1
|
Yeni DK, Balevi A, Ashraf A, Shah MS, Büyük F. Molecular detection of bacterial zoonotic abortive agents from ruminants in Turkey. Braz J Microbiol 2024; 55:1997-2004. [PMID: 38468116 PMCID: PMC11153383 DOI: 10.1007/s42770-024-01300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/07/2024] [Indexed: 03/13/2024] Open
Abstract
Abortions in cattle and sheep are one of the major causes of economic losses worldwide. Brucella spp. are the most common infectious agent associated with these abortions. However, abortions caused by bacteria such as Listeria spp., Leptospira spp., Campylobacter spp. and Mycoplasma spp. are usually overlooked due to their sporadic nature and their status as non-priority abortion agents. In our study, we investigated the bacteria associated with abortion cases in cattle and sheep using PCR. For this purpose, we collected vaginal swab samples (n: 110) of aborted cattle and sheep, as well as stomach content samples (n: 69) of aborted calves and lambs from various cities in Turkey. The samples were analysed by bacteria-specific PCR to detect Campylobacter fetus, Leptospira spp., Listeria spp., Mycoplasma spp., and Yersinia spp. PCR analyses revealed that the investigated bacterial agents were present in 18.85% and 19.3% of the cattle and sheep samples, respectively, with an overall percentage of 18.99%. While the overall positivity rate for C. fetus, Leptospira spp., and Mycoplasma spp. was 2.79%, 10.06%, and 4.47%, respectively, the positivity rate for co-infection with Leptospira spp. and C. fetus was 1.68%. All samples were found to be negative for Yersinia spp. and Listeria spp. The high C. fetus positivity rate detected in sheep and in the stomach contents was statistically significant (p < 0.05). However, the difference in positivity rates between the cities, hosts, co-infections and causative agents was statistically insignificant (p > 0.05). This study provides preliminary data on the significant involvement of C. fetus, Leptospira spp. and Mycoplasma spp. in cattle and sheep abortions in Turkey indicating that they should not be overlooked in diagnosis. In addition, further research is needed to investigate the zoonotic potential of these pathogens for public health in Turkey.
Collapse
Affiliation(s)
- Derya Karataş Yeni
- Department of Microbiology, Faculty of Veterinary Medicine, Necmettin Erbakan University, Konya, Turkey.
| | - Aslı Balevi
- Department of Microbiology, Faculty of Veterinary Medicine, Selçuk University, Konya, Turkey
| | - Asma Ashraf
- Department of Zoology, GC University, Allama Iqbal Road, Faisalabad, Pakistan
| | - MSalahuddin Shah
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Fatih Büyük
- Department of Microbiology, Faculty of Veterinary Medicine, Kafkas University, Kars, Turkey
| |
Collapse
|
2
|
Gana J, Gcebe N, Pierneef RE, Chen Y, Moerane R, Adesiyun AA. Whole Genome Sequence Analysis of Listeria monocytogenes Isolates Obtained from the Beef Production Chain in Gauteng Province, South Africa. Microorganisms 2024; 12:1003. [PMID: 38792832 PMCID: PMC11123765 DOI: 10.3390/microorganisms12051003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The study used whole-genome sequencing (WGS) and bioinformatics analysis for the genomic characterization of 60 isolates of Listeria monocytogenes obtained from the beef production chain (cattle farms, abattoirs, and retail outlets) in Gauteng province, South Africa. The sequence types (STs), clonal complexes (CCs), and the lineages of the isolates were determined using in silico multilocus sequence typing (MLST). We used BLAST-based analyses to identify virulence and antimicrobial genes, plasmids, proviruses/prophages, and the CRISPR-Cas system. The study investigated any association of the detected genes to the origin in the beef production chain of the L. monocytogenes isolates. Overall, in 60 isolates of Listeria monocytogenes, there were seven STs, six CCs, forty-four putative virulence factors, two resistance genes, one plasmid with AMR genes, and three with conjugative genes, one CRISPR gene, and all 60 isolates were positive for proviruses/prophages. Among the seven STs detected, ST204 (46.7%) and ST2 (21.7%) were the most prominent, with ST frequency varying significantly (p < 0.001). The predominant CC detected were CC2 (21.7%) and CC204 (46.7%) in lineages I and II, respectively. Of the 44 virulence factors detected, 26 (across Listeria Pathogenicity Islands, LIPIs) were present in all the isolates. The difference in the detection frequency varied significantly (p < 0.001). The two AMR genes (fosX and vga(G)) detected were present in all 60 (100%) isolates of L. monocytogenes. The only plasmid, NF033156, was present in three (5%) isolates. A CRISPR-Cas system was detected in six (10%), and all the isolates carried proviruses/prophages. The source and sample type significantly affected the frequencies of STs and virulence factors in the isolates of L. monocytogenes. The presence of fosX and vga(G) genes in all L. monocytogenes isolates obtained from the three industries of the beef production chain can potentially cause therapeutic implications. Our study, which characterized L. monocytogenes recovered from the three levels in the beef production chain, is the first time genomics was performed on this type of data set in the country, and this provides insights into the health implications of Listeria.
Collapse
Affiliation(s)
- James Gana
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa; (J.G.); (R.M.)
- Department of Agricultural Education, Federal College of Education, Kontagora 923101, Niger State, Nigeria
| | - Nomakorinte Gcebe
- Bacteriology Department, Onderstepoort Veterinary Research, Agricultural Research Council, Pretoria 0110, South Africa;
| | - Rian Edward Pierneef
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0001, South Africa;
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria 0001, South Africa
- Microbiome@UP, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0001, South Africa
| | - Yi Chen
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, 5001 Campus Dr. Room 4E-007/Mailstop HFS-710, College Park, MD 20740, USA;
| | - Rebone Moerane
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa; (J.G.); (R.M.)
| | - Abiodun Adewale Adesiyun
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa; (J.G.); (R.M.)
- School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine 685509, Trinidad and Tobago
| |
Collapse
|
3
|
Gana J, Gcebe N, Moerane R, Ngoshe YB, Tshuma T, Moabelo K, Adesiyun AA. A comparative study on the occurrence, genetic characteristics, and factors associated with the distribution of Listeria species on cattle farms and beef abattoirs in Gauteng Province, South Africa. Trop Anim Health Prod 2024; 56:88. [PMID: 38409615 PMCID: PMC10896870 DOI: 10.1007/s11250-024-03934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
These cross-sectional studies reported the occurrence, genetic characteristics, and factors associated with the distribution of Listeria species on cattle farms and beef abattoirs in Gauteng Province, South Africa. A total of 328 samples (faeces, feeds, silage, and drinking water) were collected from 23 cattle farms (communal, cow-calf, and feedlot), and 262 samples (faeces, carcass swabs, and effluents) from 8 beef abattoirs (low throughput and high throughput) were processed using standard bacteriological and molecular methods to detect Listeria species. The factors associated with the prevalence of Listeria species were investigated, and multiplex polymerase chain reaction (mPCR) was used to determine Listeria species, the pathogenic serogroups, and the carriage of eight virulence-associated genes by Listeria monocytogenes. The overall prevalence of Listeria species in cattle farms was 14.6%, comprising Listeria innocua (11.3%), Listeria monocytogenes (3.4%), Listeria welshimeri (0.0%) compared with 11.1%, comprising Listeria innocua (5.7%), Listeria monocytogenes (4.6%), Listeria welshimeri (0.8%) for beef abattoirs. Of the three variables (area, type of farm/abattoir, and sample type) investigated, only the sample types at abattoirs had a significant (P < 0.001) effect on the prevalence of L. innocua and L. welshimeri. The frequency of distribution of the serogroups based on 11 L. monocytogenes isolated from farms was 72.7% and 27.3% for the serogroup 1/2a-3a and 4b-4d-4e, respectively, while for the 12 L. monocytogenes isolates recovered from abattoirs, it was 25%, 8.3%, 50% and 16.7% for the serogroup 1/2a-3a, 1/2b-3b, 1/2c-3c, and 4b-4d-4e respectively (P < 0.05). All (100%) isolates of L. monocytogenes from the farms and abattoirs were positive for seven virulence genes (hlyA, inlB, plcA, iap, inlA, inlC, and inlJ). The clinical and food safety significance of the findings cannot be ignored.
Collapse
Affiliation(s)
- J Gana
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
- Department of Agricultural Education, Federal College of Education, P.M.B. 39, Kontagora, Niger State, Nigeria
| | - N Gcebe
- Bacteriology Department, Onderstepoort Veterinary Research, Agricultural Research Council, Pretoria, South Africa
| | - R Moerane
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - Y B Ngoshe
- Epidemiology Section, Department of Production Animal Studies, Epidemiology Section, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - T Tshuma
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - K Moabelo
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - A A Adesiyun
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa.
- Department of Paraclinical Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago.
| |
Collapse
|
4
|
Matto C, Gianneechini RE, Rodríguez V, Schanzembach MA, Braga V, Mota MI, Rivero R, Varela G. Listeria innocua and serotypes of Listeria monocytogenes isolated from clinical cases in small ruminants in the northwest of Uruguay. PESQUISA VETERINÁRIA BRASILEIRA 2023. [DOI: 10.1590/1678-5150-pvb-7174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
ABSTRACT: Listeriosis is an infectious disease caused by bacteria of the genus Listeria, the neurological form being more common in ruminants. There are many reports of listeriosis in small ruminants in the region that includes Brazil, Argentina and Uruguay. However, these diagnoses were mainly based on histological lesions in the central nervous system (CNS) without the isolation and characterization of the involved Listeria strains. The aim of this study was to report sheep and goats listeriosis cases from 2016 to 2021 in northwestern Uruguay. The diagnosis was made according to lesions observed at histopathology, plus Listeria isolation in CNS, identifying it at specie and serotype level. Nine animals (n=9) of three outbreaks and five sporadic cases of listeriosis were studied. Sheep was the species with more cases in relation to goats, and adults were the category most affected. Cases occurred in spring and less frequently in winter. All presented neurological clinical signs and the lesions in the CNS were consistent with suppurative meningoencephalitis and micro-abscesses in the brainstem. In eight of nine CNS samples, Listeria strains were isolated (seven L. monocytogenes and one L. innocua). All the L. monocytogenes isolates carried the inlA gene; serotyping showed that four strains belonged to serotype 1/2b, two isolates belonged to serotype 4b, and one to serotype 1/2a. Considering that listeriosis is a common disease in this region and the fact that isolates are scarcely recovered from small ruminants, it would be important to emphasize the need for Listeria isolation to better characterize the strains that affect animals. Not only to improve knowledge about the epidemiology of disease but also with the objective of developing serotype specific vaccines for animal use.
Collapse
|
5
|
Unrath N, McCabe E, Macori G, Fanning S. Application of Whole Genome Sequencing to Aid in Deciphering the Persistence Potential of Listeria monocytogenes in Food Production Environments. Microorganisms 2021; 9:1856. [PMID: 34576750 PMCID: PMC8464834 DOI: 10.3390/microorganisms9091856] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/26/2023] Open
Abstract
Listeria monocytogenes is the etiological agent of listeriosis, a foodborne illness associated with high hospitalizations and mortality rates. This bacterium can persist in food associated environments for years with isolates being increasingly linked to outbreaks. This review presents a discussion of genomes of Listeria monocytogenes which are commonly regarded as persisters within food production environments, as well as genes which are involved in mechanisms aiding this phenotype. Although criteria for the detection of persistence remain undefined, the advent of whole genome sequencing (WGS) and the development of bioinformatic tools have revolutionized the ability to find closely related strains. These advancements will facilitate the identification of mechanisms responsible for persistence among indistinguishable genomes. In turn, this will lead to improved assessments of the importance of biofilm formation, adaptation to stressful conditions and tolerance to sterilizers in relation to the persistence of this bacterium, all of which have been previously associated with this phenotype. Despite much research being published around the topic of persistence, more insights are required to further elucidate the nature of true persistence and its implications for public health.
Collapse
Affiliation(s)
- Natalia Unrath
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| | - Evonne McCabe
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
- Department of Microbiology, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland
| | - Guerrino Macori
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| |
Collapse
|
6
|
Dunnett E, Florea L, Thurston L, Floyd T, Collins R, Otter A. Deaths of weaned lambs with visceral
Listeria ivanovii i
nfections. VETERINARY RECORD CASE REPORTS 2020. [DOI: 10.1136/vetreccr-2020-001254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Elizabeth Dunnett
- Penrith Veterinary Investigation CentreAnimal and Plant Health AgencyPenrithUK
| | - Laura Florea
- Penrith Veterinary Investigation CentreAnimal and Plant Health AgencyPenrithUK
| | - Lisa Thurston
- Penrith Veterinary Investigation CentreAnimal and Plant Health AgencyPenrithUK
| | - Tobias Floyd
- Pathology DepartmentAnimal and Plant Health AgencyAddlestoneUK
| | - Rachael Collins
- Starcross Veterinary Investigation CentreAnimal and Plant Health AgencyStarcrossUK
| | - Arthur Otter
- Shrewsbury Veterinary Investigation CentreAnimal and Plant Health AgencyShrewsburyUK
| |
Collapse
|
7
|
Day JB, Hammack TS. Bio-Plex suspension array immuno-detection of Listeria monocytogenes from cantaloupe and packaged salad using virulence protein inducing activated charcoal enrichment media. Food Microbiol 2019; 84:103225. [PMID: 31421770 DOI: 10.1016/j.fm.2019.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/01/2019] [Accepted: 05/20/2019] [Indexed: 12/27/2022]
Abstract
Listeria monocytogenes, the causative agent of listeriosis in humans, is a Gram-positive bacterium that is contracted via the ingestion of contaminated foods. Two of the largest outbreaks of listeriosis occurred following consumption of tainted cantaloupe and packaged salads. Molecular methods and immuno-based techniques for detection of L. monocytogenes in these food matrices can be difficult due to the presence of assay inhibiting elements. In this study, we utilized a novel enrichment media containing activated charcoal as the key ingredient that induces hyperactive expression and secretion of L. monocytogenes virulence proteins. The Bio-Plex suspension array system, based on Luminex xMAP technology, was subsequently employed to specifically detect accumulated L. monocytogenes secreted and membrane bound proteins via paramagnetic microsphere-antibody complexes. Cantaloupe and packaged salad samples were treated with a dilution series of L. monocytogenes and incubated in activated charcoal media following a short pre-enrichment step in Buffered Listeria Enrichment Broth. Secreted L. monocytogenes lysteriolysin O was captured using magnetic microsphere-antibody conjugates and measured using the Bio-Ple×200 analyzer. As few as 100 CFU/g of L. monocytogenes was detected from both spiked cantaloupe and packaged salad samples. In addition, antibody conjugated microspheres targeting a membrane protein present on both pathogenic and nonpathogenic Listeria species was used to identify as few as 100 CFU/g of both pathogenic and nonpathogenic species in cantaloupe and packaged salad. This method presumptively identifies L. monocytogenes from cantaloupe and packaged salad in less than 24 h and non-pathogenic Listeria species within 22 h.
Collapse
Affiliation(s)
- J B Day
- U.S. Food and Drug Administration Center for Food Safety and Applied Nutrition 5001 Campus Dr., College Park, MD, 20740, USA.
| | - T S Hammack
- U.S. Food and Drug Administration Center for Food Safety and Applied Nutrition 5001 Campus Dr., College Park, MD, 20740, USA
| |
Collapse
|
8
|
Schardt J, Jones G, Müller-Herbst S, Schauer K, D'Orazio SEF, Fuchs TM. Comparison between Listeria sensu stricto and Listeria sensu lato strains identifies novel determinants involved in infection. Sci Rep 2017; 7:17821. [PMID: 29259308 PMCID: PMC5736727 DOI: 10.1038/s41598-017-17570-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/28/2017] [Indexed: 01/01/2023] Open
Abstract
The human pathogen L. monocytogenes and the animal pathogen L. ivanovii, together with four other species isolated from symptom-free animals, form the “Listeria sensu stricto” clade. The members of the second clade, “Listeria sensu lato”, are believed to be solely environmental bacteria without the ability to colonize mammalian hosts. To identify novel determinants that contribute to infection by L. monocytogenes, the causative agent of the foodborne disease listeriosis, we performed a genome comparison of the two clades and found 151 candidate genes that are conserved in the Listeria sensu stricto species. Two factors were investigated further in vitro and in vivo. A mutant lacking an ATP-binding cassette transporter exhibited defective adhesion and invasion of human Caco-2 cells. Using a mouse model of foodborne L. monocytogenes infection, a reduced number of the mutant strain compared to the parental strain was observed in the small intestine and the liver. Another mutant with a defective 1,2-propanediol degradation pathway showed reduced persistence in the stool of infected mice, suggesting a role of 1,2-propanediol as a carbon and energy source of listeriae during infection. These findings reveal the relevance of novel factors for the colonization process of L. monocytogenes.
Collapse
Affiliation(s)
- Jakob Schardt
- ZIEL-Institute for Food & Health, and Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Grant Jones
- Department of Microbiology, Immunology, & Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Stefanie Müller-Herbst
- ZIEL-Institute for Food & Health, and Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Kristina Schauer
- Lehrstuhl für Hygiene und Technologie der Milch, Tiermedizinische Fakultät, Ludwig-Maximilians-Universität München, Schönleutner Str. 8, 85764, Oberschleißheim, Germany
| | - Sarah E F D'Orazio
- Department of Microbiology, Immunology, & Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Thilo M Fuchs
- ZIEL-Institute for Food & Health, and Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany. .,Friedrich-Loeffler-Institut, Institut für Molekulare Pathogenese, Naumburger Str. 96a, 07743, Jena, Germany.
| |
Collapse
|
9
|
Ferrari E, Walter MC, Huptas C, Scherer S, Müller-Herbst S. Complete Circular Genome Sequence and Temperature Independent Adaptation to Anaerobiosis of Listeria weihenstephanensis DSM 24698. Front Microbiol 2017; 8:1672. [PMID: 28919887 PMCID: PMC5585140 DOI: 10.3389/fmicb.2017.01672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/17/2017] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to analyze the adaptation of the environmental Listeria weihenstephanensis DSM 24698 to anaerobiosis. The complete circular genome sequence of this species is reported and the adaptation of L. weihenstephanensis DSM 24698 to oxygen availability was investigated by global transcriptional analyses via RNAseq at 18 and 34°C. A list of operons was created based on the transcriptional data. Forty-two genes were upregulated anaerobically and 62 genes were downregulated anaerobically. The oxygen dependent gene expression of selected genes was further validated via qPCR. Many of the differentially regulated genes encode metabolic enzymes indicating broad metabolic adaptations with respect to oxygen availability. Genes showing the strongest oxygen-dependent adaption encoded nitrate (narGHJI) and nitrite (nirBD) reductases. Together with the observation that nitrate supported anaerobic growth, these data indicate that L. weihenstephanensis DSM 24698 performs anaerobic nitrate respiration. The wide overlap between the oxygen-dependent transcriptional regulation at 18 and 34°C suggest that temperature does not play a key role in the oxygen-dependent transcriptional regulation of L. weihenstephanensis DSM 24698.
Collapse
Affiliation(s)
- Elena Ferrari
- Chair of Microbial Ecology, Technische Universität MünchenFreising, Germany
- ZIEL—Institute for Food & Health, Technische Universität MünchenFreising, Germany
| | - Mathias C. Walter
- Department of Genome-Oriented Bioinformatics, Technische Universität MünchenFreising, Germany
| | - Christopher Huptas
- Chair of Microbial Ecology, Technische Universität MünchenFreising, Germany
- ZIEL—Institute for Food & Health, Technische Universität MünchenFreising, Germany
| | - Siegfried Scherer
- Chair of Microbial Ecology, Technische Universität MünchenFreising, Germany
- ZIEL—Institute for Food & Health, Technische Universität MünchenFreising, Germany
| | - Stefanie Müller-Herbst
- Chair of Microbial Ecology, Technische Universität MünchenFreising, Germany
- ZIEL—Institute for Food & Health, Technische Universität MünchenFreising, Germany
| |
Collapse
|
10
|
Prevalence and methodologies for detection, characterization and subtyping of Listeria monocytogenes and L. ivanovii in foods and environmental sources. FOOD SCIENCE AND HUMAN WELLNESS 2017. [DOI: 10.1016/j.fshw.2017.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Orsi RH, Wiedmann M. Characteristics and distribution of Listeria spp., including Listeria species newly described since 2009. Appl Microbiol Biotechnol 2016; 100:5273-87. [PMID: 27129530 PMCID: PMC4875933 DOI: 10.1007/s00253-016-7552-2] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/11/2016] [Accepted: 04/14/2016] [Indexed: 11/30/2022]
Abstract
The genus Listeria is currently comprised of 17 species, including 9 Listeria species newly described since 2009. Genomic and phenotypic data clearly define a distinct group of six species (Listeria sensu strictu) that share common phenotypic characteristics (e.g., ability to grow at low temperature, flagellar motility); this group includes the pathogen Listeria monocytogenes. The other 11 species (Listeria sensu lato) represent three distinct monophyletic groups, which may warrant recognition as separate genera. These three proposed genera do not contain pathogens, are non-motile (except for Listeria grayi), are able to reduce nitrate (except for Listeria floridensis), and are negative for the Voges-Proskauer test (except for L. grayi). Unlike all other Listeria species, species in the proposed new genus Mesolisteria are not able to grow below 7 °C. While most new Listeria species have only been identified in a few countries, the availability of molecular tools for rapid characterization of putative Listeria isolates will likely lead to future identification of isolates representing these new species from different sources. Identification of Listeria sensu lato isolates has not only allowed for a better understanding of the evolution of Listeria and virulence characteristics in Listeria but also has practical implications as detection of Listeria species is often used by the food industry as a marker to detect conditions that allow for presence, growth, and persistence of L. monocytogenes. This review will provide a comprehensive critical summary of our current understanding of the characteristics and distribution of the new Listeria species with a focus on Listeria sensu lato.
Collapse
Affiliation(s)
- Renato H Orsi
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
12
|
Dhama K, Karthik K, Tiwari R, Shabbir MZ, Barbuddhe S, Malik SVS, Singh RK. Listeriosis in animals, its public health significance (food-borne zoonosis) and advances in diagnosis and control: a comprehensive review. Vet Q 2015; 35:211-35. [PMID: 26073265 DOI: 10.1080/01652176.2015.1063023] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Listeriosis is an infectious and fatal disease of animals, birds, fish, crustaceans and humans. It is an important food-borne zoonosis caused by Listeria monocytogenes, an intracellular pathogen with unique potential to spread from cell to cell, thereby crossing blood-brain, intestinal and placental barriers. The organism possesses a pile of virulence factors that help to infect the host and evade from host immune machinery. Though disease occurrence is sporadic throughout the world, it can result in severe damage during an outbreak. Listeriosis is characterized by septicaemia, encephalitis, meningitis, meningoencephalitis, abortion, stillbirth, perinatal infections and gastroenteritis with the incubation period varying with the form of infection. L. monocytogenes has been isolated worldwide from humans, animals, poultry, environmental sources like soil, river, decaying plants, and food sources like milk, meat and their products, seafood and vegetables. Since appropriate vaccines are not available and infection is mainly transmitted through foods in humans and animals, hygienic practices can prevent its spread. The present review describes etiology, epidemiology, transmission, clinical signs, post-mortem lesions, pathogenesis, public health significance, and advances in diagnosis, vaccines and treatment of this disease. Special attention has been given to novel as well as prospective emerging therapies that include bacteriophage and cytokine therapy, avian egg yolk antibodies and herbal therapy. Various vaccines, including advances in recombinant and DNA vaccines and their modes of eliciting immune response, are also discussed. Due focus has also been given regarding appropriate prevention and control strategies to be adapted for better management of this zoonotic disease.
Collapse
Affiliation(s)
- Kuldeep Dhama
- a Division of Pathology , Indian Veterinary Research Institute (IVRI) , Izatnagar, Bareilly 243122 , UP , India
| | - Kumaragurubaran Karthik
- b Division of Bacteriology and Mycology , Indian Veterinary Research Institute (IVRI) , Izatnagar, Bareilly 243122 , UP , India
| | - Ruchi Tiwari
- c Department of Veterinary Microbiology and Immunology , College of Veterinary Sciences , Uttar Pradesh Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU) , Mathura 281001 , India
| | - Muhammad Zubair Shabbir
- d Quality Operations Laboratory , University of Veterinary and Animal Sciences , Lahore 54600, Pakistan
| | - Sukhadeo Barbuddhe
- e Indian Council of Agricultural Research Complex for Goa , Old Goa, Goa 403402, India
| | - Satya Veer Singh Malik
- f Division of Veterinary Public Health , Indian Veterinary Research Institute (IVRI) , Izatnagar, Bareilly 243122 , UP , India
| | - Raj Kumar Singh
- g Indian Veterinary Research Institute (IVRI) , Izatnagar, Bareilly 243122 , UP , India
| |
Collapse
|
13
|
Wang Y, Wang Y, Xu H, Dai H, Meng S, Ye C. Rapid and sensitive detection of Listeria ivanovii by loop-mediated isothermal amplification of the smcL gene. PLoS One 2014; 9:e115868. [PMID: 25549337 PMCID: PMC4280119 DOI: 10.1371/journal.pone.0115868] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/27/2014] [Indexed: 12/04/2022] Open
Abstract
A loop-mediated isothermal amplification (LAMP) assay for rapid and sensitive detection of the L. ivanovii strains had been developed and evaluated in this study. Oligonucleotide primers specific for L. ivanovii species were designed corresponding to smcL gene sequences. The primers set comprise six primers targeting eight regions on the species-specific gene smcL. The LAMP assay could be completed within 1 h at 64°C in a water bath. Amplification products were directly observed by the Loopamp Fluorescent Detection Reagent (FD) or detected by agarose gel electrophoresis. Moreover, the LAMP reactions were also detected by real-time measurement of turbidity. The exclusivity of 77 non-L. ivanovii and the inclusivity of 17 L. ivanovii were both 100% in the assay. Sensitivity of the LAMP assay was 250 fg DNA and 16 CFU per reaction for detection of L. ivanovii in pure cultures and simulated human stool. The LAMP assay was 10 and 100-fold more sensitive than quantitative PCR (qPCR) and conventional PCR assays,respectively. When applied to human stool samples spiked with low level (8 CFU/0.5 g) of L. ivanovii strains, the new LAMP assay described here achieved positive detection after 6 hours enrichment. In conclusion, the new LAMP assay in this study can be used as a valuable, rapid and sensitive detection tool for the detection of L. ivanovii in field, medical and veterinary laboratories.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, China CDC, Changbai Road 155, Changping, Beijing, 102206, PR China, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China
| | - Yan Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, China CDC, Changbai Road 155, Changping, Beijing, 102206, PR China, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China
| | - Huaqing Xu
- Guiyang Medical University, Guiyang, PR China
| | - Hang Dai
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, China CDC, Changbai Road 155, Changping, Beijing, 102206, PR China, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China
| | - Shuang Meng
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, China CDC, Changbai Road 155, Changping, Beijing, 102206, PR China, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China
| | - Changyun Ye
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, China CDC, Changbai Road 155, Changping, Beijing, 102206, PR China, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China
- * E-mail:
| |
Collapse
|
14
|
Shoukat S, Malik SVS, Rawool DB, Kumar A, Kumar S, Shrivastava S, Barbuddhe SB, Das DP, Das S. A Study on Detection of Pathogenic Listeria monocytogenes in Ovine’s of Kashmir Region Having Abortion or History of Abortion. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s40011-013-0228-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Ryu J, Park SH, Yeom YS, Shrivastav A, Lee SH, Kim YR, Kim HY. Simultaneous detection of Listeria species isolated from meat processed foods using multiplex PCR. Food Control 2013. [DOI: 10.1016/j.foodcont.2013.01.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
|
17
|
Barbuddhe SB, Malik SVS, Kumar JA, Kalorey DR, Chakraborty T. Epidemiology and risk management of listeriosis in India. Int J Food Microbiol 2011; 154:113-8. [PMID: 21955732 DOI: 10.1016/j.ijfoodmicro.2011.08.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 07/02/2011] [Accepted: 08/29/2011] [Indexed: 10/17/2022]
Abstract
Listeria monocytogenes is a foodborne pathogen that can cause serious invasive illness, mainly in certain well-defined high-risk groups, including elderly and immunocompromised patients, pregnant women, newborns and infants. In India, this pathogen has been isolated from humans, animals and foods. The incidence of Listeria is generally comparable to those reported elsewhere in the world. In humans, maternal/neonatal listeriosis is the most common clinical form reported. Among animal populations, spontaneous abortions, subclinical mastitis, meningoencephalitis and endometritis were the commonest forms reported. The disease largely remains undiagnosed and under reported. From reported analyses of a variety of foods for Listeria, milk and milk products, meat and meat products, seafood and vegetables have been reported to be contaminated in India. The legal framework for microbiological safety of foods against microbes including L. monocytogenes is summarised. The epidemiological studies would help in understanding of the sources of infection and persistence and their risk assessment, routes of transmission, clinical forms and allow for better management of the infection.
Collapse
Affiliation(s)
- S B Barbuddhe
- ICAR Research Complex for Goa, Ela, Old Goa 403402, India.
| | | | | | | | | |
Collapse
|
18
|
Rodríguez-Lázaro D, López-Enríquez L, Hernández M. smcL as a novel diagnostic marker for quantitative detection of Listeria ivanovii in biological samples. J Appl Microbiol 2010; 109:863-72. [DOI: 10.1111/j.1365-2672.2010.04712.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Ammendolia MG, Superti F, Bertuccini L, Chiarini F, Conte MP, Cipriani D, Seganti L, Longhi C. Invasive pathway of Listeria ivanovii in human amnion-derived WISH cells. Int J Immunopathol Pharmacol 2007; 20:509-18. [PMID: 17880764 DOI: 10.1177/039463200702000309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Among Listeria genus, only two species, Listeria ivanovii and Listeria monocytogenes, are pathogenic. L. ivanovii is almost only associated with infections in animals, mainly sheep and cattle, and has rarely been associated with human infections, whereas L. monocytogenes causes severe illnesses in both humans and animals. To further investigate the pathogenetic features of L. ivanovii in humans, we undertook a study in which the intracellular behaviour of this pathogen was analysed in WISH cells, a cell line derived from human amniotic tissue, and compared to that of L. monocytogenes. Using microbiological, biochemical, and ultrastructural approaches, we demonstrate that L. ivanovii can adhere to and invade human amniotic cells, lyse the phagosomal membrane, polymerize host cell actin, and spread from cell to cell more efficiently than L. monocytogenes. However, although L. ivanovii is capable of specifically infecting and replicating in human amnion cells, its survival in cytoplasm is limited compared to that of L. monocytogenes.
Collapse
Affiliation(s)
- M G Ammendolia
- Department of Technology and Health, National Institute of Health, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hain T, Chatterjee SS, Ghai R, Kuenne CT, Billion A, Steinweg C, Domann E, Kärst U, Jänsch L, Wehland J, Eisenreich W, Bacher A, Joseph B, Schär J, Kreft J, Klumpp J, Loessner MJ, Dorscht J, Neuhaus K, Fuchs TM, Scherer S, Doumith M, Jacquet C, Martin P, Cossart P, Rusniock C, Glaser P, Buchrieser C, Goebel W, Chakraborty T. Pathogenomics of Listeria spp. Int J Med Microbiol 2007; 297:541-57. [PMID: 17482873 DOI: 10.1016/j.ijmm.2007.03.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 03/15/2007] [Accepted: 03/16/2007] [Indexed: 11/20/2022] Open
Abstract
This review provides an overview of recent progress in the exploration of genomic, transcriptomic, and proteomic data in Listeria spp. to understand genome evolution and diversity, as well as physiological aspects of metabolism utilized by the bacteria when growing in diverse and varied environments.
Collapse
Affiliation(s)
- Torsten Hain
- Institute for Medical Microbiology, Justus-Liebig-University, Frankfurter Strasse 107, D-35392 Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hain T, Steinweg C, Chakraborty T. Comparative and functional genomics of Listeria spp. J Biotechnol 2006; 126:37-51. [PMID: 16757050 DOI: 10.1016/j.jbiotec.2006.03.047] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 02/08/2006] [Accepted: 03/29/2006] [Indexed: 11/24/2022]
Abstract
The genus Listeria comprises a group of non-sporulating, Gram-positive, soil bacteria belonging to the low G+C group of microorganisms. The genus consists of only six species, L. monocytogenes, L. ivanovii, L. seeligeri, L. innocua, L. welshimeri, and L. grayi.L. monocytogenes and L. ivanovii are the only known pathogens of this group. Comparative whole-genome sequencing of representative strains comprising the entire genus is currently being performed and nearing completion. In the genus Listeria, genome reduction has led to the generation of non-pathogenic species from pathogenic progenitor strains. Indeed, many of the regions absent in the non-pathogenic species represent commonly deleted genes. Speciation and diversity of strains has been achieved by horizontal gene transfer of DNA encoding novel genes probably required for niche specific survival. The sequencing of several listerial genomes has also been accompanied by studies using global strategies involving whole-genome transcriptional profiling and proteomics to examine the adaptative changes of L. monocytogenes to growth in different environments and to catalogue the genes mediating these responses. We review this data and present information on the expression profile of L. monocytogenes EGD-e inside the vacuolar and the cytosolic environments of the host cell using whole-genome microarray analysis. Of the 484 genes regulated during intracellular growth 41 genes are species-specific, being absent from the genome of the non-pathogenic L. innocua CLIP 11262 strain. There were 25 genes that are strain-specific i.e. absent from the genome of the L. monocytogenes F2365 serotype 4b strain suggesting heterogeneity in the gene pool required for intracellular survival of L. monocytogenes in host cells.
Collapse
Affiliation(s)
- Torsten Hain
- Institute for Medical Microbiology, Justus-Liebig-University, Frankfurter Strasse 107, D-35392 Giessen, Germany
| | | | | |
Collapse
|
22
|
Wagner M, Melzner D, Bagò Z, Winter P, Egerbacher M, Schilcher F, Zangana A, Schoder D. Outbreak of Clinical Listeriosis in Sheep: Evaluation from possible Contamination Routes from Feed to Raw Produce and Humans. ACTA ACUST UNITED AC 2005; 52:278-83. [PMID: 16219091 DOI: 10.1111/j.1439-0450.2005.00866.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the results of clinical and microbiological investigations on Listeria monocytogenes infections in a flock of 55 sheep and describe the implications for the safety of the raw milk and raw-milk cheeses produced in the on-farm dairy. The outbreak was caused by feeding grass silage, which was contaminated with 5 log10 CFU L. monocytogenes/g. Clinically, although having been fed from the same batch of silage, abortive (nine ewes), encephalitic (one ewe) and septicaemic (four ewes) forms of listeriosis were observed during the outbreak phase. As the starting point of feeding the contaminated silage was known we could calculate an incubation period of 18+/-2 and 26 days for the abortive and the encephalitic form of listeriosis, respectively. Pathologically, the septicaemic cases suffered from Listeria accumulation at comparable numbers in visceral organs but not in the brain. Only a single ewe developed central nervous symptoms and a rhomb-encephalitis was immunohistologically confirmed. In this case the infection proceeded from the nasal mucosa into the brain, with no infections of the liver, spleen and other visceral organs. Sampling of the cheese production chain, the farm environment and the persons living at the farm revealed the exposure of a farm-worker to an isolate genetically indistinguishable from the outbreak clone, obviously through the consumption of faecally contaminated bovine raw milk. The cheese under processing was free of Listeria because, as a result of intensive consultations, the farmer ensured a proper acidification of the cheese. The epidemiological findings suggest that food safety matters should be assessed in any case where infection of food-producing animals with potential human pathogens is observed.
Collapse
Affiliation(s)
- M Wagner
- Department for Veterinary Public Health and Food Science, Institute for Milk Hygiene, Milk Technology and Food Science, University for Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Liu D, Ainsworth AJ, Austin FW, Lawrence ML. PCR detection of a putative N-acetylmuramidase gene from Listeria ivanovii facilitates its rapid identification. Vet Microbiol 2004; 101:83-9. [PMID: 15172690 DOI: 10.1016/j.vetmic.2004.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 02/19/2004] [Accepted: 03/08/2004] [Indexed: 10/26/2022]
Abstract
Listeria ivanovii is a Gram-positive bacterial pathogen that is capable of causing abortions and stillbirths in farm animals, particularly sheep and cattle. In terms of morphological, biochemical and molecular characteristics, L. ivanovii resembles other Listeria species such as L. monocytogenes, a pathogen of both man and animals. In this study, through comparative analysis of genomic DNA from the six Listeria species, a L. ivanovii specific clone (liv22-228) containing a 946 bp insert was isolated. This clone contained the 5' ends of two divergently transcribed L. ivanovii genes and an intergenic spacer region, similar in organization to homologous regions from the L. innocua and L. monocytogenes genomes. Regions of low homology in the clone were identified by comparing to the L. innocua and L. monocytogenes genomes, and oligonucleotide primers (liv22-228F and liv22-228R) were designed. These primers amplified a 463 bp band from genomic DNA of L. ivanovii strains only, but not from other Listeria species or common bacteria. Thus, PCR employing L. ivanovii specific primers (liv22-228F and liv22-228R) provides a useful and straightforward method for rapid and precise determination of L. ivanovii.
Collapse
Affiliation(s)
- Dongyou Liu
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi, MS 39762, USA
| | | | | | | |
Collapse
|
24
|
Kimpe A, Decostere A, Hermans K, Baele M, Haesebrouck F. Isolation of Listeria ivanovii
from a septicaemic chinchilla (Chinchilla lanigera
). Vet Rec 2004; 154:791-2. [PMID: 15233458 DOI: 10.1136/vr.154.25.791] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- A Kimpe
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | | | | | | | | |
Collapse
|
25
|
Malik SVS, Barbuddhe SB, Chaudhari SP. Listeric infections in humans and animals in the Indian subcontinent: a review. Trop Anim Health Prod 2002; 34:359-81. [PMID: 12379055 DOI: 10.1023/a:1020051807594] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Listeriosis is an important bacterial zoonosis caused by the intracellular pathogen Listeria monocytogenes. The disease has been reported in animals from the Indian subcontinent, usually in the form of sporadic cases but occasionally as outbreaks. Cases of listeriosis arise mainly from the ingestion of contaminated food. Listeriosis has been reported to cause encephalitis, abortion, mastitis, repeat breeding and endometriosis in animals. Listeric infections occur in children and women with a poor obstetric history. The epidemiological aspects and pathogenesis of listeriosis in animals and humans are not yet fully understood. This review offers comprehensive information on experimental studies and field cases in animals and on cases of human listeriosis. There are also sections on isolation from foods, diagnosis and treatment in humans and animals.
Collapse
Affiliation(s)
- S V S Malik
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar 243 122, India
| | | | | |
Collapse
|
26
|
Vázquez-Boland JA, Kuhn M, Berche P, Chakraborty T, Domínguez-Bernal G, Goebel W, González-Zorn B, Wehland J, Kreft J. Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 2001; 14:584-640. [PMID: 11432815 PMCID: PMC88991 DOI: 10.1128/cmr.14.3.584-640.2001] [Citation(s) in RCA: 1494] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a highly fatal opportunistic foodborne infection. Pregnant women, neonates, the elderly, and debilitated or immunocompromised patients in general are predominantly affected, although the disease can also develop in normal individuals. Clinical manifestations of invasive listeriosis are usually severe and include abortion, sepsis, and meningoencephalitis. Listeriosis can also manifest as a febrile gastroenteritis syndrome. In addition to humans, L. monocytogenes affects many vertebrate species, including birds. Listeria ivanovii, a second pathogenic species of the genus, is specific for ruminants. Our current view of the pathophysiology of listeriosis derives largely from studies with the mouse infection model. Pathogenic listeriae enter the host primarily through the intestine. The liver is thought to be their first target organ after intestinal translocation. In the liver, listeriae actively multiply until the infection is controlled by a cell-mediated immune response. This initial, subclinical step of listeriosis is thought to be common due to the frequent presence of pathogenic L. monocytogenes in food. In normal individuals, the continual exposure to listerial antigens probably contributes to the maintenance of anti-Listeria memory T cells. However, in debilitated and immunocompromised patients, the unrestricted proliferation of listeriae in the liver may result in prolonged low-level bacteremia, leading to invasion of the preferred secondary target organs (the brain and the gravid uterus) and to overt clinical disease. L. monocytogenes and L. ivanovii are facultative intracellular parasites able to survive in macrophages and to invade a variety of normally nonphagocytic cells, such as epithelial cells, hepatocytes, and endothelial cells. In all these cell types, pathogenic listeriae go through an intracellular life cycle involving early escape from the phagocytic vacuole, rapid intracytoplasmic multiplication, bacterially induced actin-based motility, and direct spread to neighboring cells, in which they reinitiate the cycle. In this way, listeriae disseminate in host tissues sheltered from the humoral arm of the immune system. Over the last 15 years, a number of virulence factors involved in key steps of this intracellular life cycle have been identified. This review describes in detail the molecular determinants of Listeria virulence and their mechanism of action and summarizes the current knowledge on the pathophysiology of listeriosis and the cell biology and host cell responses to Listeria infection. This article provides an updated perspective of the development of our understanding of Listeria pathogenesis from the first molecular genetic analyses of virulence mechanisms reported in 1985 until the start of the genomic era of Listeria research.
Collapse
Affiliation(s)
- J A Vázquez-Boland
- Grupo de Patogénesis Molecular Bacteriana, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|