1
|
Moreau KL, Clayton ZS, DuBose LE, Rosenberry R, Seals DR. Effects of regular exercise on vascular function with aging: Does sex matter? Am J Physiol Heart Circ Physiol 2024; 326:H123-H137. [PMID: 37921669 PMCID: PMC11208002 DOI: 10.1152/ajpheart.00392.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/11/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Vascular aging, featuring endothelial dysfunction and large elastic artery stiffening, is a major risk factor for the development of age-associated cardiovascular diseases (CVDs). Vascular aging is largely mediated by an excessive production of reactive oxygen species (ROS) and increased inflammation leading to reduced bioavailability of the vasodilatory molecule nitric oxide and remodeling of the arterial wall. Other cellular mechanisms (i.e., mitochondrial dysfunction, impaired stress response, deregulated nutrient sensing, cellular senescence), termed "hallmarks" or "pillars" of aging, may also contribute to vascular aging. Gonadal aging, which largely impacts women but also impacts some men, modulates the vascular aging process. Regular physical activity, including both aerobic and resistance exercise, is a first-line strategy for reducing CVD risk with aging. Although exercise is an effective intervention to counter vascular aging, there is considerable variation in the vascular response to exercise training with aging. Aerobic exercise improves large elastic artery stiffening in both middle-aged/older men and women and enhances endothelial function in middle-aged/older men by reducing oxidative stress and inflammation and preserving nitric oxide bioavailability; however, similar aerobic exercise training improvements are not consistently observed in estrogen-deficient postmenopausal women. Sex differences in adaptations to exercise may be related to gonadal aging and declines in estrogen in women that influence cellular-molecular mechanisms, disconnecting favorable signaling in the vasculature induced by exercise training. The present review will summarize the current state of knowledge on vascular adaptations to regular aerobic and resistance exercise with aging, the underlying mechanisms involved, and the moderating role of biological sex.
Collapse
Affiliation(s)
- Kerrie L Moreau
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Eastern Colorado Health Care System, Geriatric Research Education and Clinical Center, Aurora, Colorado, United States
| | - Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Lyndsey E DuBose
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Ryan Rosenberry
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| |
Collapse
|
2
|
Barros MPD, Bachi ALL, Santos JDMBD, Lambertucci RH, Ishihara R, Polotow TG, Caldo-Silva A, Valente PA, Hogervorst E, Furtado GE. The poorly conducted orchestra of steroid hormones, oxidative stress and inflammation in frailty needs a maestro: Regular physical exercise. Exp Gerontol 2021; 155:111562. [PMID: 34560197 DOI: 10.1016/j.exger.2021.111562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/25/2022]
Abstract
This review outlines the various factors associated with unhealthy aging which includes becoming frail and dependent. With many people not engaging in recommended exercise, facilitators and barriers to engage with exercise must be investigated to promote exercise uptake and adherence over the lifespan for different demographics, including the old, less affluent, women, and those with different cultural-ethnic backgrounds. Governmental and locally funded public health messages and environmental facilitation (gyms, parks etc.) can play an important role. Studies have shown that exercise can act as a conductor to balance oxidative stress, immune and endocrine functions together to promote healthy aging and reduce the risk for age-related morbidities, such as cardiovascular disease and atherosclerosis, and promote cognition and mood over the lifespan. Like a classic symphony orchestra, consisting of four groups of related musical instruments - the woodwinds, brass, percussion, and strings - the aging process should also perform in harmony, with compassion, avoiding the aggrandizement of any of its individual parts during the presentation. This review discusses the wide variety of molecular, cellular and endocrine mechanisms (focusing on the steroid balance) underlying this process and their interrelationships.
Collapse
Affiliation(s)
- Marcelo Paes de Barros
- Institute of Physical Activity Sciences and Sports (ICAFE), MSc/PhD Interdisciplinary Program in Health Sciences, Cruzeiro do Sul University, 01506-000 São Paulo, Brazil.
| | - André Luís Lacerda Bachi
- Department of Otorhinolaryngology, ENT Lab, Federal University of São Paulo (UNIFESP), São Paulo 04025-002, Brazil; Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo 04829-300, Brazil
| | | | | | - Rafael Ishihara
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos 11015-020, SP, Brazil
| | - Tatiana Geraldo Polotow
- Institute of Physical Activity Sciences and Sports (ICAFE), MSc/PhD Interdisciplinary Program in Health Sciences, Cruzeiro do Sul University, 01506-000 São Paulo, Brazil
| | - Adriana Caldo-Silva
- University of Coimbra, Research Unit for Sport and Physical Activity (CIDAF, UID/PTD/04213/2019) at Faculty of Sport Science and Physical Education, (FCDEF-UC), Portugal
| | - Pedro Afonso Valente
- University of Coimbra, Research Unit for Sport and Physical Activity (CIDAF, UID/PTD/04213/2019) at Faculty of Sport Science and Physical Education, (FCDEF-UC), Portugal
| | - Eef Hogervorst
- Applied Cognitive Research National Centre for Sports and Exercise Medicine, Loughborough University, Loughborough, UK
| | - Guilherme Eustáquio Furtado
- Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), Coimbra, Portugal; Institute Polytechnic of Maia, Porto, Portugal; University of Coimbra, Research Unit for Sport and Physical Activity (CIDAF, UID/PTD/04213/2019) at Faculty of Sport Science and Physical Education, (FCDEF-UC), Portugal.
| |
Collapse
|
3
|
Abstract
This review summarizes a presentation given during the "Countermeasures to Cardiovascular Aging Symposium" that was part of the American Physiological Society Conference on Cardiovascular Aging: New Frontiers and Old Friends held in Westminster, CO, in August 2017. Endothelial dysfunction, a characteristic of vascular aging, is a major risk factor for age-associated cardiovascular diseases. In women, the decline in endothelial function is attenuated until menopause, whereafter the rate of decline accelerates to match that seen in men. Sex differences in the decline in endothelial function have been attributed to changes in sex hormones with aging. Women have a progressive impairment in endothelial function across the stages of the menopause transition, related in part to declining estradiol levels. In contrast to women, little is known about the impact of declining testosterone levels on endothelial function in men. Some evidence suggests greater endothelial dysfunction in men with low testosterone compared with men with higher testosterone. The underlying causes of endothelial dysfunction with sex hormone deficiency are unknown but may be related to endothelial nitric oxide synthase dysfunction and oxidative stress. Lifestyle behaviors, including habitual endurance exercise, attenuates and reverses the age-associated decline in endothelial function in older men. However, in older women, these exercise adaptations are diminished or absent, possibly related to estrogen deficiency. Understanding how declines in sex hormones contribute to the vascular aging process in both women and men will inform effective sex-specific intervention strategies to preserve vascular health and prevent cardiovascular diseases.
Collapse
Affiliation(s)
- Kerrie L Moreau
- University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Denver Veterans Administration Medical Center, Geriatric Research Education and Clinical Center , Aurora, Colorado
| |
Collapse
|
4
|
Abstract
Regular exercise is promoted as a therapeutic strategy for age-associated endothelial dysfunction. Improvements in endothelial function are observed with endurance exercise in older men, but are diminished or absent in older women. This article examines the hypothesis that sex hormones modulate vascular adaptations to exercise training by influencing antioxidant defense systems, mitochondrial function, oxidative stress, and intracellular signaling.
Collapse
Affiliation(s)
- Kerrie L. Moreau
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Denver Veterans Administration Medical Center, Geriatric Research, Education and Clinical Center, University of Illinois at Chicago, Chicago, IL
| | - Cemal Ozemek
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
5
|
Ferreira ECS, Bortolin RH, Freire-Neto FP, Souza KSC, Bezerra JF, Ururahy MAG, Ramos AMO, Himelfarb ST, Abreu BJ, Didone TVN, Pedrosa LFC, Medeiros AC, Doi SQ, Brandão-Neto J, Hirata RDC, Rezende LA, Almeida MG, Hirata MH, Rezende AA. Zinc supplementation reduces RANKL/OPG ratio and prevents bone architecture alterations in ovariectomized and type 1 diabetic rats. Nutr Res 2017; 40:48-56. [PMID: 28473060 DOI: 10.1016/j.nutres.2017.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/16/2017] [Accepted: 03/09/2017] [Indexed: 02/05/2023]
Abstract
Type 1 diabetes mellitus (T1DM) and estrogen deficiency are associated with several alterations in bone turnover. Zinc (Zn) is required for growth, development, and overall health. Zinc has been used in complementary therapy against bone loss in several diseases. We hypothesized that Zn supplementation represents a potential therapy against severe bone loss induced by the combined effect of estrogen deficiency and T1DM. We evaluated the protective effect of Zn against bone alterations in a chronic model of these disorders. Female Wistar rats were ramdomized into 3 groups (5 rats each): control, OVX/T1DM (ovariectomized rats with streptozotocin-induced T1DM), and OVX/T1DM+Zn (OVX/T1DM plus daily Zn supplementation). Serum biochemical, bone histomorphometric, and molecular analyses were performed. Histomorphometric parameters were similar between the control and OVX/T1DM+Zn groups, suggesting that Zn prevents bone architecture alterations. In contrast, the OVX/T1DM group showed significantly lower trabecular width and bone area as well as greater trabecular separation than the control. The OVX/T1DM and OVX/T1DM+Zn groups had significantly higher serum alkaline phosphatase activity than the control. The supplemented group had higher levels of serum-ionized calcium and phosphorus than the nonsupplemented group. The RANKL/OPG ratio was similar between the control and OVX/T1DM+Zn groups, whereas it was higher in the OVX/T1DM group. In conclusion, Zn supplementation prevents bone alteration in chronic OVX/T1DM rats, as demonstrated by the reduced RANKL/OPG ratio and preservation of bone architecture. The findings may represent a novel therapeutic approach to preventing OVX/T1DM-induced bone alterations.
Collapse
Affiliation(s)
- Elaine C S Ferreira
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Raul H Bortolin
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Francisco P Freire-Neto
- Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Karla S C Souza
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - João F Bezerra
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Marcela A G Ururahy
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Ana M O Ramos
- Department of Clinical Pathology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Silvia T Himelfarb
- School of Pharmaceutical Science, University of São Paulo, São Paulo, Brazil
| | - Bento J Abreu
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Thiago V N Didone
- School of Pharmaceutical Science, University of São Paulo, São Paulo, Brazil
| | - Lucia F C Pedrosa
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Aldo C Medeiros
- Department of Clinical Medicine, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Sonia Q Doi
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - José Brandão-Neto
- Department of Clinical Medicine, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Rosário D C Hirata
- School of Pharmaceutical Science, University of São Paulo, São Paulo, Brazil
| | - Luciana A Rezende
- Department of Chemistry, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Maria G Almeida
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Mario H Hirata
- School of Pharmaceutical Science, University of São Paulo, São Paulo, Brazil
| | - Adriana A Rezende
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.
| |
Collapse
|
6
|
Pimenta M, Bringhenti I, Souza-Mello V, dos Santos Mendes IK, Aguila MB, Mandarim-de-Lacerda CA. High-intensity interval training beneficial effects on body mass, blood pressure, and oxidative stress in diet-induced obesity in ovariectomized mice. Life Sci 2015; 139:75-82. [DOI: 10.1016/j.lfs.2015.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/27/2015] [Accepted: 08/01/2015] [Indexed: 01/06/2023]
|