons are commonly used for studying itch and pain neurophysiology, but translation from rodents to larger mammals and humans is not direct and requires further validation to make correlations. METHODS This study developed a primary canine sensory neuron culture from dorsal root ganglia (DRG) excised from cadaver dogs. Additionally, the canine DRG cell cultures developed were used for single-cell ratiometric calcium imaging, with the activation of neurons to the following pruritogenic and algogenic substances: histamine, chloroquine, canine protease-activated receptor 2 (PAR2) activating peptide (SLIGKT), compound 48/80, 5-hydroxytryptamine receptor agonist (5-HT), bovine adrenal medulla peptide (BAM8-22), substance P, allyl isothiocyanate (AITC), and capsaicin. RESULTS This study demonstrates a simple dissection and rapid processing of DRG collected from canine cadavers used to create viable primary sensory neuron cultures to measure responses to pruritogens and algogens. CONCLUSION Ratiometric calcium imaging demonstrated that small-diameter canine sensory neurons can be activated by multiple stimuli, and a single neuron can react to both a pruritogenic stimulation and an algogenic stimulation.
Collapse
Affiliation(s)
- Joy Rachel C Ganchingco
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA
| | - Tomoki Fukuyama
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA.,Laboratory of Veterinary Pharmacology, Azabu University, Kanagawa, Japan
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA
| | - Wolfgang Bäumer
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA.,Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Schwarz S, Spitzbarth I, Baumgärtner W, Lehmbecker A. Cryopreservation of Canine Primary Dorsal Root Ganglion Neurons and Its Impact upon Susceptibility to Paramyxovirus Infection. Int J Mol Sci 2019; 20:ijms20051058. [PMID: 30823498 PMCID: PMC6429404 DOI: 10.3390/ijms20051058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 12/26/2022] Open
Abstract
Canine dorsal root ganglion (DRG) neurons, isolated post mortem from adult dogs, could provide a promising tool to study neuropathogenesis of neurotropic virus infections with a non-rodent host spectrum. However, access to canine DRG is limited due to lack of donor tissue and the cryopreservation of DRG neurons would greatly facilitate experiments. The present study aimed (i) to establish canine DRG neurons as an in vitro model for canine distemper virus (CDV) infection; and (ii) to determine whether DRG neurons are cryopreservable and remain infectable with CDV. Neurons were characterized morphologically and phenotypically by light microscopy, immunofluorescence, and functionally, by studying their neurite outgrowth and infectability with CDV. Cryopreserved canine DRG neurons remained in culture for at least 12 days. Furthermore, both non-cryopreserved and cryopreserved DRG neurons were susceptible to infection with two different strains of CDV, albeit only one of the two strains (CDV R252) provided sufficient absolute numbers of infected neurons. However, cryopreserved DRG neurons showed reduced cell yield, neurite outgrowth, neurite branching, and soma size and reduced susceptibility to CDV infection. In conclusion, canine primary DRG neurons represent a suitable tool for investigations upon the pathogenesis of neuronal CDV infection. Moreover, despite certain limitations, cryopreserved canine DRG neurons generally provide a useful and practicable alternative to address questions regarding virus tropism and neuropathogenesis.
Collapse
Affiliation(s)
- Sarah Schwarz
- Department of Pathology, University of Veterinary Medicine, 30559 Hannover, Germany.
- Center for Systems Neuroscience, 30559 Hannover, Germany.
| | - Ingo Spitzbarth
- Department of Pathology, University of Veterinary Medicine, 30559 Hannover, Germany.
- Center for Systems Neuroscience, 30559 Hannover, Germany.
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine, 30559 Hannover, Germany.
- Center for Systems Neuroscience, 30559 Hannover, Germany.
| | - Annika Lehmbecker
- Department of Pathology, University of Veterinary Medicine, 30559 Hannover, Germany.
- Center for Systems Neuroscience, 30559 Hannover, Germany.
| |
Collapse
|
7
|
Becker K, Cana A, Baumgärtner W, Spitzbarth I. p75 Neurotrophin Receptor: A Double-Edged Sword in Pathology and Regeneration of the Central Nervous System. Vet Pathol 2018; 55:786-801. [PMID: 29940812 DOI: 10.1177/0300985818781930] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The low-affinity nerve growth factor receptor p75NTR is a major neurotrophin receptor involved in manifold and pleiotropic functions in the developing and adult central nervous system (CNS). Although known for decades, its entire functions are far from being fully elucidated. Depending on the complex interactions with other receptors and on the cellular context, p75NTR is capable of performing contradictory tasks such as mediating cell death as well as cell survival. In parallel, as a prototype marker for certain differentiation stages of Schwann cells and related CNS aldynoglial cells, p75NTR has recently gained increasing notice as a marker for cells with proposed regenerative potential in CNS diseases, such as demyelinating disease and traumatic CNS injury. Besides its pivotal role as a marker for transplantation candidate cells, recent studies in canine neuroinflammatory CNS conditions also highlight a spontaneous endogenous occurrence of p75NTR-positive glia, which potentially play a role in Schwann cell-mediated CNS remyelination. The aim of the present communication is to review the pleiotropic functions of p75NTR in the CNS with a special emphasis on its role as an immunohistochemical marker in neuropathology. Following a brief illustration of the expression of p75NTR in neurogenesis and in developed neuronal populations, the implications of p75NTR expression in astrocytes, oligodendrocytes, and microglia are addressed. A special focus is put on the role of p75NTR as a cell marker for specific differentiation stages of Schwann cells and a regeneration-promoting CNS population, collectively referred to as aldynoglia.
Collapse
Affiliation(s)
- Kathrin Becker
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Armend Cana
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,2 Center for Systems Neuroscience, Hannover, Germany
| | - Wolfgang Baumgärtner
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,2 Center for Systems Neuroscience, Hannover, Germany
| | - Ingo Spitzbarth
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,2 Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
8
|
Canine dorsal root ganglia satellite glial cells represent an exceptional cell population with astrocytic and oligodendrocytic properties. Sci Rep 2017; 7:13915. [PMID: 29066783 PMCID: PMC5654978 DOI: 10.1038/s41598-017-14246-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/06/2017] [Indexed: 12/21/2022] Open
Abstract
Dogs can be used as a translational animal model to close the gap between basic discoveries in rodents and clinical trials in humans. The present study compared the species-specific properties of satellite glial cells (SGCs) of canine and murine dorsal root ganglia (DRG) in situ and in vitro using light microscopy, electron microscopy, and immunostainings. The in situ expression of CNPase, GFAP, and glutamine synthetase (GS) has also been investigated in simian SGCs. In situ, most canine SGCs (>80%) expressed the neural progenitor cell markers nestin and Sox2. CNPase and GFAP were found in most canine and simian but not murine SGCs. GS was detected in 94% of simian and 71% of murine SGCs, whereas only 44% of canine SGCs expressed GS. In vitro, most canine (>84%) and murine (>96%) SGCs expressed CNPase, whereas GFAP expression was differentially affected by culture conditions and varied between 10% and 40%. However, GFAP expression was induced by bone morphogenetic protein 4 in SGCs of both species. Interestingly, canine SGCs also stimulated neurite formation of DRG neurons. These findings indicate that SGCs represent an exceptional, intermediate glial cell population with phenotypical characteristics of oligodendrocytes and astrocytes and might possess intrinsic regenerative capabilities in vivo.
Collapse
|
9
|
Steffensen N, Lehmbecker A, Gerhauser I, Wang Y, Carlson R, Tipold A, Baumgärtner W, Stein VM. Generation and characterization of highly purified canine Schwann cells from spinal nerve dorsal roots as potential new candidates for transplantation strategies. J Tissue Eng Regen Med 2017; 12:e422-e437. [DOI: 10.1002/term.2478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/06/2017] [Accepted: 05/09/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Nicole Steffensen
- Department of Small Animal Medicine and Surgery; University of Veterinary Medicine; Hannover Germany
| | - Annika Lehmbecker
- Department of Pathology; University of Veterinary Medicine; Hannover Germany
- Center for Systems Neuroscience; Hannover Germany
| | - Ingo Gerhauser
- Department of Pathology; University of Veterinary Medicine; Hannover Germany
| | - Yimin Wang
- Department of Pathology; University of Veterinary Medicine; Hannover Germany
- Center for Systems Neuroscience; Hannover Germany
| | - Regina Carlson
- Department of Small Animal Medicine and Surgery; University of Veterinary Medicine; Hannover Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery; University of Veterinary Medicine; Hannover Germany
- Center for Systems Neuroscience; Hannover Germany
| | - Wolfgang Baumgärtner
- Department of Pathology; University of Veterinary Medicine; Hannover Germany
- Center for Systems Neuroscience; Hannover Germany
| | - Veronika M. Stein
- Department of Small Animal Medicine and Surgery; University of Veterinary Medicine; Hannover Germany
| |
Collapse
|
10
|
Fadda A, Bärtschi M, Hemphill A, Widmer HR, Zurbriggen A, Perona P, Vidondo B, Oevermann A. Primary Postnatal Dorsal Root Ganglion Culture from Conventionally Slaughtered Calves. PLoS One 2016; 11:e0168228. [PMID: 27936156 PMCID: PMC5148591 DOI: 10.1371/journal.pone.0168228] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022] Open
Abstract
Neurological disorders in ruminants have an important impact on veterinary health, but very few host-specific in vitro models have been established to study diseases affecting the nervous system. Here we describe a primary neuronal dorsal root ganglia (DRG) culture derived from calves after being conventionally slaughtered for food consumption. The study focuses on the in vitro characterization of bovine DRG cell populations by immunofluorescence analysis. The effects of various growth factors on neuron viability, neurite outgrowth and arborisation were evaluated by morphological analysis. Bovine DRG neurons are able to survive for more than 4 weeks in culture. GF supplementation is not required for neuronal survival and neurite outgrowth. However, exogenously added growth factors promote neurite outgrowth. DRG cultures from regularly slaughtered calves represent a promising and sustainable host specific model for the investigation of pain and neurological diseases in bovines.
Collapse
Affiliation(s)
- A. Fadda
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, Theodor Kocher Institute, University of Bern, Switzerland
| | - M. Bärtschi
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - A. Hemphill
- Institute for Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - H. R. Widmer
- Neurocenter and Regenerative Neuroscience Cluster, University Hospital and University of Bern, Bern, Switzerland
| | - A. Zurbriggen
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - P. Perona
- School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
| | - B. Vidondo
- Veterinary Public Health Institute (VPHI), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - A. Oevermann
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
11
|
Spitzbarth I, Cana A, Hahn K, Hansmann F, Baumgärtner W. Associated occurrence of p75 neurotrophin receptor expressing aldynoglia and microglia/macrophages in long term organotypic murine brain slice cultures. Brain Res 2014; 1595:29-42. [PMID: 25446435 DOI: 10.1016/j.brainres.2014.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/03/2014] [Accepted: 11/07/2014] [Indexed: 11/17/2022]
Abstract
Growth-promoting aldynoglia, characterized by the expression of the prototype immature Schwann cell marker p75 neurotrophin receptor (NTR) have been shown to occur in some demyelinating diseases. However, the mechanisms determining the emergence and fate of such cells are largely unknown. This study aimed at the identification of such cells and potential triggering factors using an in vitro slice culture approach. Organotypic cerebrum and brain stem slices of adult mice were cultivated for up to 18 days in vitro. Immunohistochemistry for the detection of p75(NTR), CD107b, periaxin, growth associated protein (GAP)-43, and glial fibrillary acidic protein (GFAP) was performed. The results for p75(NTR) were substantiated by the use of in situ hybridization. Cultivation was associated with a progressively increasing spontaneous occurrence of bi- to multipolar p75(NTR)-positive, but periaxin-negative glia, indicative of aldynoglial Schwann cell like cells. Similar cells stained intensely positive for GAP-43, a marker for non-myelinating Schwann cells. The number of p75(NTR) positive glia did not correlate with GFAP expression, but showed a strong correlation with a remarkable spontaneous response of CD107b positive phagocytic microglia/macrophages. Moreover, aldynoglial p75(NTR) immunoreactivity negatively correlated to neuronal p75(NTR) expression, which was lost during culturing. The present results demonstrate that the cultivation of organotypic murine brain slices is accompanied by a spontaneous response of both microglia/macrophages and p75(NTR) positive cells, suggestive of Schwann cell like aldynoglia. The findings highlights the role of microglia/macrophages, which seem to be an important triggering factor, facilitating the occurrence of this unique type of macroglia.
Collapse
Affiliation(s)
- I Spitzbarth
- Department of Pathology, University of Veterinary Medicine, Buenteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - A Cana
- Department of Pathology, University of Veterinary Medicine, Buenteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - K Hahn
- Department of Pathology, University of Veterinary Medicine, Buenteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - F Hansmann
- Department of Pathology, University of Veterinary Medicine, Buenteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - W Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Buenteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
12
|
Ziege S, Baumgärtner W, Wewetzer K. Toward defining the regenerative potential of olfactory mucosa: establishment of Schwann cell-free adult canine olfactory ensheathing cell preparations suitable for transplantation. Cell Transplant 2012; 22:355-67. [PMID: 23006619 DOI: 10.3727/096368912x656108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Olfactory mucosa (OM)-derived olfactory ensheathing cells (OECs) are attractive candidates for autologous cell transplantation-based therapy of nervous system injury. However, defining the regenerative capacity of OM-derived OECs is impeded by the fact that cell cultures used for transplantation may contain significant amounts of contaminating trigeminal nerve Schwann cells that escape identification by sharing in vitro expression of OEC markers. The aim of the present study, therefore, was to quantify contaminating Schwann cells in OEC preparations and to develop a protocol for their specific depletion. Based on the observation that freshly dissociated, but not cultured, OECs and Schwann cells display differential expression of HNK-1 and p75(NTR), magnet-activated cell sorting (MACS) was used to deplete myelinating (HNK-1-positive) and nonmyelinating (p75(NTR)-positive) Schwann cells from primary cell suspensions containing HNK-1-/p75(NTR)-negative OECs. Upregulation of p75(NTR) expression in OECs during culturing allowed their subsequent MACS-based separation from fibroblasts. Immunofluorescence analysis of freshly dissociated OM prior to MACS depletion revealed that 21% of the total and 56% of all CNPase-positive cells, representing both OECs and Schwann cells, expressed the Schwann cell antigens HNK-1 or p75(NTR), indicating that freshly dissociated OM prior to culturing contained as many Schwann cells as OECs, while olfactory bulb (OB) primary cell suspensions revealed lower levels of Schwann cell contamination. Interestingly, neurite growth of neonatal rat dorsal root ganglion (DRG) neurons cocultured with OM-OECs, OB-OECs, and fibular nerve (FN) Schwann cells used as control was significantly higher in the presence of OECs than of Schwann cells. The first report on identification and specific depletion of Schwann cells from OEC preparations provides a solid basis for future efforts to fully define the regenerative potential of nasal mucosa OECs.
Collapse
Affiliation(s)
- Susanne Ziege
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | | | | |
Collapse
|