1
|
Tsoukos A, Wilk M, Krzysztofik M, Zajac A, Bogdanis GC. Acute Effects of Fast vs. Slow Bench Press Repetitions with Equal Time Under Tension on Velocity, sEMG Activity, and Applied Force in the Bench Press Throw. J Funct Morphol Kinesiol 2024; 10:4. [PMID: 39846645 PMCID: PMC11755598 DOI: 10.3390/jfmk10010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/24/2025] Open
Abstract
Background: The tempo of resistance exercises is known to influence performance outcomes, yet its specific effects on post-activation performance enhancement (PAPE) remain unclear. This study aimed to investigate the effects of fast versus slow repetitions at a load of 70% of one-repetition maximum (1-RM) in the bench press exercise, focusing on velocity, surface electromyographic (sEMG) activity, and applied force while equating time under tension on bench press throw performance. Methods: Eleven men (age: 23.5 ± 5.4 years, height: 1.79 ± 0.04 m, body mass: 79.1 ± 6.4 kg, maximum strength 1-RM: 91.0 ± 12.0 kg) participated. Two experimental conditions (FAST and SLOW) and one control (CTRL) were randomly assigned. Participants performed two sets of six repetitions as fast as possible (FAST condition) and two sets of three repetitions at a controlled tempo (SLOW condition) at half the concentric velocity of FAST, as determined in a preliminary session. Before and after the bench press participants performed bench press throws tests (Pre, 45 s, 4, 8, and 12 min after). Results: sEMG activity and peak force during the bench press were higher in FAST vs. SLOW conditioning activity (p < 0.001), with time under tension showing no significant differences between conditions (p > 0.05). Mean propulsive velocity (MPV) during the bench press throw improved equally in both FAST and SLOW conditions compared with baseline from the 4th to the 12th min of recovery (FAST: +6.8 ± 2.9% to +7.2 ± 3.3%, p < 0.01, SLOW: +4.0 ± 3.0% to +3.6 ± 4.5%, p < 0.01, respectively). Compared to the CTRL, both conditions exhibited improved MPV values from the 4th to 12th min (p < 0.01). Peak velocity improvements were observed only after the FAST condition compared to the baseline (p < 0.01) with no differences from SLOW. For all muscles involved and time points, sEMG activity during bench press throws was higher than CTRL in both experimental conditions (p < 0.01), with no differences between FAST and SLOW. Peak force increased in both FAST and SLOW conditions at all time points (p < 0.05), compared to CTRL. Conclusions: These findings suggest that post-activation performance enhancement is independent of movement tempo, provided that the resistive load and total time under tension of the conditioning activity are similar. This study provides valuable insights into the complex training method for athletes by demonstrating that varying tempo does not significantly affect post-activation performance enhancement when load and TUT are equated.
Collapse
Affiliation(s)
- Athanasios Tsoukos
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, 172 37 Athens, Greece;
| | - Michal Wilk
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland; (M.W.); (M.K.); (A.Z.)
- Department of Sport Games, Faculty of Physical Education and Sport, Charles University in Prague, 110 00 Prague, Czech Republic
| | - Michal Krzysztofik
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland; (M.W.); (M.K.); (A.Z.)
- Department of Sport Games, Faculty of Physical Education and Sport, Charles University in Prague, 110 00 Prague, Czech Republic
| | - Adam Zajac
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland; (M.W.); (M.K.); (A.Z.)
| | - Gregory C. Bogdanis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, 172 37 Athens, Greece;
| |
Collapse
|
2
|
Gallardo P, Giakas G, Sakkas GK, Tsaklis PV. Are Surface Electromyography Parameters Indicative of Post-Activation Potentiation/Post-Activation Performance Enhancement, in Terms of Twitch Potentiation and Voluntary Performance? A Systematic Review. J Funct Morphol Kinesiol 2024; 9:106. [PMID: 38921642 PMCID: PMC11205249 DOI: 10.3390/jfmk9020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The aim was to identify if surface electromyography (sEMG) parameters are indicative of post-activation potentiation (PAP)/post-activation performance enhancement (PAPE), in terms of twitch potentiation and voluntary performance. Three databases were used in April 2024, with the following inclusion criteria: (a) original research, assessed in healthy human adults, and (b) sEMG parameters were measured. The exclusion criteria were (a) studies with no PAP/PAPE protocol and (b) non-randomized control trials. The following data were extracted: study characteristics/demographics, PAP/PAPE protocols, sEMG parameters, twitch/performance outcomes, and study findings. A modified physiotherapy evidence database (PEDro) scale was used for quality assessment. Fifteen randomized controlled trials (RCTs), with a total of 199 subjects, were included. The M-wave amplitude (combined with a twitch torque outcome) was shown to generally be indicative of PAP. The sEMG amplitudes (in some muscles) were found to be indicative of PAPE during ballistic movements, while a small decrease in the MdF (in certain muscles) was shown to reflect PAPE. Changes in the Hmax/Mmax ratio were found to contribute (temporally) to PAP, while the H-reflex amplitude was shown to be neither indicative of PAP nor PAPE. This review provides preliminary findings suggesting that certain sEMG parameters could be indicative of PAP/PAPE. However, due to limited studies, future research is warranted.
Collapse
Affiliation(s)
- Philip Gallardo
- Department of Physical Education and Sport Science, ErgoMech-Lab, University of Thessaly, 421 00 Trikala, Greece; (P.G.); (G.G.); (G.K.S.)
| | - Giannis Giakas
- Department of Physical Education and Sport Science, ErgoMech-Lab, University of Thessaly, 421 00 Trikala, Greece; (P.G.); (G.G.); (G.K.S.)
| | - Giorgos K. Sakkas
- Department of Physical Education and Sport Science, ErgoMech-Lab, University of Thessaly, 421 00 Trikala, Greece; (P.G.); (G.G.); (G.K.S.)
| | - Panagiotis V. Tsaklis
- Department of Physical Education and Sport Science, ErgoMech-Lab, University of Thessaly, 421 00 Trikala, Greece; (P.G.); (G.G.); (G.K.S.)
- Department Molecular Medicine and Surgery, Growth and Metabolism, Karolinska Institute, 171 77 Solna, Sweden
- Center of Orthopaedics and Regenerative Medicine (C.O.RE.)/(C.I.R.I.), Aristotle University Thessaloniki, 541 24 Thessaloniki, Greece
| |
Collapse
|
3
|
Zagatto AM, Lopes VHF, Dutra YM, de Poli RAB, Dolan E, Rasica L, Murias JM, de Azevedo PHSM. Sodium bicarbonate induces alkalosis, but improves high-intensity cycling performance only when participants expect a beneficial effect: a placebo and nocebo study. Eur J Appl Physiol 2024; 124:1367-1380. [PMID: 38032386 DOI: 10.1007/s00421-023-05368-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
The study aimed to investigate the effects of sodium bicarbonate (NaHCO3) intake with divergent verbal and visual information on constant load cycling time-to-task failure, conducted within the severe intensity domain. Fifteen recreational cyclists participated in a randomized double-blind, crossover study, ingesting NaHCO3 or placebo (i.e., dextrose), but with divergent information about its likely influence (i.e., likely to induce ergogenic, inert, or harmful effects). Performance was evaluated using constant load cycling time to task failure trial at 115% of peak power output estimated during a ramp incremental exercise test. Data on blood lactate, blood acid-base balance, muscle electrical activity (EMG) through electromyography signal, and the twitch interpolation technique to assess neuromuscular indices were collected. Despite reduced peak force in the isometric maximal voluntary contraction and post-effort peripheral fatigue in all conditions (P < 0.001), neither time to task failure, EMG nor, blood acid-base balance differed between conditions (P > 0.05). Evaluation of effect sizes of all conditions suggested that informing participants that the supplement would be likely to have a positive effect (NaHCO3/Ergogenic: 0.46; 0.15-0.74; Dextrose/Ergogenic: 0.45; 0.04-0.88) resulted in improved performance compared to control. Thus, NaHCO3 ingestion consistently induced alkalosis, indicating that the physiological conditions to improve performance were present. Despite this, NaHCO3 ingestion did not influence performance or indicators of neuromuscular fatigue. In contrast, effect size estimates indicate that participants performed better when informed that they were ingesting an ergogenic supplement. These findings suggest that the apparently ergogenic effect of NaHCO3 may be due, at least in part, to a placebo effect.
Collapse
Affiliation(s)
- Alessandro Moura Zagatto
- Laboratory of Physiology and Sport Performance (LAFIDE), Department of Physical Education, School of Sciences, São Paulo State University (UNESP), Post-Graduate Program in Movement Sciences, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Vargem Limpa, Bauru, SP, CEP 17033-360, Brazil.
| | - Vithor Hugo Fialho Lopes
- Laboratory of Physiology and Sport Performance (LAFIDE), Department of Physical Education, School of Sciences, São Paulo State University (UNESP), Post-Graduate Program in Movement Sciences, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Vargem Limpa, Bauru, SP, CEP 17033-360, Brazil
| | - Yago Medeiros Dutra
- Laboratory of Physiology and Sport Performance (LAFIDE), Department of Physical Education, School of Sciences, São Paulo State University (UNESP), Post-Graduate Program in Movement Sciences, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Vargem Limpa, Bauru, SP, CEP 17033-360, Brazil
| | - Rodrigo Araujo Bonetti de Poli
- Laboratory of Physiology and Sport Performance (LAFIDE), Department of Physical Education, School of Sciences, São Paulo State University (UNESP), Post-Graduate Program in Movement Sciences, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Vargem Limpa, Bauru, SP, CEP 17033-360, Brazil
| | - Eimear Dolan
- Applied Physiology and Nutrition Research Group, Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Letizia Rasica
- Faculty of Kinesiology, Human Performance Lab, University of Calgary, Calgary, Canada
| | - Juan M Murias
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | |
Collapse
|
4
|
Fischer J, Paternoster FK. Post-Activation-Performance Enhancement: Possible Contributing Factors. J Sports Sci Med 2024; 23:34-45. [PMID: 38455437 PMCID: PMC10915613 DOI: 10.52082/jssm.2024.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/13/2023] [Indexed: 03/09/2024]
Abstract
This study aimed to narrow down the possible mechanisms of Post-Activation Performance Enhancement (PAPE), especially if they are exclusively found in the muscle. It was therefore investigated whether (1) the PAPE effect is influenced by neural factors and (2) if Post-Activation-Potentiation (PAP) influences PAPE. Thirteen strength-trained participants (26.5 ± 3.2 years) took part in at least one of three interventions (PAP, PAPE-Electrical (PAPEE), and PAPE-Voluntary (PAPEV)). Conditioning contractions (CC) and testing involved isometric knee extensions performed on an isokinetic device at an 80° knee flexion angle. The CC was either performed voluntarily (PAP, PAPEV) or was evoked through electrical stimulation (PAPEE). Testing was performed at baseline and after two seconds, four minutes, eight minutes, and twelve minutes of the CC. Maximum voluntary isometric contractions (MVIC) for the PAPE trials and supramaximal twitches for the PAP trial were used for testing. Parameters of interest were peak torque and rate of torque development (RTD), and electromyography (EMG) amplitude of the quadriceps (only PAPE). Repeated measures ANOVA and simple contrast comparisons were used for statistical analysis. Peak torque (p < 0.001, η2p = 0.715) and RTD (p = 0. 005, η2p = 0.570) increased significantly during the PAP protocol immediately two seconds after the CC and decreased to near baseline values for the following time points (p > 0.05). Peak torque, RTD, and peak EMG showed no significant differences during PAPEE and PAPEV trials (p > 0.05). Due to the lack of a visible PAPE effect, the question of whether neural mechanisms influence PAPE cannot be answered. Due to the time course of the PAP analysis, it is questionable if these mechanisms play a role in PAPE. The assumption that the PAP mechanism influences PAPE cannot be confirmed for the same reason.
Collapse
Affiliation(s)
- Josef Fischer
- Department of Biomechanics in Sports, Faculty of Sport and Health Science, Technical University of Munich, Germany
- Institute of Human Movement Science, Sport and Health, Graz University, Austria
| | - Florian K Paternoster
- Department of Biomechanics in Sports, Faculty of Sport and Health Science, Technical University of Munich, Germany
| |
Collapse
|
5
|
Kolinger D, Stastny P, Pisz A, Krzysztofik M, Wilk M, Tsoukos A, Bogdanis GC. High-Intensity Conditioning Activity Causes Localized Postactivation Performance Enhancement and Nonlocalized Performance Reduction. J Strength Cond Res 2024; 38:e1-e7. [PMID: 38085631 DOI: 10.1519/jsc.0000000000004590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
ABSTRACT Kolinger D, Stastny P, Pisz A, Krzysztofik M, Wilk M, Tsoukos A, and Bogdanis GC. High-intensity conditioning activity causes localized postactivation performance enhancement and nonlocalized performance reduction. J Strength Cond Res 38(1): e1-e7, 2024-This study aimed to examine whether a conditioning activity (CA) performed by the legs (barbell back squat) may cause postactivation performance enhancement (PAPE) on muscle groups other than leg extensors in isokinetic (eccentric [ECC] and concentric [CON]) and dynamic movement. Twelve male basketball players (age: 21.3 ± 3.2, body mass: 89.6 ± 14.1 kg, height: 187.4 ± 4.6 cm, and 1 repetition maximum (1RM) barbell back squat: 113 ± 21 kg) with previous resistance-training experience of at least 2 years, performed 3 sets of 3-4 repetitions of back-squats with submaximal load (60, 90, and 90% 1RM) as CA. Before and after the CA, they performed pretest and post-test in the form of countermovement jumps (CMJs) (localized) or explosive push-ups (EPUs) (nonlocalized) along with isokinetic flexion and extension at the knee (localized) or at the elbow (nonlocalized). The localized and nonlocalized protocols were divided into 2 days in a randomized order. The back squat as CA significantly increased peak torque (PT) (p < 0.05) in all CON and ECC muscle actions and average power per repetition (APPR) (p < 0.05) (all muscle actions except ECC flexion) of the localized isokinetic tests with large (>0.8) and medium (0.4-0.79) effect sizes and significantly decreased (p < 0.01) the PT and APPR (p < 0.01) of the nonlocalized isokinetic test in the ECC flexion. The CMJ and EPU tests showed no significant differences (p > 0.05) between premeasures and postmeasures of take-off height. The effect of PAPE seems to be specific to the muscles most involved in the CA, and the CA inhibits PT of subsequent muscle ECC contractions in muscles not involved in the CA.
Collapse
Affiliation(s)
- Dominik Kolinger
- Department of Sports Games, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Petr Stastny
- Department of Sports Games, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Anna Pisz
- Department of Sports Games, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Michal Krzysztofik
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education, Katowice, Poland; and
| | - Michal Wilk
- Department of Sports Games, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Athanasios Tsoukos
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Gregory C Bogdanis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
Biel P, Zubik M, Filip-Stachnik A, Ewertowska P, Krzysztofik M. Acute effects of unilateral and bilateral conditioning activity on countermovement jump, linear speed, and muscle stiffness: A randomized crossover study. PLoS One 2023; 18:e0292999. [PMID: 37831688 PMCID: PMC10575535 DOI: 10.1371/journal.pone.0292999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
PURPOSE Evidence directly comparing the effects of bilateral and unilateral conditioning activities is limited. Therefore, the aim of this study was to assess the acute effect of unilateral and bilateral conditioning activity on vastus lateralis stiffness, countermovement jump parameters, and 10 m sprint. METHODS Twelve semi-professional basketball players participated in this study (age: 23 ± 4 yrs; body mass: 84.7 ± 10.6 kg; body height: 192 ± 6 cm; basketball training experience: 11 ± 4 yrs) performed four experimental sessions to compare the acute effects of bilateral, stronger-only, weaker-only lower limb or no conditioning activity on vastus lateralis stiffness, countermovement jumps variables (height; peak velocity; peak force, contraction time, countermovement depth, and modified reactive strength index and 10 m sprint time. Measurements were performed 5 minutes before and in the 5th and 10th minutes after CA. RESULTS Bilateral conditioning activity significantly increase the countermovement jump height (p = 0.002; ES = 0.71) and the reactive strength index modified (p = 0.010; ES = 0.59). Moreover, a significantly higher peak force in the stronger than in the weaker limb was found (p<0.001) without any differences between conditions and time points (p>0.05). However, there were no significant (p>0.05) interactions and effects of conditions or time-point in the case of the other countermovement jump variables, vastus lateralis stiffness, and 10m sprint time. CONCLUSION Unilateral and bilateral drop jumps (3 sets of 5 repetitions) did not affect the vastus lateralis stiffness and time of the 10m sprint. However, only bilateral drop jumps effectively enhanced the countermovement jump height and modified reactive strength index. Bilateral drop jumps might be a useful part of a warm-up to improve jumping performance in basketball players.
Collapse
Affiliation(s)
- Piotr Biel
- Department of Sport and Physical Education, AGH University of Science and Technology, Krakow, Poland
| | - Mateusz Zubik
- Department of Sport and Physical Education, AGH University of Science and Technology, Krakow, Poland
| | - Aleksandra Filip-Stachnik
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Paulina Ewertowska
- Division of Clinical Physiotherapy, Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - Michał Krzysztofik
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
- Department of Sport Games, Faculty of Physical Education and Sport, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
7
|
Paish AD, Zero AM, McNeil CJ, Rice CL. Increased corticospinal inhibition following brief maximal and submaximal contractions in humans. J Appl Physiol (1985) 2023; 135:805-811. [PMID: 37616335 DOI: 10.1152/japplphysiol.00206.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023] Open
Abstract
A potentiating conditioning contraction (CC) has been shown to increase silent period duration, an index of corticospinal inhibition; however, it is unknown if the CC must induce potentiation for corticospinal inhibition to increase. Ten healthy, young adults (four females) completed this study to assess potentiation and silent period (SP) duration before and after four types of CCs: voluntary and electrically evoked maximal CCs to optimize potentiation, and voluntary and electrically evoked submaximal CCs (∼40% of maximal voluntary force) that induced minimal potentiation. Stimulation was applied to the ulnar nerve to evoke twitches for the assessment of potentiation and to evoke tetanic CCs of the first dorsal interosseous muscle. The SP was elicited by applying transcranial magnetic stimulation to the motor cortex during brief contractions at 25% of maximal voluntary force. Changes to twitch force and SP duration were not different for voluntary and tetanic contractions, so data were pooled. Twitch force increased by 81.2 ± 35.7% (P < 0.001) and 3.2 ± 6.5% (P = 0.039) following maximal and submaximal CCs, respectively. The SP was prolonged following maximal (12.6 ± 6.3%; P < 0.001) and submaximal (4.8 ± 4.9%; P < 0.001) CCs. Correlations between post-CC twitch force and SP duration were not significant for maximal or submaximal conditions (r = -0.068; r = 0.067; P ≥ 0.780, respectively). Duration of the SP increased not only following maximal-intensity CCs but also after submaximal-intensity CCs that induced virtually no potentiation (∼3%). Thus, we suggest that corticospinal inhibition is not directly related to mechanisms of muscle potentiation per se, but, rather, the level of muscle contraction likely mediates feedback from large diameter afferents that affect the SP.NEW & NOTEWORTHY The transcranial magnetic stimulation-induced silent period reflects a transient state of corticospinal inhibition that is influenced by recent history of muscle activation, which may include an effect of potentiation. We demonstrate that silent period duration increases following both voluntary and electrically evoked maximal and submaximal conditioning contractions, even though the latter intensity produced virtually no muscle potentiation. Feedback from group Ia and Ib muscle afferents is proposed as the cause of the increased corticospinal inhibition.
Collapse
Affiliation(s)
- Alexander D Paish
- Faculty of Health Sciences, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - Alexander M Zero
- Faculty of Health Sciences, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - Chris J McNeil
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Charles L Rice
- Faculty of Health Sciences, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
8
|
Krzysztofik M, Wilk M, Pisz A, Kolinger D, Tsoukos A, Aschenbrenner P, Stastny P, Bogdanis GC. Effects of Unilateral Conditioning Activity on Acute Performance Enhancement: A Systematic Review. J Sports Sci Med 2022; 21:625-639. [PMID: 36523899 PMCID: PMC9741717 DOI: 10.52082/jssm.2022.625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
This review aimed to summarize the reported effects of unilateral conditioning activity (CA) on unilateral performance, bilateral performance, and the contribution of activated body limb to bilateral performance. A systematic search on MEDLINE, SPORTDiscus, Scopus, and Google Scholar was conducted on February 2022. Twenty-three studies met the inclusion criteria. Throwing, jumping, swimming, change of direction, and isokinetic performance were used as outcome measures to assess the impact of unilateral CAs on inducing post-activation performance enhancement. Eleven studies examined the effectiveness of resistance exercises as a CA, seven investigated plyometric exercises, and five used isokinetic muscle actions as CAs. Notably, only three studies directly compared the effects of bilateral and unilateral CA, and no study reported possible changes in the contribution of each limb during bilateral exercises executed following unilateral CA. Split squats were the most often studied CA (7), and it was shown that multiple sets of high-loaded split squats (85% one-repetition maximum) executed as CA, improve vertical jumping and change of direction after 4 to 8 min of recovery. At the same time, multiple sets of alternate leg bounds performed with ~10% body weight or without any external load result in an improvement of sprint performance, 2 and 8 min later, with the effect being greater when loaded jumps are used. The unilateral CAs such as split squats, alternate leg bounds, and drop jumps can be effectively used to acutely improve a wide variety of athletic tasks, including jumping, sprinting, change of direction, and swimming performance.
Collapse
Affiliation(s)
- Michał Krzysztofik
- Department of Sport Games, Faculty of Physical Education and Sport, Charles University in Prague, Prague, Czech Republic,Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Michał Wilk
- Department of Sport Games, Faculty of Physical Education and Sport, Charles University in Prague, Prague, Czech Republic,Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Anna Pisz
- Department of Sport Games, Faculty of Physical Education and Sport, Charles University in Prague, Prague, Czech Republic
| | - Dominik Kolinger
- Department of Sport Games, Faculty of Physical Education and Sport, Charles University in Prague, Prague, Czech Republic
| | - Athanasios Tsoukos
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Piotr Aschenbrenner
- Gdansk University of Physical Education and Sport, Biomechanics and Sport Engineering Department, Poland
| | - Petr Stastny
- Department of Sport Games, Faculty of Physical Education and Sport, Charles University in Prague, Prague, Czech Republic
| | - Gregory C. Bogdanis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
9
|
The acute effects of knee extension exercises with different contraction durations on the subsequent maximal knee extension torque among athletes with different strength levels. PLoS One 2022; 17:e0267523. [PMID: 36301920 PMCID: PMC9612496 DOI: 10.1371/journal.pone.0267523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
Individuals with high fatigue resistance against a high-intensity conditioning activity (CA) may be able to avoid experiencing significant fatigue and enhance their voluntary performance. We examined whether the optimal contraction duration of dynamic knee extension exercises to maximize subsequent voluntary performance varies depending on the strength level of an individual. The study participants were 22 male American college football players. Initially, all participants performed a 10-s maximal isometric knee extension exercise and were classified as stronger individuals (n = 8) and weaker individuals (n = 8) based on their relative muscle strength. Each group then performed three types of dynamic CA with different contraction durations (6 s [6-CA], 12 s [12-CA], and 18 s [18-CA]) in random order. To observe the time-course changes in post-activation potentiation and performance enhancement, the twitch torques induced by electrical stimulation and isokinetic knee extension torques at 180°/s were recorded before and after each CA. The twitch torque increased at 10 s (29.5% ± 9.3%) and 1 min (18.5% ± 6.8%) after 6-CA for the stronger individuals (p < 0.05). However, no post-activation potentiation was induced in the weaker individuals in either protocol. Voluntary performance increased at 4 (7.0% ± 4.5%) and 7 (8.2% ± 4.3%) min after 18-CA for stronger individuals (p < 0.05). However, there was no post-activation performance enhancement in either protocol for weaker individuals. Thus, CA with a relatively long contraction duration was optimal to maximize the subsequent voluntary performance for stronger individuals. It remains unknown whether CAs performed with relatively short or long contraction durations were optimal for weaker individuals.
Collapse
|
10
|
Villalon-Gasch L, Penichet-Tomas A, Sebastia-Amat S, Pueo B, Jimenez-Olmedo JM. Postactivation Performance Enhancement (PAPE) Increases Vertical Jump in Elite Female Volleyball Players. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19010462. [PMID: 35010722 PMCID: PMC8744649 DOI: 10.3390/ijerph19010462] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 12/24/2022]
Abstract
The purpose of this study was to verify if a conditioning activity was effective to elicit postactivation performance enhancement (PAPE) and to increase the performance in vertical jump (VJ) in elite female volleyball players. Eleven national Superliga-2 volleyball players (22.6 ± 3.5 years) were randomly assigned to an experimental and control group. Countermovement jumps (CMJ) were performed on eight occasions: before (Pre-PAPE) and after activation (Post-PAPE), after the match (Pre-Match), and after each of the five-match sets (Set 1 to 5). ANOVA showed significantly increased jump performance for the experiment between baseline (Pre-PAPE) and all the following tests: +1.3 cm (Post-PAPE), +3.0 cm (Pre-Match), +4.8 cm (Set 1), +7.3 cm (Set 2), +5.1 cm (Set 3), +3.6 cm (Set 4), and +4.0 cm (Set 5), all showing medium to large effect size (0.7 < ES < 2.4). The performance of the control group did not show significant increases until Set 3 (+3.2 cm) and Set 5 (+2.9 cm), although jump heights were always lower for the control group than the experimental. The use of conditioning activity generates increased VJ performance in Post-PAPE tests and elicited larger PAPE effects that remain until the second set of a volleyball match.
Collapse
|
11
|
O'Grady MW, Young WB, Behm DG, Talpey SW. Effect of Intention to Squat Explosively on Acute Countermovement Jump Performance. J Strength Cond Res 2021; 35:3348-3354. [DOI: 10.1519/jsc.0000000000003325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Zero AM, Rice CL. Post-activation potentiation induced by concentric contractions at three speeds in humans. Exp Physiol 2021; 106:2489-2501. [PMID: 34569107 DOI: 10.1113/ep089613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/23/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Is the degree of in human muscle affected by different shortening velocities, or contraction type? What are the main findings and their importance? The PAP response following maximal concentric contractions was independent of velocity. Slow and moderate velocity maximal contractions produced PAP responses like those from maximal isometric contractions when matched for contraction duration. Despite contraction type differences in cross-bridge and Ca2+ kinetics, maximal contractions, regardless of contraction modality, likely generate sufficient Ca2+ to induce maximal PAP. ABSTRACT Post-activation potentiation (PAP) is the acute enhancement of contractile properties following a brief (<10 s) high-intensity contraction. Compared with isometric contractions, little is known about the PAP response induced by concentric conditioning contractions (CCs) and the effect of velocity. In the dorsiflexors of 11 participants, twitch responses were measured following 5 s of maximal effort concentric CCs at each of 10, 20 and 50°/s. Concentric PAP responses were compared to a maximal isometric voluntary contraction (MVC) matched for contraction time. Additionally, concentric CCs were compared to isometric CCs matched for mean torque, contraction area and time. The PAP response following maximal concentric CCs was independent of velocity and there was no difference in the PAP response between concentric CCs and an isometric MVC. During maximal contractions, regardless of contraction modality, there is likely sufficient Ca2+ to induce a similar full PAP response, and thus there was no difference between speeds or contraction type. Following concentric CCs there was a significantly larger peak twitch torque than following their isometric torque matches (49-58%), and faster maximal rates of torque development at the three speeds (62-77%). However, these responses are likely related to greater EMG in concentric contractions, 125-129% of isometric maximum compared to 38-54%, and not to contraction modality per se. Thus, PAP responses following maximal concentric CCs are not affected by velocity and responses are not different from an isometric MVC. This indicates maximal CCs of 5 s produce a maximal PAP response independent of contraction type (isometric vs. concentric) or shortening velocity.
Collapse
Affiliation(s)
- Alexander M Zero
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON, Canada
| | - Charles L Rice
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
13
|
Prieske O, Behrens M, Chaabene H, Granacher U, Maffiuletti NA. Time to Differentiate Postactivation "Potentiation" from "Performance Enhancement" in the Strength and Conditioning Community. Sports Med 2021; 50:1559-1565. [PMID: 32495254 PMCID: PMC7441077 DOI: 10.1007/s40279-020-01300-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Coaches and athletes in elite sports are constantly seeking to use innovative and advanced training strategies to efficiently improve strength/power performance in already highly-trained individuals. In this regard, high-intensity conditioning contractions have become a popular means to induce acute improvements primarily in muscle contractile properties, which are supposed to translate to subsequent power performances. This performance-enhancing physiological mechanism has previously been called postactivation potentiation (PAP). However, in contrast to the traditional mechanistic understanding of PAP that is based on electrically-evoked twitch properties, an increasing number of studies used the term PAP while referring to acute performance enhancements, even if physiological measures of PAP were not directly assessed. In this current opinion article, we compare the two main approaches (i.e., mechanistic vs. performance) used in the literature to describe PAP effects. We additionally discuss potential misconceptions in the general use of the term PAP. Studies showed that mechanistic and performance-related PAP approaches have different characteristics in terms of the applied research field (basic vs. applied), effective conditioning contractions (e.g., stimulated vs. voluntary), verification (lab-based vs. field tests), effects (twitch peak force vs. maximal voluntary strength), occurrence (consistent vs. inconsistent), and time course (largest effect immediately after vs. ~ 7 min after the conditioning contraction). Moreover, cross-sectional studies revealed inconsistent and trivial-to-large-sized associations between selected measures of mechanistic (e.g., twitch peak force) vs. performance-related PAP approaches (e.g., jump height). In an attempt to avoid misconceptions related to the two different PAP approaches, we propose to use two different terms. Postactivation potentiation should only be used to indicate the increase in muscular force/torque production during an electrically-evoked twitch. In contrast, postactivation performance enhancement (PAPE) should be used to refer to the enhancement of measures of maximal strength, power, and speed following conditioning contractions. The implementation of this terminology would help to better differentiate between mechanistic and performance-related PAP approaches. This is important from a physiological point of view, but also when it comes to aggregating findings from PAP studies, e.g., in the form of meta-analyses, and translating these findings to the field of strength and conditioning.
Collapse
Affiliation(s)
- Olaf Prieske
- University of Applied Sciences for Sports and Management Potsdam, Am Luftschiffhafen 1, 14471, Potsdam, Germany.
| | - Martin Behrens
- Institute of Sport Science, University of Rostock, Rostock, Germany
| | - Helmi Chaabene
- Division of Training and Movement Sciences, Research Focus Cognitive Sciences, University of Potsdam, Potsdam, Germany
| | - Urs Granacher
- Division of Training and Movement Sciences, Research Focus Cognitive Sciences, University of Potsdam, Potsdam, Germany
| | | |
Collapse
|
14
|
State-of-the-art review: spinal and supraspinal responses to muscle potentiation in humans. Eur J Appl Physiol 2021; 121:1271-1282. [PMID: 33635383 DOI: 10.1007/s00421-021-04610-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/17/2021] [Indexed: 02/02/2023]
Abstract
Post-activation potentiation (PAP), described as a muscular phenomenon, refers to the enhancement of contractile properties following a voluntary or electrically stimulated short duration (< 10 s) high-intensity contraction. Mechanistic factors and subsequent effects on voluntary performance have been well documented. Associations between neural activation and PAP, however, are less understood and systematically have not been explored. Thus, the aim is to critically summarize the current understanding of PAP regarding the motor pathway from the corticospinal tract to spinal level factors including the H-reflex and motor unit activation. This review highlights aspects for further investigation by providing an integrative summary of the relationship between PAP and neural control. Contractile history affects neural control in subsequent contractions, (e.g. fatiguing tasks), however, by contrast acute contractile enhancement due to PAP in relation to neural responses are not well-studied. From the limited number of investigations, motor unit discharge rates are reduced subsequent to PAP and, although less consistently reported, generally H-reflexes are depressed. Additionally, corticomedullary evoked potentials are depressed and the cortical silent period is elongated. Thus, overall there is a depression of spinal and supraspinal responses following PAP. Although specific factors responsible and their pathways are unclear, this down-regulation may occur to conserve neural activation when muscle contraction is more responsive, and concurrently a strategy used to delay neuromuscular fatigue. Indeed, the co-existence of PAP and fatigue is not a novel concept, but the interactions between PAP and neural responses are not understood and likely are more than coincidental.
Collapse
|
15
|
Hardy TA, How SC, Taylor BJ. The Effect of Preexercise Expiratory Muscle Loading on Exercise Tolerance in Healthy Men. Med Sci Sports Exerc 2021; 53:421-430. [PMID: 32735113 DOI: 10.1249/mss.0000000000002468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Acute nonfatiguing inspiratory muscle loading transiently increases diaphragm excitability and global inspiratory muscle strength and may improve subsequent exercise performance. We investigated the effect of acute expiratory muscle loading on expiratory muscle function and exercise tolerance in healthy men. METHODS Ten males cycled at 90% of peak power output to the limit of tolerance (TLIM) after 1) 2 × 30 expiratory efforts against a pressure-threshold load of 40% maximal expiratory gastric pressure (PgaMAX) (EML-EX) and 2) 2 × 30 expiratory efforts against a pressure-threshold load of 10% PgaMAX (SHAM-EX). Changes in expiratory muscle function were assessed by measuring the mouth pressure (PEMAX) and PgaMAX responses to maximal expulsive efforts and magnetically evoked (1 Hz) gastric twitch pressure (Pgatw). RESULTS Expiratory loading at 40% of PgaMAX increased PEMAX (10% ± 5%, P = 0.001) and PgaMAX (9% ± 5%, P = 0.004). Conversely, there was no change in PEMAX (166 ± 40 vs 165 ± 35 cm H2O, P = 1.000) or PgaMAX (196 ± 38 vs 192 ± 39 cm H2O, P = 0.215) from before to after expiratory loading at 10% of PgaMAX. Exercise time was not different in EML-EX versus SHAM-EX (7.91 ± 1.96 vs 8.09 ± 1.77 min, 95% CI = -1.02 to 0.67, P = 0.651). Similarly, exercise-induced expiratory muscle fatigue was not different in EML-EX versus SHAM-EX (-28% ± 12% vs -26% ± 7% reduction in Pgatw amplitude, P = 0.280). Perceptual ratings of dyspnea and leg discomfort were not different during EML-EX versus SHAM-EX. CONCLUSION Acute expiratory muscle loading enhances expiratory muscle function but does not improve subsequent severe-intensity exercise tolerance in healthy men.
Collapse
Affiliation(s)
- Tim A Hardy
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, UNITED KINGDOM
| | - Stephen C How
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UNITED KINGDOM
| | | |
Collapse
|
16
|
Krčmár M, Krčmárová B, Bakaľár I, Šimonek J. Acute Performance Enhancement Following Squats Combined With Elastic Bands on Short Sprint and Vertical Jump Height in Female Athletes. J Strength Cond Res 2021; 35:318-324. [PMID: 33337702 DOI: 10.1519/jsc.0000000000003881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Krčmár, M, Krčmárová, B, Bakaľár, I, and Šimonek, J. Acute performance enhancement after squats combined with elastic bands on short sprint and vertical jump height in female athletes. J Strength Cond Res 35(2): 318-324, 2021-The main purpose of this study was to compare back squats with and without elastic bands on sprint and vertical jump height. Fourteen female athletes (21.9 ± 2.3 years; 177.5 ± 6.36 cm; 66.2 ± 6.2 kg; 1 repetition maximum [1RM]/ body mass: 1.96 ± 0.14) agreed to participate. On 4 separate days, athletes walked freely for 5 minutes (CON), performed 3 sets of 4 repetitions at 85% of their 1RM with 20% or 30% (BAND20 or BAND30) of the total resistance originated from elastic bands, or performed 3 sets and 4 repetitions at 85% of their 1RM with an isoinertial load (ISO) before performance tests. Posttesting began 5 and 10 minutes after the last set of squats and included sprints over 3, 5, and 10-m, squat jump (SJ), and countermovement (CMJ) vertical jump height. The results of this study show that all postactivation performance enhancement (PAPE) protocols significantly improved 10-m sprint time (p < 0.05 to p < 0.01). Only BAND30 significantly improved 3-m and 5-m sprint times at both times of posttesting (p < 0.01). Comparison of PAPE protocols showed a significant difference when comparing BAND30 vs. ISO in SJ height in favor of BAND30 only when the best SJ height results from both posttesting times were selected (p < 0.01, g = 1.08). The results of this study suggest that all PAPE protocols were able to enhance short sprints and vertical jump height, but it seems that there is a greater trend to achieve better performance after performing the BAND30 protocol that can be seen by higher effect sizes achieved almost in all tests compared with the other PAPE protocols.
Collapse
Affiliation(s)
- Matúš Krčmár
- Department of Physical Education and Sports, Faculty of Education, Constantine the Philosopher University, Nitra, Slovakia
| | | | | | | |
Collapse
|
17
|
Cuenca-Fernández F, Ruiz-Teba A, López-Contreras G, Arellano R. Effects of 2 Types of Activation Protocols Based on Postactivation Potentiation on 50-m Freestyle Performance. J Strength Cond Res 2020; 34:3284-3292. [PMID: 33105381 DOI: 10.1519/jsc.0000000000002698] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cuenca-Fernández, F, Ruiz-Teba, A, López-Contreras, G, and Arellano, R. Effects of 2 types of activation protocols based on postactivation potentiation on 50-m freestyle performance. J Strength Cond Res 34(11): 3284-3292, 2020-Postactivation potentiation (PAP) is a phenomenon which improves muscle contractility, strength, and speed in sporting performances through previously applied maximal or submaximal loads on the muscle system. This study aimed to assess the effects of 2 types of activation protocols based on PAP, on sprint swimming performance. A repeated-measures design was used to compare 3 different scenarios before a 50-m race. First, all of the participants performed a standard warm-up (SWU), consisting of a 400-m swim followed by dynamic stretching. This protocol acted as the control. Subsequently, the swimmers were randomly assigned into 2 groups: the swimmers in the first group performed the SWU followed by a PAP one-repetition maximum warm-up (RMWU), consisting of 3 "lunge" and 3 "arm stroke" repetitions, both at 85% of the one-repetition maximum. The swimmers in the second group performed the SWU followed by a PAP eccentric flywheel warm-up (EWU), consisting of one set of 4 repetitions of exercises of both the lower and upper limbs on an adapted eccentric flywheel at the maximal voluntary contraction. The time required for the swimmers to swim 5 and 10 m was shorter with the PAP protocols. The swimming velocity of the swimmers who underwent the EWU and RMWU protocols was faster at 5 and 10 m. The best total swimming time was not influenced by any of the protocols. When isolating swimming (excluding start performance and turn), best time was achieved with the SWU and RMWU compared with EWU (SWU: 20.86 ± 0.95 seconds; EWU: 21.25 ± 1.12 seconds; RMWU: 20.97 ± 1.22 seconds). In conclusion, a warm-up based on PAP protocols might exert an influence on performance in the first meters of a 50-m race. Nevertheless, other factors, such as fatigue, could modify swimming patterns and yield results contradictory to those of the desired task.
Collapse
Affiliation(s)
- Francisco Cuenca-Fernández
- Physical Activity and Sports Department, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | | | | | | |
Collapse
|
18
|
de Poli RAB, Boullosa DA, Malta ES, Behm D, Lopes VHF, Barbieri FA, Zagatto AM. Cycling Performance Enhancement After Drop Jumps May Be Attributed to Postactivation Potentiation and Increased Anaerobic Capacity. J Strength Cond Res 2020; 34:2465-2475. [PMID: 32205815 DOI: 10.1519/jsc.0000000000003399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
de Poli, RAB, Boullosa, DA, Malta, ES, Behm, D, Lopes, VHF, Barbieri, FA, and Zagatto, AM. Cycling performance enhancement after drop jumps may be attributed to postactivation potentiation and increased anaerobic capacity. J Strength Cond Res 34(9): 2465-2475, 2020-The study aimed to investigate the effects of drop jumps (DJs) on supramaximal cycling performance, anaerobic capacity (AC), electromyography, and fatigue. Thirty-eight recreational cyclists participated into 3 independent studies. In study 1 (n = 14), neuromuscular fatigue was assessed with the twitch interpolation technique. In study 2 (n = 16), the AC and metabolic contributions were measured with the maximal accumulated oxygen deficit method and the sum of the glycolytic and phosphagen pathways. In study 3 (n = 8), postactivation potentiation (PAP) induced by repeated DJs was evaluated. The DJ protocol was effective for significantly improving cycling performance by +9.8 and +7.4% in studies 1 and 2, respectively (p ≤ 0.05). No differences were observed in electromyography between conditions (p = 0.70); however, the force evoked by a doublet at low (10 Hz) and high frequencies (100 Hz) declined for control (-16.4 and -23.9%) and DJ protocols (-18.6 and -26.9%) (p < 0.01). Force decline was greater in the DJ condition (p < 0.03). Anaerobic capacity and glycolytic pathway contributions were +7.7 and +9.1% higher after DJ protocol (p = 0.01). Peak force during maximal voluntary contraction (+5.6%) and doublet evoked force at 100 Hz (+5.0%) were higher after DJs. The DJ protocol induced PAP, improved supramaximal cycling performance, and increased AC despite higher peripheral fatigue.
Collapse
Affiliation(s)
- Rodrigo A B de Poli
- Laboratory of Physiology and Sport Performance (LAFIDE), São Paulo State University (UNESP), Bauru, SP, Brazil.,Post-Graduate Program in Movement Sciences, São Paulo State University (UNESP), School of Science, Bauru, SP, Brazil
| | - Daniel A Boullosa
- College of Healthcare Sciences, James Cook University, Townsville, Australia; and
| | - Elvis S Malta
- Laboratory of Physiology and Sport Performance (LAFIDE), São Paulo State University (UNESP), Bauru, SP, Brazil.,Post-Graduate Program in Movement Sciences, São Paulo State University (UNESP), School of Science, Bauru, SP, Brazil
| | - David Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, Newfoundland, Canada
| | - Vithor H F Lopes
- Laboratory of Physiology and Sport Performance (LAFIDE), São Paulo State University (UNESP), Bauru, SP, Brazil.,Post-Graduate Program in Movement Sciences, São Paulo State University (UNESP), School of Science, Bauru, SP, Brazil
| | - Fabio A Barbieri
- Post-Graduate Program in Movement Sciences, São Paulo State University (UNESP), School of Science, Bauru, SP, Brazil
| | - Alessandro M Zagatto
- Laboratory of Physiology and Sport Performance (LAFIDE), São Paulo State University (UNESP), Bauru, SP, Brazil.,Post-Graduate Program in Movement Sciences, São Paulo State University (UNESP), School of Science, Bauru, SP, Brazil
| |
Collapse
|
19
|
Blazevich AJ, Babault N. Post-activation Potentiation Versus Post-activation Performance Enhancement in Humans: Historical Perspective, Underlying Mechanisms, and Current Issues. Front Physiol 2019; 10:1359. [PMID: 31736781 PMCID: PMC6838751 DOI: 10.3389/fphys.2019.01359] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022] Open
Abstract
Post-activation potentiation (PAP) is a well-described phenomenon with a short half-life (~28 s) that enhances muscle force production at submaximal levels of calcium saturation (i.e., submaximal levels of muscle activation). It has been largely explained by an increased myosin light chain phosphorylation occurring in type II muscle fibers, and its effects have been quantified in humans by measuring muscle twitch force responses to a bout of muscular activity. However, enhancements in (sometimes maximal) voluntary force production detected several minutes after high-intensity muscle contractions are also observed, which are also most prominent in muscles with a high proportion of type II fibers. This effect has been considered to reflect PAP. Nonetheless, the time course of myosin light chain phosphorylation (underpinning “classic” PAP) rarely matches that of voluntary force enhancement and, unlike PAP, changes in muscle temperature, muscle/cellular water content, and muscle activation may at least partly underpin voluntary force enhancement; this enhancement has thus recently been called post-activation performance enhancement (PAPE) to distinguish it from “classical” PAP. In fact, since PAPE is often undetectable at time points where PAP is maximal (or substantial), some researchers have questioned whether PAP contributes to PAPE under most conditions in vivo in humans. Equally, minimal evidence has been presented that PAP is of significant practical importance in cases where multiple physiological processes have already been upregulated by a preceding, comprehensive, active muscle warm-up. Given that confusion exists with respect to the mechanisms leading to acute enhancement of both electrically evoked (twitch force; PAP) and voluntary (PAPE) muscle function in humans after acute muscle activity, the first purpose of the present narrative review is to recount the history of PAP/PAPE research to locate definitions and determine whether they are the same phenomena. To further investigate the possibility of these phenomena being distinct as well as to better understand their potential functional benefits, possible mechanisms underpinning their effects will be examined in detail. Finally, research design issues will be addressed which might contribute to confusion relating to PAP/PAPE effects, before the contexts in which these phenomena may (or may not) benefit voluntary muscle function are considered.
Collapse
Affiliation(s)
- Anthony J Blazevich
- School of Medical and Health Science, Centre for Exercise and Sports Science Research (CESSR), Edith Cowan University, Joondalup, WA, Australia
| | - Nicolas Babault
- Faculty of Sport Sciences, French National Institute of Health and Medical Research (INSERM), Unit 1093 Cognition, Action and Sensorimotor Plasticity, Centre for Performance Expertise, University of Burgundy and Franche-Comté, Dijon, France
| |
Collapse
|
20
|
Zimmermann HB, MacIntosh BR, Dal Pupo J. Does postactivation potentiation (PAP) increase voluntary performance? Appl Physiol Nutr Metab 2019; 45:349-356. [PMID: 31557447 DOI: 10.1139/apnm-2019-0406] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transient increase in torque of an electrically evoked twitch following a voluntary contraction is called postactivation potentiation (PAP). Phosphorylation of myosin regulatory light chains is the most accepted mechanism explaining the enhanced electrically evoked twitch torque. While many authors attribute voluntary postactivation performance enhancement (PAPE) to the positive effects of PAP, few actually confirmed that contraction was indeed potentiated using electrical stimulation (twitch response) at the time that PAPE was measured. Thus, this review aims to investigate if increases in voluntary performance after a conditioning contraction (CC) are related to the PAP phenomenon. For this, studies that confirmed the presence of PAP through an evoked response after a voluntary CC and concurrently evaluated PAPE were reviewed. Some studies reported increases in PAPE when PAP reaches extremely high values. However, PAPE has also been reported when PAP was not present, and unchanged/diminished performance has been identified when PAP was present. This range of observations demonstrates that mechanisms of PAPE are different from mechanisms of PAP. These mechanisms of PAPE still need to be understood and those studying PAPE should not assume that regulatory light chain phosphorylation is the mechanism for such enhanced voluntary performance. Novelty The occurrence of PAP does not necessarily mean that the voluntary performance will be improved. Improvement in voluntary performance is sometimes observed when the PAP level reaches extremely high values. Other mechanisms may be more relevant than that for PAP in the manifestation of acute increases in performance following a conditioning contraction.
Collapse
Affiliation(s)
- Haiko Bruno Zimmermann
- Biomechanics Laboratory, Sports Center, Federal University of Santa Catarina, Florianopolis, SC 88040900, Brazil
| | - Brian R MacIntosh
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Juliano Dal Pupo
- Biomechanics Laboratory, Sports Center, Federal University of Santa Catarina, Florianopolis, SC 88040900, Brazil
| |
Collapse
|
21
|
Bauer P, Sansone P, Mitter B, Makivic B, Seitz LB, Tschan H. Acute Effects of Back Squats on Countermovement Jump Performance Across Multiple Sets of a Contrast Training Protocol in Resistance-Trained Men. J Strength Cond Res 2019; 33:995-1000. [PMID: 29309389 DOI: 10.1519/jsc.0000000000002422] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bauer, P, Sansone, P, Mitter, B, Makivic, B, Seitz, LB, and Tschan, H. Acute effects of back squats on countermovement jump performance across multiple sets of a contrast training protocol in resistance-trained men. J Strength Cond Res 33(4): 995-1000, 2019-This study was designed to evaluate the voluntary postactivation potentiation (PAP) effects of moderate-intensity (MI) or high-intensity (HI) back squat exercises on countermovement jump (CMJ) performance across multiple sets of a contrast training protocol. Sixty resistance-trained male subjects (age, 23.3 ± 3.3 years; body mass, 86.0 ± 13.9 kg; and parallel back squat 1-repetition maximum [1-RM], 155.2 ± 30.0 kg) participated in a randomized, crossover study. After familiarization, the subjects visited the laboratory on 3 separate occasions. They performed a contrast PAP protocol comprising 3 sets of either MI (6 × 60% of 1-RM) or HI back squats (4 × 90% of 1-RM) or 20 seconds of recovery (CTRL) alternated with 7 CMJs that were performed at 15 seconds, and 1, 3, 5, 7, 9 and 11 minutes after the back squats or recovery. Jump height and relative peak power output recorded with a force platform during MI and HI conditions were compared with those recorded during control condition to calculate the voluntary PAP effect. Countermovement jump performance was decreased immediately after the squats but increased across all 3 sets of MI and HI between 3 and 7 minutes after recovery. However, voluntary PAP effects were small or trivial, and no difference between the 3 sets could be found. These findings demonstrate that practitioners can use MI and HI back squats to potentiate CMJs across a contrast training protocol, but a minimum of 3 minutes of recovery after the squats is needed to benefit from voluntary PAP.
Collapse
Affiliation(s)
- Pascal Bauer
- Center for Sports Science and University Sports, University of Vienna, Vienna, Austria
| | | | - Benedikt Mitter
- Center for Sports Science and University Sports, University of Vienna, Vienna, Austria
| | | | - Laurent B Seitz
- Center for Exercise and Sport Science Research, Edith Cowan University, Joondalup, Australia
| | - Harald Tschan
- Center for Sports Science and University Sports, University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Wang CC, Lin SC, Hsu SC, Yang MT, Chan KH. Effects of Creatine Supplementation on Muscle Strength and Optimal Individual Post-Activation Potentiation Time of the Upper Body in Canoeists. Nutrients 2017; 9:nu9111169. [PMID: 29077022 PMCID: PMC5707641 DOI: 10.3390/nu9111169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 11/16/2022] Open
Abstract
Creatine supplementation reduces the impact of muscle fatigue on post-activation potentiation (PAP) of the lower body, but its effects on the upper body remain unknown. This study examined the effects of creatine supplementation on muscle strength, explosive power, and optimal individual PAP time of the upper body during a set of complex training bouts in canoeists. Seventeen male high school canoeists performed a bench row for one repetition at maximum strength and conducted complex training bouts to determine the optimal individual timing of PAP and distance of overhead medicine ball throw before and after the supplementation. Subjects were assigned to a creatine or placebo group, and later consumed 20 g of creatine or carboxymethyl cellulose per day for six days. After supplementation, the maximal strength in the creatine group significantly increased (p < 0.05). The optimal individual PAP time in the creatine group was significantly earlier than the pre-supplementation times (p < 0.05). There was no significant change in explosive power for either group. Our findings support the notion that creatine supplementation increases maximal strength and shortens the optimal individual PAP time of the upper body in high school athletes, but has no effect on explosive power. Moreover, it was found that the recovery time between a bench row and an overhead medicine ball throw in a complex training bout is an individual phenomenon.
Collapse
Affiliation(s)
- Chia-Chi Wang
- Athletic Department, National Taipei University of Business, Taipei 10051, Taiwan.
| | - Shu-Cheng Lin
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan 33301, Taiwan.
| | - Shu-Ching Hsu
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan 33301, Taiwan.
| | - Ming-Ta Yang
- Center for General Education, Taipei Medical University, Taipei 10031, Taiwan.
| | - Kuei-Hui Chan
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan 33301, Taiwan.
| |
Collapse
|
23
|
Tsoukos A, Bogdanis GC, Terzis G, Veligekas P. Acute Improvement of Vertical Jump Performance After Isometric Squats Depends on Knee Angle and Vertical Jumping Ability. J Strength Cond Res 2016; 30:2250-7. [PMID: 26808841 DOI: 10.1519/jsc.0000000000001328] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tsoukos, A, Bogdanis, GC, Terzis, G, and Veligekas, P. Acute improvement of vertical jump performance after isometric squats depends on knee angle and vertical jumping ability. J Strength Cond Res 30(8): 2250-2257, 2016-This study examined the acute effects of maximum isometric squats at 2 different knee angles (90 or 140°) on countermovement jump (CMJ) performance in power athletes. Fourteen national-level male track and field power athletes completed 3 main trials (2 experimental and 1 control) in a randomized and counterbalanced order 1 week apart. Countermovement jump performance was evaluated using a force-plate before and 15 seconds, 3, 6, 9, and 12 minutes after 3 sets of 3 seconds maximum isometric contractions with 1-minute rest in between, from a squat position with knee angle set at 90 or 140°. Countermovement jump performance was improved compared with baseline only in the 140° condition by 3.8 ± 1.2% on the 12th minute of recovery (p = 0.027), whereas there was no change in CMJ height in the 90° condition. In the control condition, there was a decrease in CMJ performance over time, reaching -3.6 ± 1.2% (p = 0.049) after 12 minutes of recovery. To determine the possible effects of baseline jump performance on subsequent CMJ performance, subjects were divided into 2 groups ("high jumpers" and "low jumpers"). The baseline CMJ values of "high jumpers" and "low jumpers" differed significantly (CMJ: 45.1 ± 2.2 vs. 37.1 ± 3.9 cm, respectively, p = 0.001). Countermovement jump was increased only in the "high jumpers" group by 5.4 ± 1.4% (p = 0.001) and 7.4 ± 1.2% (p = 0.001) at the knee angles of 90 and 140°, respectively. This improvement was larger at the 140° angle (p = 0.049). Knee angle during isometric squats and vertical jumping ability are important determinants of the acute CMJ performance increase observed after a conditioning activity.
Collapse
Affiliation(s)
- Athanasios Tsoukos
- Athletics Laboratory, Faculty of Physical Education and Sports Science, University of Athens, Greece
| | | | | | | |
Collapse
|
24
|
Mina MA, Blazevich AJ, Giakas G, Seitz LB, Kay AD. Chain-loaded variable resistance warm-up improves free-weight maximal back squat performance. Eur J Sport Sci 2016; 16:932-9. [PMID: 27432113 DOI: 10.1080/17461391.2016.1199740] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The acute influence of chain-loaded variable resistance exercise on subsequent free-weight one-repetition maximum (1-RM) back squat performance was examined in 16 recreationally active men. The participants performed either a free-weight resistance (FWR) or chain-loaded resistance (CLR) back squat warm-up at 85% 1-RM on two separate occasions. After a 5-min rest, the participants attempted a free-weight 1-RM back squat; if successful, subsequent 5% load additions were made until participants failed to complete the lift. During the 1-RM trials, 3D knee joint kinematics and knee extensor and flexor electromyograms (EMG) were recorded simultaneously. Significantly greater 1-RM (6.2 ± 5.0%; p < .01) and mean eccentric knee extensor EMG (32.2 ± 6.7%; p < .01) were found after the CLR warm-up compared to the FWR condition. However, no difference (p > .05) was found in concentric EMG, eccentric or concentric knee angular velocity, or peak knee flexion angle. Performing a CLR warm-up enhanced subsequent free-weight 1-RM performance without changes in knee flexion angle or eccentric and concentric knee angular velocities; thus a real 1-RM increase was achieved as the mechanics of the lift were not altered. These results are indicative of a potentiating effect of CLR in a warm-up, which may benefit athletes in tasks where high-level strength is required.
Collapse
Affiliation(s)
- Minas A Mina
- a Sport, Outdoor and Exercise Science , University of Derby , Buxton , UK
| | - Anthony J Blazevich
- b Centre for Exercise and Sports Science Research, School of Medical and Health Sciences , Edith Cowan University , Joondalup , Western Australia
| | - Giannis Giakas
- c Department of PE & Sport Science , University of Thessaly , Trikala , Greece
| | | | - Anthony D Kay
- e Sport, Exercise & Life Sciences , University of Northampton , Northampton , UK
| |
Collapse
|
25
|
Seitz LB, Trajano GS, Haff GG, Dumke CCLS, Tufano JJ, Blazevich AJ. Relationships between maximal strength, muscle size, and myosin heavy chain isoform composition and postactivation potentiation. Appl Physiol Nutr Metab 2016; 41:491-7. [PMID: 26988769 DOI: 10.1139/apnm-2015-0403] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to examine the relationships between maximal voluntary postactivation potentiation (PAP) and maximal knee extensor torque, quadriceps cross-sectional area (CSA) and volume, and type II myosin heavy chain (MHC) isoform percentage in human skeletal muscle. Thirteen resistance-trained men completed a test protocol consisting of 2 isokinetic knee extensions at 180°·s(-)(1) performed before and 1, 4, 7, and 10 min after the completion of 4 maximal knee extensions at 60°·s(-)(1) (i.e., a conditioning activity (CA)). Magnetic resonance imaging and muscle microbiopsy procedures were completed on separate days to assess quadriceps CSA and volume and MHC isoform content. Maximal voluntary PAP response was assessed as the ratio of the highest knee extensor torques measured before and after the CA. There were large to very large correlations between maximal voluntary PAP response and maximal knee extensor torque (r = 0.62) and quadriceps CSA (r = 0.68) and volume (r = 0.63). Nonetheless, these correlations were not statistically significant after adjusting for the influence of type II MHC percentage using partial correlation analysis. By contrast, the strongest correlation was observed for type II MHC percentage (r = 0.77), and this correlation remained significant after adjusting for the other variables. Maximal voluntary PAP response is strongly correlated with maximal knee extensor torque and quadriceps CSA and volume, but is mostly clearly associated with the type II myosin isoform percentage in human skeletal muscle.
Collapse
Affiliation(s)
- Laurent B Seitz
- a Centre for Exercise and Sport Science Research, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Gabriel S Trajano
- a Centre for Exercise and Sport Science Research, Edith Cowan University, Joondalup, WA 6027, Australia.,b School of Exercise Science, Sport and Health, Charles Sturt University, Bathurst, NSW 2795, Australia
| | - G Gregory Haff
- a Centre for Exercise and Sport Science Research, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Charles C L S Dumke
- c Department of Health and Human Performance, University of Montana, Missoula, MT 59812, USA
| | - James J Tufano
- a Centre for Exercise and Sport Science Research, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Anthony J Blazevich
- a Centre for Exercise and Sport Science Research, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
26
|
Krčmár M, Šimonek J, Vasiľovský I. The acute effect of lower-body training on average power output measured by loaded half-squat jump exercise. ACTA GYMNICA 2015. [DOI: 10.5507/ag.2015.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|