1
|
Roberts E, Nuttall TJ, Gkekas G, Mellanby RJ, Fitzgerald JR, Paterson GK. Not just in man's best friend: A review of Staphylococcus pseudintermedius host range and human zoonosis. Res Vet Sci 2024; 174:105305. [PMID: 38805894 DOI: 10.1016/j.rvsc.2024.105305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024]
Abstract
Staphylococcus pseudintermedius is one species in the commensal staphylococcal population in dogs. While it is commonly carried on healthy companion dogs it is also an opportunistic pathogen associated with a range of skin, ear, wound and other infections. While adapted to dogs, it is not restricted to them, and we have reviewed its host range, including increasing reports of human colonisation and infections. Despite its association with pet dogs, S. pseudintermedius is found widely in animals, covering companion, livestock and free-living species of birds and mammals. Human infections, typically in immunocompromised individuals, are increasingly being recognised, in part due to improved diagnosis. Colonisation, infection, and antimicrobial resistance, including frequent multidrug resistance, among S. pseudintermedius isolates represent important One Health challenges.
Collapse
Affiliation(s)
- E Roberts
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - T J Nuttall
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - G Gkekas
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - R J Mellanby
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - J R Fitzgerald
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - G K Paterson
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
2
|
Abdugheni R, Li L, Yang ZN, Huang Y, Fang BZ, Shurigin V, Mohamad OAA, Liu YH, Li WJ. Microbial Risks Caused by Livestock Excrement: Current Research Status and Prospects. Microorganisms 2023; 11:1897. [PMID: 37630456 PMCID: PMC10456746 DOI: 10.3390/microorganisms11081897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Livestock excrement is a major pollutant yielded from husbandry and it has been constantly imported into various related environments. Livestock excrement comprises a variety of microorganisms including certain units with health risks and these microorganisms are transferred synchronically during the management and utilization processes of livestock excrement. The livestock excrement microbiome is extensively affecting the microbiome of humans and the relevant environments and it could be altered by related environmental factors as well. The zoonotic microorganisms, extremely zoonotic pathogens, and antibiotic-resistant microorganisms are posing threats to human health and environmental safety. In this review, we highlight the main feature of the microbiome of livestock excrement and elucidate the composition and structure of the repertoire of microbes, how these microbes transfer from different spots, and they then affect the microbiomes of related habitants as a whole. Overall, the environmental problems caused by the microbiome of livestock excrement and the potential risks it may cause are summarized from the microbial perspective and the strategies for prediction, prevention, and management are discussed so as to provide a reference for further studies regarding potential microbial risks of livestock excrement microbes.
Collapse
Affiliation(s)
- Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Ni Yang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yin Huang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Vyacheslav Shurigin
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Osama Abdalla Abdelshafy Mohamad
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Jaan S, Shah M, Ullah N, Amjad A, Javed MS, Nishan U, Mustafa G, Nawaz H, Ahmed S, Ojha SC. Multi-epitope chimeric vaccine designing and novel drug targets prioritization against multi-drug resistant Staphylococcus pseudintermedius. Front Microbiol 2022; 13:971263. [PMID: 35992654 PMCID: PMC9386485 DOI: 10.3389/fmicb.2022.971263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Biofilm synthesizing multi-drug resistant Staphylococcus pseudintermedius bacteria has been recognized as the human infectious agent. It has been detected in the diseases of skin, ear, and postoperative infections. Its infections are becoming a major health problem due to its multi-drug resistance capabilities. However, no commercial vaccine for the treatment of its infections is currently available in the market. Here we employed the subtractive proteomics and reverse vaccinology approach to determine the potential novel drug and vaccine targets against S. pseudintermedius infections in humans. After screening the core-proteome of the 39 complete genomes of S. pseudintermedius, 2 metabolic pathways dependent and 34 independent proteins were determined as novel potential drug targets. Two proteins were found and used as potential candidates for designing the chimeric vaccine constructs. Depending on the properties such as antigenicity, toxicity and solubility, multi-epitope based vaccines constructs were designed. For immunogenicity enhancement, different specific sequences like linkers, PADRE sequences and molecular adjuvants were added. Molecular docking and molecular dynamic simulation analyses were performed to evaluate the prioritized vaccine construct’s interactions with human immune cells HLA and TLR4. Finally, the cloning and expression ability of the vaccine construct was determined in the bacterial cloning system and human body immune response was predicted through immune simulation analysis. In conclusion, this study proposed the potential drug and vaccine targets and also designed a chimera vaccine to be tested and validated against infectious S. pseudintermedius species.
Collapse
Affiliation(s)
- Samavia Jaan
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
- *Correspondence: Mohibullah Shah, ;
| | - Najeeb Ullah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Adnan Amjad
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Sameem Javed
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
| | - Ghazala Mustafa
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Haq Nawaz
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Sarfraz Ahmed
- Department of Basic Sciences, University of Veterinary and Animal Sciences Lahore, Narowal, Pakistan
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Suvash Chandra Ojha,
| |
Collapse
|
4
|
Fungwithaya P, Boonchuay K, Narinthorn R, Sontigun N, Sansamur C, Petcharat Y, Thomrongsuwannakij T, Wongtawan T. First study on diversity and antimicrobial-resistant profile of staphylococci in sports animals of Southern Thailand. Vet World 2022; 15:765-774. [PMID: 35497942 PMCID: PMC9047138 DOI: 10.14202/vetworld.2022.765-774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/15/2022] [Indexed: 11/19/2022] Open
Abstract
Background and Aim: Staphylococci are commensal bacteria and opportunistic pathogens found on the skin and mucosa. Sports animals are more prone to injury and illness, and we believe that antimicrobial agents might be extensively used for the treatment and cause the existence of antimicrobial-resistant (AMR) bacteria. This study aimed to investigate the diversity and AMR profile of staphylococci in sports animals (riding horses, fighting bulls, and fighting cocks) in South Thailand. Materials and Methods: Nasal (57 fighting bulls and 33 riding horses) and skin swabs (32 fighting cocks) were taken from 122 animals. Staphylococci were cultured in Mannitol Salt Agar and then identified species by biochemical tests using the VITEK® 2 card for Gram-positive organisms in conjunction with the VITEK® 2 COMPACT machine and genotypic identification by polymerase chain reaction (PCR). Antimicrobial susceptibility tests were performed with VITEK® 2 AST-GN80 test kit cards and VITEK® 2 COMPACT machine. Detection of AMR genes (mecA, mecC, and blaZ) and staphylococcal chromosomal mec (SCCmec) type was evaluated by PCR. Results: Forty-one colonies of staphylococci were isolated, and six species were identified, including Staphylococcus sciuri (61%), Staphylococcus pasteuri (15%), Staphylococcus cohnii (10%), Staphylococcus aureus (7%), Staphylococcus warneri (5%), and Staphylococcus haemolyticus (2%). Staphylococci were highly resistant to two drug classes, penicillin (93%) and cephalosporin (51%). About 56% of the isolates were methicillin-resistant staphylococci (MRS), and the majority was S. sciuri (82%), which is primarily found in horses. Most MRS (82%) were multidrug-resistant. Almost all (96%) of the mecA-positive MRS harbored the blaZ gene. Almost all MRS isolates possessed an unknown type of SCCmec. Interestingly, the AMR rate was notably lower in fighting bulls and cocks than in riding horses, which may be related to the owner’s preference for herbal therapy over antimicrobial drugs. Conclusion: This study presented many types of staphylococci displayed on bulls, cocks, and horses. However, we found a high prevalence of MRS in horses that could be transmitted to owners through close contact activities and might be a source of AMR genotype transmission to other staphylococci.
Collapse
Affiliation(s)
- Punpichaya Fungwithaya
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Excellence Centre for Melioidosis and Other Microorganisms, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Kanpapat Boonchuay
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Ruethai Narinthorn
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Narin Sontigun
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Excellence Centre for Melioidosis and Other Microorganisms, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Chalutwan Sansamur
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Yotsapat Petcharat
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Thotsapol Thomrongsuwannakij
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Tuempong Wongtawan
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Excellence Centre for Melioidosis and Other Microorganisms, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| |
Collapse
|
5
|
Lopes TS, Fussieger C, Rizzo FA, Silveira S, Lunge VR, Streck AF. Species identification and antimicrobial susceptibility profile of bacteria associated with cow mastitis in southern Brazil. PESQUISA VETERINÁRIA BRASILEIRA 2022. [DOI: 10.1590/1678-5150-pvb-6958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: Bovine mastitis is the most common disease in dairy cattle and responsible for economic losses in the milk industry. The present study aimed to identify the main species and to evaluate the antimicrobial susceptibility of bacterial isolates from cow herds with mastitis in dairy farms from southern Brazil. A total of 107 milk samples were collected from different cow herds in one important dairy producing region in southern Brazil, including farms located in ten cities from the Northeast region in the Rio Grande do Sul state. Bacterial strains were isolated and submitted to presumptive identification by classical bacteriological methods. Bacterial species were also identified by MALDI-TOF MS and antimicrobial susceptibility testing was performed with 12 antimicrobials commonly used in dairy farms. Fifty-one bacterial strains were isolated and the presumptive identification demonstrated the occurrence of Staphylococcus spp. (82.3%), Bacillus spp. (3.9%), Klebsiella spp. (3.9%), Streptococcus spp. (3.9%), Corynebacterium sp. (2%), Enterococcus sp. (2%) and Serratia sp. (2%). Forty-one isolates were successfully identified in the MALDI-TOF analysis, including 35 isolates from eleven different bacterial species. Importantly, there were eight different Staphylococcus species, with a high frequency of Staphylococcus chromogenes (48.6%) and Staphylococcus aureus (20%). Overall, bacterial isolates demonstrated resistance to penicillin (46.3%), tetracycline (39%), amoxicillin (36.6%), ampicillin (34.1%) and sulfamethoxazole/trimethoprim (31.7%). Enrofloxacin was the unique antimicrobial that all isolates were susceptible. In addition, there were six multidrug resistant isolates (five S. chromogenes and one S. aureus). This study highlights that bacterial pathogens with resistance to several antimicrobials were identified in cows from dairy farms in a very important milk producing region located in southern Brazil. Microbial identification of the bovine mastitis pathogens and determination of the antimicrobial profile is necessary for the rational use of the medicines.
Collapse
|
6
|
Schnitt A, Lienen T, Wichmann-Schauer H, Tenhagen BA. The occurrence of methicillin-resistant non-aureus staphylococci in samples from cows, young stock, and the environment on German dairy farms. J Dairy Sci 2021; 104:4604-4614. [PMID: 33685714 DOI: 10.3168/jds.2020-19704] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/08/2020] [Indexed: 11/19/2022]
Abstract
This study aimed to determine the occurrence of methicillin-resistant (MR) non-aureus staphylococci (NAS) on 20 preselected German dairy farms. Farms were selected based on the detection of methicillin-resistant Staphylococcus aureus (MRSA) during previous diagnostic investigations. Bacterial culture of presumptive MR-NAS was based on a 2-step enrichment method that has been recommended for MRSA detection. Quarter milk samples (QMS), bulk tank milk, swab samples from young stock, and environmental samples were collected for bacterial culture. Methicillin-resistant NAS were detected on all study farms. The MR-NAS positive test rate was 3.3% (77/2,347) in QMS, 42.1% (8/19) in bulk tank milk, 29.1% (59/203) in nasal swabs from milk-fed calves, 18.3% (35/191) in postweaning calves, and 7.3% (14/191) in nasal swabs from prefresh heifers. In the environment, MR-NAS were detected in dust samples on 25% (5/20) of the dairy farms as well as in teat liners and suckers from automatic calf feeders. The geometric mean somatic cell count in QMS affected by MR-NAS (183,000 cells/mL) was slightly higher compared with all QMS (114,000 cells/mL). Nine MR-NAS species were identified; Staph. sciuri, Staph. lentus, Staph. fleurettii, Staph. epidermidis, and Staph. haemolyticus were the most common species. In addition, 170 NAS isolates were identified that showed reduced cefoxitin susceptibility (4 mg/L) but did not harbor the mecA or mecC genes. On some farms, similar mobile genetic elements were detected in MR-NAS and MRSA. It was suggested that resistance genes may be transferred between NAS and Staph. aureus on the respective farms.
Collapse
Affiliation(s)
- A Schnitt
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - T Lienen
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - H Wichmann-Schauer
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - B-A Tenhagen
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany.
| |
Collapse
|
7
|
Lynch SA, Helbig KJ. The Complex Diseases of Staphylococcus pseudintermedius in Canines: Where to Next? Vet Sci 2021; 8:11. [PMID: 33477504 PMCID: PMC7831068 DOI: 10.3390/vetsci8010011] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus pseudintermedius is a pathogenic bacterium of concern within the veterinary sector and is involved in numerous infections in canines, including topical infections such as canine pyoderma and otitis externa, as well as systemic infections within the urinary, respiratory and reproductive tract. The high prevalence of methicillin-resistant Staphylococcus pseudintermedius (MRSP) within such infections is a growing concern. Therefore, it is crucial to understand the involvement of S. pseudintermedius in canine disease pathology to gain better insight into novel treatment avenues. Here, we review the literature focused on S. pseudintermedius infection in multiple anatomic locations in dogs and the role of MRSP in treatment outcomes at these niches. Multiple novel treatment avenues for MRSP have been pioneered in recent years and these are discussed with a specific focus on vaccines and phage therapy as potential therapeutic options. Whilst both undertakings are in their infancy, phage therapy is versatile and has shown high success in both animal and human medical use. It is clear that further research is required to combat the growing problems associated with MRSP in canines.
Collapse
Affiliation(s)
| | - Karla J. Helbig
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia;
| |
Collapse
|
8
|
Isolation and characterization of bacteriophages active against methicillin-resistant Staphylococcus pseudintermedius. Res Vet Sci 2019; 122:81-85. [DOI: 10.1016/j.rvsc.2018.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/05/2018] [Accepted: 11/11/2018] [Indexed: 11/18/2022]
|
9
|
Draft Genome Sequences of 12 Clinical and Environmental Methicillin-Resistant Staphylococcus pseudintermedius Strains Isolated from a Veterinary Teaching Hospital in Washington State. GENOME ANNOUNCEMENTS 2018; 6:6/15/e00290-18. [PMID: 29650582 PMCID: PMC5897803 DOI: 10.1128/genomea.00290-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Methicillin-resistant Staphylococcus pseudintermedius (MRSP) is a globally emergent multidrug-resistant pathogen of dogs associated with nosocomial transmission in dogs and with potential zoonotic impacts. Here, we report the draft whole-genome sequences of 12 hospital-associated MRSP strains and their resistance genotypes and phenotypes.
Collapse
|
10
|
Pires Dos Santos T, Damborg P, Moodley A, Guardabassi L. Systematic Review on Global Epidemiology of Methicillin-Resistant Staphylococcus pseudintermedius: Inference of Population Structure from Multilocus Sequence Typing Data. Front Microbiol 2016; 7:1599. [PMID: 27803691 PMCID: PMC5067483 DOI: 10.3389/fmicb.2016.01599] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/26/2016] [Indexed: 12/14/2022] Open
Abstract
Background and rationale: Methicillin-resistant Staphylococcus pseudintermedius (MRSP) is a major cause of infections in dogs, also posing a zoonotic risk to humans. This systematic review aimed to determine the global epidemiology of MRSP and provide new insights into the population structure of this important veterinary pathogen. Methodology: Web of Science was searched systematically for articles reporting data on multilocus sequence typing (MLST) of S. pseudintermedius isolates from dogs or other animal or human patients and carriers. Data from the eligible studies were then integrated with data from the MLST database for this species. Analysis of MLST data was performed with eBURST and ClonalFrame, and the proportion of MRSP isolates resistant to selected antimicrobial drugs was determined for the most predominant clonal complexes. Results: Fifty-eight studies published over the last 10 years were included in the review. MRSP represented 76% of the 1428 isolates characterized by the current MLST scheme. The population of S. pseudintermedius was highly diverse and included five major MRSP clonal complexes (CCs). CC71, previously described as the epidemic European clone, is now widespread worldwide. In Europe, CC258, which is more frequently susceptible to enrofloxacin and aminoglycosides, and more frequently resistant to sulphonamides/trimethoprim than CC71, is increasingly reported in various countries. CC68, previously described as the epidemic North American clone, is frequently reported in this region but also in Europe, while CC45 (associated with chloramphenicol resistance) and CC112 are prevalent in Asia. It was estimated that clonal diversification in this species is primarily driven by homologous recombination (r/m = 7.52). Conclusion: This study provides evidence that S. pseudintermedius has an epidemic population structure, in which five successful MRSP lineages with specific traits regarding antimicrobial resistance, genetic diversity and geographical distribution have emerged upon a weakly clonal background through acquisition of SCCmec and other mobile genetic elements.
Collapse
Affiliation(s)
- Teresa Pires Dos Santos
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen Frederiksberg, Denmark
| | - Peter Damborg
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen Frederiksberg, Denmark
| | - Arshnee Moodley
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen Frederiksberg, Denmark
| | - Luca Guardabassi
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of CopenhagenFrederiksberg, Denmark; Department of Biomedical Sciences, Ross University School of Veterinary MedicineSt Kitts, West Indies
| |
Collapse
|
11
|
Du X, Zu S, Chen F, Liu Z, Li X, Yang L, Zu Y, Zhao X, Zhang L. Preparation and characterization of cefquinome sulfate microparticles for transdermal delivery by negative-pressure cavitation antisolvent precipitation. POWDER TECHNOL 2016. [DOI: 10.1016/j.powtec.2016.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Latronico F, Moodley A, Nielsen SS, Guardabassi L. Enhanced adherence of methicillin-resistant Staphylococcus pseudintermedius sequence type 71 to canine and human corneocytes. Vet Res 2014; 45:70. [PMID: 24957656 PMCID: PMC4087241 DOI: 10.1186/1297-9716-45-70] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 06/10/2014] [Indexed: 11/10/2022] Open
Abstract
The recent worldwide spread of methicillin-resistant Staphylococcus pseudintermedius (MRSP) in dogs is a reason for concern due to the typical multidrug resistance patterns displayed by some MRSP lineages such as sequence type (ST) 71. The objective of this study was to compare the in vitro adherence properties between MRSP and methicillin-susceptible (MSSP) strains. Four MRSP, including a human and a canine strain belonging to ST71 and two canine non-ST71 strains, and three genetically unrelated MSSP were tested on corneocytes collected from five dogs and six humans. All strains were fully characterized with respect to genetic background and cell wall-anchored protein (CWAP) gene content. Seventy-seven strain-corneocyte combinations were tested using both exponential- and stationary-phase cultures. Negative binomial regression analysis of counts of bacterial cells adhering to corneocytes revealed that adherence was significantly influenced by host and strain genotype regardless of bacterial growth phase. The two MRSP ST71 strains showed greater adherence than MRSP non-ST71 (p < 0.0001) and MSSP (p < 0.0001). This phenotypic trait was not associated to any specific CWAP gene. In general, S. pseudintermedius adherence to canine corneocytes was significantly higher compared to human corneocytes (p < 0.0001), but the MRSP ST71 strain of human origin adhered equally well to canine and human corneocytes, suggesting that MRSP ST71 may be able to adapt to human skin. The genetic basis of the enhanced in vitro adherence of ST71 needs to be elucidated as this phenotypic trait may be associated to the epidemiological success and zoonotic potential of this epidemic MRSP clone.
Collapse
Affiliation(s)
| | - Arshnee Moodley
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark.
| | | | | |
Collapse
|
13
|
Wang Q, Zeng X, Wang S, Hou C, Yang F, Ma X, Thacker P, Qiao S. The Bacteriocin Sublancin Attenuates Intestinal Injury in Young Mice Infected WithStaphylococcus aureus. Anat Rec (Hoboken) 2014; 297:1454-61. [DOI: 10.1002/ar.22941] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/17/2014] [Accepted: 03/28/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Qingwei Wang
- State Key Laboratory of Animal Nutrition; College of Animal Science and Technology, China Agricultural University; Beijing China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition; College of Animal Science and Technology, China Agricultural University; Beijing China
| | - Shuai Wang
- State Key Laboratory of Animal Nutrition; College of Animal Science and Technology, China Agricultural University; Beijing China
| | - Chengli Hou
- State Key Laboratory of Animal Nutrition; College of Animal Science and Technology, China Agricultural University; Beijing China
| | - Fengjuan Yang
- State Key Laboratory of Animal Nutrition; College of Animal Science and Technology, China Agricultural University; Beijing China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition; College of Animal Science and Technology, China Agricultural University; Beijing China
| | - Philip Thacker
- Department of Animal and Poultry Science; University of Saskatchewan; Saskatoon Canada
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition; College of Animal Science and Technology, China Agricultural University; Beijing China
| |
Collapse
|