1
|
Giri S, Mehta R, Mallick BN. REM Sleep Loss-Induced Elevated Noradrenaline Plays a Significant Role in Neurodegeneration: Synthesis of Findings to Propose a Possible Mechanism of Action from Molecule to Patho-Physiological Changes. Brain Sci 2023; 14:8. [PMID: 38275513 PMCID: PMC10813190 DOI: 10.3390/brainsci14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024] Open
Abstract
Wear and tear are natural processes for all living and non-living bodies. All living cells and organisms are metabolically active to generate energy for their routine needs, including for survival. In the process, the cells are exposed to oxidative load, metabolic waste, and bye-products. In an organ, the living non-neuronal cells divide and replenish the lost or damaged cells; however, as neuronal cells normally do not divide, they need special feature(s) for their protection, survival, and sustenance for normal functioning of the brain. The neurons grow and branch as axons and dendrites, which contribute to the formation of synapses with near and far neurons, the basic scaffold for complex brain functions. It is necessary that one or more basic and instinct physiological process(es) (functions) is likely to contribute to the protection of the neurons and maintenance of the synapses. It is known that rapid eye movement sleep (REMS), an autonomic instinct behavior, maintains brain functioning including learning and memory and its loss causes dysfunctions. In this review we correlate the role of REMS and its loss in synaptogenesis, memory consolidation, and neuronal degeneration. Further, as a mechanism of action, we will show that REMS maintains noradrenaline (NA) at a low level, which protects neurons from oxidative damage and maintains neuronal growth and synaptogenesis. However, upon REMS loss, the level of NA increases, which withdraws protection and causes apoptosis and loss of synapses and neurons. We propose that the latter possibly causes REMS loss associated neurodegenerative diseases and associated symptoms.
Collapse
Affiliation(s)
- Shatrunjai Giri
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, India;
| | - Rachna Mehta
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida 201301, India;
| | - Birendra Nath Mallick
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida 201301, India;
| |
Collapse
|
2
|
Rodrigues NR, Macedo GE, Martins IK, Vieira PDB, Kich KG, Posser T, Franco JL. Sleep disturbance induces a modulation of clock gene expression and alters metabolism regulation in drosophila. Physiol Behav 2023; 271:114334. [PMID: 37595818 DOI: 10.1016/j.physbeh.2023.114334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Sleep disorders are catching attention worldwide as they can induce dyshomeostasis and health issues in all animals, including humans. Circadian rhythms are biological 24-hour cycles that influence physiology and behavior in all living organisms. Sleep is a crucial resting state for survival and is under the control of circadian rhythms. Studies have shown the influence of sleep on various pathological conditions, including metabolic diseases; however, the biological mechanisms involving the circadian clock, sleep, and metabolism regulation are not well understood. In previous work, we standardized a sleep disturbance protocol and, observed that short-time sleep deprivation and sleep-pattern alteration induce homeostatic sleep regulation, locomotor deficits, and increase oxidative stress. Now, we investigated the relationship between these alterations with the circadian clock and energetic metabolism. In this study, we evaluated the expression of the circadian clock and drosophila insulin-like peptides (DILPs) genes and metabolic markers glucose, triglycerides, and glycogen in fruit flies subjected to short-term sleep disruption protocols. The sleep disturbance altered the expression of clock genes and DILPs genes expression, and modulated glucose, triglycerides, and glycogen levels. Moreover, we demonstrated changes in mTor/dFoxo genes, AKT phosphorylation, and dopamine levels in nocturnal light-exposed flies. Thus, our results suggest a connection between clock genes and metabolism disruption as a consequence of sleep disruption, demonstrating the importance of sleep quality in health maintenance.
Collapse
Affiliation(s)
- Nathane Rosa Rodrigues
- Grupo de Pesquisa Estresse Oxidativo e Sinalização Celular, Centro Interdisciplinar de Pesquisas em Biotecnologia, Universidade Federal do Pampa (UNIPAMPA), São Gabriel, RS, 97307-020, Brazil; Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria Santa Maria, RS, 97105-900, Brazil.
| | - Giulianna Echeverria Macedo
- Grupo de Pesquisa Estresse Oxidativo e Sinalização Celular, Centro Interdisciplinar de Pesquisas em Biotecnologia, Universidade Federal do Pampa (UNIPAMPA), São Gabriel, RS, 97307-020, Brazil
| | - Illana Kemmerich Martins
- Grupo de Pesquisa Estresse Oxidativo e Sinalização Celular, Centro Interdisciplinar de Pesquisas em Biotecnologia, Universidade Federal do Pampa (UNIPAMPA), São Gabriel, RS, 97307-020, Brazil
| | - Patrícia de Brum Vieira
- Grupo de Pesquisa Estresse Oxidativo e Sinalização Celular, Centro Interdisciplinar de Pesquisas em Biotecnologia, Universidade Federal do Pampa (UNIPAMPA), São Gabriel, RS, 97307-020, Brazil
| | - Karen Gomes Kich
- Grupo de Pesquisa Estresse Oxidativo e Sinalização Celular, Centro Interdisciplinar de Pesquisas em Biotecnologia, Universidade Federal do Pampa (UNIPAMPA), São Gabriel, RS, 97307-020, Brazil
| | - Thaís Posser
- Grupo de Pesquisa Estresse Oxidativo e Sinalização Celular, Centro Interdisciplinar de Pesquisas em Biotecnologia, Universidade Federal do Pampa (UNIPAMPA), São Gabriel, RS, 97307-020, Brazil
| | - Jeferson Luis Franco
- Grupo de Pesquisa Estresse Oxidativo e Sinalização Celular, Centro Interdisciplinar de Pesquisas em Biotecnologia, Universidade Federal do Pampa (UNIPAMPA), São Gabriel, RS, 97307-020, Brazil; Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria Santa Maria, RS, 97105-900, Brazil
| |
Collapse
|
3
|
Xu Y, Qu B, Liu F, Gong Z, Zhang Y, Xu D. Sleep Deprivation and Heart Rate Variability in Healthy Volunteers: Effects of REM and SWS Sleep Deprivation. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:7121295. [PMID: 37469834 PMCID: PMC10353901 DOI: 10.1155/2023/7121295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 07/21/2023]
Abstract
Objective Using PSG-guided acute selective REM/SWS sleep deprivation in volunteers, this study examined the effects of sleep deprivation on the cardiovascular and autonomic nervous systems, as well as the relationship between cardiac neuromodulation homeostasis and cardiovascular disease. Methods An experiment was conducted using 30 healthy volunteers (male : female = 1 : 1, aged 26.33 ± 4.5 years) divided into groups for sleep deprivation of SWS and REM sleep, and then, each group was crossed over for normal sleep (2 days) and repeated sleep deprivation (1 day, 3 times). During the study period, PSG and ELECTRO ECG monitoring were conducted, and five-minute frequency domain parameters and blood pressure values were measured before and after sleep deprivation. Results Changes in VLF, LFnu, LF/HF, HF, and HFnu after SWS sleep deprivation were statistically significant (P < 0.05), but not LF (P = 0.063). Changes in VLF, LF, HF, LF/HF, LFnu, and HFnu after REM sleep deprivation were not statistically significant (P > 0.05). Conclusions An increase in sympathetic nerve activity results from sleep deprivation and sudden awakening from SWS sleep is associated with a greater risk of cardiovascular disease.
Collapse
Affiliation(s)
- YaHui Xu
- Department of Respiratory and Critical Care Medicine, The Affiliated Central Hospital of Qingdao University, Qingdao, Shandong, China
| | - BinBin Qu
- Department of Respiratory and Critical Care Medicine, The Affiliated Central Hospital of Qingdao University, Qingdao, Shandong, China
| | - FengJuan Liu
- Clinical Trial Research Center, The Affiliated Central Hospital of Qingdao University, Qingdao, Shandong, China
| | - ZhiHua Gong
- Electrocardiogram Department, The Affiliated Central Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yi Zhang
- Department of Respiratory and Critical Care Medicine, Beijing China-Japan Friendship Hospital, China
| | - DeXiang Xu
- Department of Respiratory and Critical Care Medicine, The Affiliated Central Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
4
|
Liu S, Wang X, Zheng Q, Gao L, Sun Q. Sleep Deprivation and Central Appetite Regulation. Nutrients 2022; 14:nu14245196. [PMID: 36558355 PMCID: PMC9783730 DOI: 10.3390/nu14245196] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Research shows that reduced sleep duration is related to an increased risk of obesity. The relationship between sleep deprivation and obesity, type 2 diabetes, and other chronic diseases may be related to the imbalance of appetite regulation. To comprehensively illustrate the specific relationship between sleep deprivation and appetite regulation, this review introduces the pathophysiology of sleep deprivation, the research cutting edge of animal models, and the central regulatory mechanism of appetite under sleep deprivation. This paper summarizes the changes in appetite-related hormones orexin, ghrelin, leptin, and insulin secretion caused by long-term sleep deprivation based on the epidemiology data and animal studies that have established sleep deprivation models. Moreover, this review analyzes the potential mechanism of associations between appetite regulation and sleep deprivation, providing more clues on further studies and new strategies to access obesity and metabolic disease.
Collapse
Affiliation(s)
- Shuailing Liu
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Xiya Wang
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Qian Zheng
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Lanyue Gao
- Experimental Center for School of Public Health, China Medical University, Shenyang 110122, China
| | - Qi Sun
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China
- Correspondence: ; Tel./Fax: +86-15840312720
| |
Collapse
|
5
|
Liu F, Qu B, Wang L, Xu Y, Peng X, Zhang C, Xu D. Effect of selective sleep deprivation on heart rate variability in post-90s healthy volunteers. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:13851-13860. [PMID: 36654070 DOI: 10.3934/mbe.2022645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The 5-minute frequency domain method was used to examine the effects of polysomnography (PSG)-guided acute selective sleep deprivation (REM/SWS) on the cardiovascular autonomic nervous system, heart rate, and rhythm in healthy volunteers to understand the relationship between cardiac neuro regulatory homeostasis and cardiovascular system diseases in healthy subjects. The study included 30 healthy volunteers selected through the randomized-controlled method, randomly divided into REM sleep deprivation and SWS sleep deprivation groups. PSG analyses and dynamic electrocardiogram monitoring were done at night, during slow wave sleep or REM sleep. An all-night sleep paradigm, without any interruptions, was tested 3 times for comparison. The frequency domain parameter method was further used to monitor the volunteers 5 min before and after a period of sleep deprivation. According to the characteristics of the all-night sleep scatter plot, healthy volunteers were divided into abnormal and normal scatter plot groups. When compared with the period before sleep deprivation, high frequency (HF) and normalized high-frequency component (HFnu) were found to be decreased. Normalized low-frequency component (LFnu) increased in the abnormal scatter plot group after sleep deprivation, and this difference was statistically significant (P < 0.05). The scatter plot also showed that very low frequency (VLF) increased only in the normal group after deprivation and this difference, as well, was statistically significant (P < 0.05). The increase in diastolic blood pressure in the abnormal group was statistically significant (P < 0.05), but the change in blood pressure in the normal group was not statistically significant (P > 0.05). There are 62.5% of the patients and 20% of the employees that were observed to have abnormal whole-night sleep patterns during the uninterrupted whole-night sleep regime. Patients with atrial or ventricular premature beats (more than 0.1%), and those with ST-t changes during sleep, were all ascertained as abnormal. We concluded that some healthy people could face unstable autonomic nervous functioning related to their long-term tension, anxiety, time urgency, hostility, and other chronic stress states. In the face of acute sleep deprivation selectivity, mild stress based excitability of the vagus nerve is reduced, which diminishes the protective function, making them susceptible to conditions such as premature ventricular arrhythmia.
Collapse
Affiliation(s)
- Fengjuan Liu
- Department of Respiratory and Critical Care Medicine, the Affiliated Central Hospital of Qingdao University, Qingdao 266042, China
- Clinical Trial Research Center, the Affiliated Central Hospital of Qingdao University, Qingdao 266035, China
| | - Binbin Qu
- Department of Respiratory and Critical Care Medicine, the Affiliated Central Hospital of Qingdao University, Qingdao 266042, China
| | - Lili Wang
- Department of Respiratory and Critical Care Medicine, the Affiliated Central Hospital of Qingdao University, Qingdao 266042, China
| | - Yahui Xu
- Department of Respiratory and Critical Care Medicine, the Affiliated Central Hospital of Qingdao University, Qingdao 266042, China
| | - Xiufa Peng
- Department of Respiratory and Critical Care Medicine, the Affiliated Central Hospital of Qingdao University, Qingdao 266042, China
| | - Chunling Zhang
- Department of Respiratory and Critical Care Medicine, the Affiliated Central Hospital of Qingdao University, Qingdao 266042, China
| | - Dexiang Xu
- Department of Respiratory and Critical Care Medicine, the Affiliated Central Hospital of Qingdao University, Qingdao 266042, China
| |
Collapse
|
6
|
Souza ACF, Monico-Neto M, Le Sueur Maluf L, Pidone FAM, Antunes HKM, Ribeiro DA. Paradoxical sleep deprivation induces tissue changes in the parotid gland of rats. Eur Arch Otorhinolaryngol 2022; 279:4569-4576. [PMID: 35482119 DOI: 10.1007/s00405-022-07397-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/06/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE This study aimed to evaluate if paradoxical sleep deprivation induces some tissue changes in the parotid gland of rats. METHODS A total of 24 male Wistar rats were distributed into the following groups, as follows: Group 1-Control (CTRL; n = 8); Group 2-Sleep deprivation (PS; n = 8): the animals were submitted to Paradoxical Sleep deprivation for 96 h and Group 3-Recovery (R; n = 8): the animals were submitted to sleep loss for 96 h, followed by a period of 96 h without any intervention. The following parameters were evaluated: microscopic analysis, immunohistochemistry for Caspase-3, Ki-67, and COX-2 and gene expression of cytochrome C, TNF-α, and Interleukins 6, 10. RESULTS The results pointed out acinar atrophy, and the presence of cytoplasmic vacuoles in the parenchyma of the experimental groups. In the same groups, there was differential expression of interleukins 6, 10 and TNF-α. Apoptosis was also increased by means of cleaved caspase 3 expression. The cellular proliferation (ki-67 expression) was increased the R group. CONCLUSION Taken together, sleep deprivation induces tissue degeneration, inflammatory process, as well as activate apoptosis in the parotid gland of rats.
Collapse
Affiliation(s)
- Ana Carolina Flygare Souza
- Department of Biosciences, Institute of Heath and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Marcos Monico-Neto
- Department of Biosciences, Institute of Heath and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Luciana Le Sueur Maluf
- Department of Biosciences, Institute of Heath and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Flavia Andressa Mazzuco Pidone
- Department of Biosciences, Institute of Heath and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Hanna Karen Moreira Antunes
- Department of Biosciences, Institute of Heath and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, Institute of Heath and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil.
| |
Collapse
|
7
|
Sleep deprivation induces oxidative stress in the liver and pancreas in young and aging rats. Heliyon 2021; 7:e06466. [PMID: 33748503 PMCID: PMC7966994 DOI: 10.1016/j.heliyon.2021.e06466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/04/2020] [Accepted: 03/05/2021] [Indexed: 11/26/2022] Open
Abstract
The aging process is characterized by a gradual impairment generally caused by oxidative stress and, more specifically, sleep deprivation, which induces oxidative stress in the brain. The objective of this study was to assess the effect of three types of paradoxical sleep deprivation (PSD): 96 h of PSD (96PSD group); 192 h of PSD (192PSD group); 192 h of PSD followed by a recovery period of 20 days (192PSD + Recovery group) on an oral glucose tolerance test (OGTT), lipid peroxidation (LPO), and superoxide dismutase (SOD) and catalase (CAT) activities in the liver and pancreas of young (3-month-old) and adult (14-month-old) rats. The 96PSD and 192PSD groups of young rats showed lower glucose levels on the OGTT than the control group. In the adult rats, only the 96PSD group had lower glucose levels than the control group. However, the areas under the curve for the young and adult 192 and 192PSD + Recovery groups showed significant differences. Both LPO and SOD increased in the 192PSD and 192PSD + Recovery groups, but CAT decreased in the liver of young rats in the 192PSD group. Regarding the pancreas, LPO and SOD levels increased after 96 h of PSD. In adult animals, CAT decreased in the liver after 96 and 192 h of PSD, while LPO and SOD increased in the pancreas of the 192PSD and PSD + Recovery groups. Differences in the SOD and CAT activities in the liver and SOD activities in the pancreas were also observed between the young and adult rats and maintained across all the PSD groups. In conclusion, PSD induced differential responses that appeared to depend on the duration of the induced condition, the animals’ age, and the tissue analyzed. It was found that adult rats were more susceptible to the effects of PSD than young rats.
Collapse
|
8
|
Espitia-Bautista E, Escobar C. Addiction-like response in brain and behavior in a rat experimental model of night-eating syndrome. Appetite 2021; 161:105112. [PMID: 33453338 DOI: 10.1016/j.appet.2021.105112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/04/2020] [Accepted: 01/07/2021] [Indexed: 11/28/2022]
Abstract
STUDY OBJECTIVES Individuals ailing from night eating syndrome (NES) consume more than 25% of their daily food intake during the normal sleep time, delaying their sleep or waking up in the middle of the night to eat. This study explored two experimental conditions resembling NES in Wistar rats by offering palatable food during the sleep phase, alone or combined with sleep delay. Also we explored their impact on addiction-like changes in the brain and behavior. METHODS Experiment 1 explored the brain response after a first NES-like event; experiment 2 and 3 explored addiction-like behaviors c-Fos and FosB/ΔFosB in corticolimbic regions after 4 weeks exposition to NES-like conditions and after one week of withdrawal, respectively. For all 3 experiments 6 experimental groups were used: 1. Control; 2. Restricted access (1 h) to high-sugar diet (HSD) or to 3. high-fat diet (HFD); 4., Sleep delay for 4 h (SD) (from ZT0-ZT4, rats using slow rotating wheels); 5. SD + HSD; 6. SD + HFD. RESULTS A first event of eating a palatable diet with or without SD was sufficient to stimulate c-Fos and ΔFosB. Along 4 weeks of exposure to the palatable diets rats exhibited escalation and binge eating, which was highest for the HFD. At this stage, SD did not influence behavioral changes nor the neuronal response. After one-week in withdrawal, rats exhibited craving and effort to obtain their palatable diet. The brains of rats previously exposed to sleep delay maintained high levels of FosB/ΔFosB in the accumbens shell and high c-Fos activation in the insular cortex. CONCLUSIONS In our experimental models of NES-like a HFD in the sleep phase and SD are risk factors to develop binge eating and addiction-like behaviors.
Collapse
Affiliation(s)
- Estefania Espitia-Bautista
- Facultad de Medicina, Departamento de Anatomía, Universidad Nacional Autónoma de México, 04510, México City, Mexico
| | - Carolina Escobar
- Facultad de Medicina, Departamento de Anatomía, Universidad Nacional Autónoma de México, 04510, México City, Mexico.
| |
Collapse
|
9
|
Xing C, Huang X, Zhang Y, Zhang C, Wang W, Wu L, Ding M, Zhang M, Song L. Sleep Disturbance Induces Increased Cholesterol Level by NR1D1 Mediated CYP7A1 Inhibition. Front Genet 2020; 11:610496. [PMID: 33424933 PMCID: PMC7793681 DOI: 10.3389/fgene.2020.610496] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/03/2020] [Indexed: 01/02/2023] Open
Abstract
Disturbed sleep is closely associated with an increased risk of metabolic diseases. However, the underlying mechanisms of circadian clock genes linking sleep and lipid profile abnormalities have not been fully elucidated. This study aimed to explore the important role of the circadian clock in regulating impaired cholesterol metabolism at an early stage of sleep deprivation (SD). Sleep disturbance was conducted using an SD instrument. Our results showed that SD increased the serum cholesterol levels. Concentrations of serum leptin and resistin were much lower after SD, but other metabolic hormone concentrations (adiponectin, glucagon, insulin, thyroxine, norepinephrine, and epinephrine) were unchanged before and after SD. Warning signs of cardiovascular diseases [decreased high density lipoprotein (HDL)-cholesterol and increased corticosterone and 8-hydroxyguanosine levels] and hepatic cholestasis (elevated total bile acids and bilirubin levels) were observed after SD. Cholesterol accumulation was also observed in the liver after SD. The expression levels of HMGCR, the critical enzyme for cholesterol synthesis, remained unchanged in the liver. However, the expression levels of liver CYP7A1, the enzyme responsible for the conversion of cholesterol into bile acids, significantly reduced after SD. Furthermore, expression of NR1D1, a circadian oscillator and transcriptional regulator of CYP7A1, strikingly decreased after SD. Moreover, NR1D1 deficiency decreased liver CYP7A1 levels, and SD could exacerbate the reduction of CYP7A1 expression in NR1D1-/- mouse livers. Additionally, NR1D1 deficiency could further increase serum cholesterol levels under SD. These results suggest that sleep disturbance can induce increased serum cholesterol levels and liver cholesterol accumulation by NR1D1 mediated CYP7A1 inhibition.
Collapse
Affiliation(s)
- Chen Xing
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Xin Huang
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Yifan Zhang
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Chongchong Zhang
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, China.,School of Basic Medicine, Henan University, Kaifeng, China
| | - Wei Wang
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, China.,School of Pharmacy, Jiamusi University, Jiamusi, China
| | - Lin Wu
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Mengnan Ding
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Min Zhang
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Lun Song
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Liew SC, Aung T. Sleep deprivation and its association with diseases- a review. Sleep Med 2020; 77:192-204. [PMID: 32951993 DOI: 10.1016/j.sleep.2020.07.048] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/08/2020] [Accepted: 07/27/2020] [Indexed: 01/02/2023]
Abstract
Sleep deprivation, a consequence of multiple health problems or a cause of many major health risks, is a significant public health concern in this era. In the recent years, numerous reports have been added to the literature to provide explanation and to answer previously unanswered questions on this important topic but comprehensive updates and reviews in this aspect remain scarce. The present study identified 135 papers that investigated the association between sleep deprivation and health risks, including cardiovascular, respiratory, neurological, gastrointestinal, immunology, dermatology, endocrine, and reproductive health. In this review, we aimed to provide insight into the association between sleep deprivation and the development of diseases. We reviewed the latest updates available in the literature and particular attention was paid to reports that detailed all possible causal relationships involving both extrinsic and intrinsic factors that may be relevant to this topic. Various mechanisms by which sleep deprivation may affect health were presented and discussed, and this review hopes to serve as a platform for ideas generation for future research.
Collapse
Affiliation(s)
- Siaw Cheok Liew
- Department of Clinical Competence, Perdana University-Royal College of Surgeons in Ireland, Kuala Lumpur, Malaysia.
| | - Thidar Aung
- Department of Biochemistry, Perdana University-Royal College of Surgeons in Ireland, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Mehta R, Giri S, Mallick BN. REM sleep loss-induced elevated noradrenaline could predispose an individual to psychosomatic disorders: a review focused on proposal for prediction, prevention, and personalized treatment. EPMA J 2020; 11:529-549. [PMID: 33240449 DOI: 10.1007/s13167-020-00222-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022]
Abstract
Historically and traditionally, it is known that sleep helps in maintaining healthy living. Its duration varies not only among individuals but also in the same individual depending on circumstances, suggesting it is a dynamic and personalized physiological process. It has been divided into rapid eye movement sleep (REMS) and non-REMS (NREMS). The former is unique that adult humans spend the least time in this stage, when although one is physically asleep, the brain behaves as if awake, the dream state. As NREMS is a pre-requisite for appearance of REMS, the latter can be considered a predictive readout of sleep quality and health. It plays a protective role against oxidative, stressful, and psychopathological insults. Several modern lifestyle activities compromise quality and quantity of sleep (including REMS) affecting fundamental physiological and psychopathosomatic processes in a personalized manner. REMS loss-induced elevated brain noradrenaline (NA) causes many associated symptoms, which are ameliorated by preventing NA action. Therefore, we propose that awareness about personalized sleep hygiene (including REMS) and maintaining optimum brain NA level should be of paramount significance for leading physical and mental well-being as well as healthy living. As sleep is a dynamic, multifactorial, homeostatically regulated process, for healthy living, we recommend addressing and treating sleep dysfunctions in a personalized manner by the health professionals, caregivers, family, and other supporting members in the society. We also recommend that maintaining sleep profile, optimum level of NA, and/or prevention of elevation of NA or its action in the brain must be seriously considered for ameliorating lifestyle and REMS disturbance-associated dysfunctions.
Collapse
Affiliation(s)
- Rachna Mehta
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067 India.,Present Address: Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, India
| | - Shatrunjai Giri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067 India
| | - Birendra N Mallick
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067 India
| |
Collapse
|
12
|
Kordestani-Moghadam P, Nasehi M, Vaseghi S, Khodagholi F, Zarrindast MR. The role of sleep disturbances in depressive-like behavior with emphasis on α-ketoglutarate dehydrogenase activity in rats. Physiol Behav 2020; 224:113023. [PMID: 32574661 DOI: 10.1016/j.physbeh.2020.113023] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023]
Abstract
Sleep disorders may induce anxiety- and depressive-like behaviors. Furthermore, sleep disorders can alter the function of α-KGDH (α-ketoglutarate dehydrogenase), which is involved in the citric acid cycle. In this study, we evaluated the effect of two models of sleep deprivation (SD) including total SD (TSD) and partial SD (PSD), and two models of napping combined with each models of SD on rats' performance in Forced Swim Test (FST) and α-KGDH activity in both hemispheres of the amygdala. 64 male Wistar rats were used in this study. A modified water box was also used to induce SD. The results showed that, immobility was increased in 48-hour PSD group, indicating a possible depressive-like behavior. Swimming time was also increased following 48-hour TSD. However, climbing time was decreased in 48-hour PSD/TSD groups. Additionally, α-KGDH activity was increased in the left amygdala in 48-hour TSD and PSD groups. In conclusion, PSD may increase depressive-like behavior. TSD and PSD can decrease swimming time but increase climbing time, and these effects may be related to serotonergic and noradrenergic transmissions, respectively. Increase in α-KGDH activity in the left amygdala may be related to the brain's need for more energy during prolonged wakefulness. α-KGDH activity in the right amygdala was unaffected probably due to a decrease in alertness following SD.
Collapse
Affiliation(s)
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroendocrinology Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Siervo GEML, Ogo FM, Staurengo-Ferrari L, Anselmo-Franci JA, Cunha FQ, Cecchini R, Guarnier FA, Verri WA, Fernandes GSA. Sleep restriction during peripuberty unbalances sexual hormones and testicular cytokines in rats. Biol Reprod 2019; 100:112-122. [PMID: 30010983 DOI: 10.1093/biolre/ioy161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022] Open
Abstract
Spermatogenesis and steroidogenesis are not fully established during puberty. Especially during this period, children and adolescents may be chronically sleep deprived due to early school hours and constant exposure to artificial light and interactive activities. We have previously shown that sleep restriction (SR) during peripuberty impairs sperm motility and has consequences on epididymal development in rats. Thus, this study aimed to evaluate the effect of SR during peripuberty on sexual hormones and its impact on testicular tissue. Rats were subjected to 18 h of SR per day for 21 days or were maintained as controls (C) in the same room. The circulating luteinizing hormone levels were decreased in SR rats without changes in the follicle stimulating hormone levels. Plasma and intratesticular testosterone and corticosterone in the SR group were increased in relation to C group. These alterations impair testicular tissue, with decreased IL-1β, IL-6, and TNFα levels in the testis and diminished seminiferous epithelium height and Sertoli cell number. SR also increased testicular lipid peroxidation with no alteration in antioxidant profiles. There were no significant changes in sperm parameters, seminiferous tubule diameter, histopathology, spermatogenesis kinetics, neutrophil and macrophage recruitment, and IL-10 concentration. Our results show that SR unbalances sexual hormones and testicular cytokines at a critical period of sexual maturation. These changes lead to lipid peroxidation in the testes and negatively influence the testicular tissue, as evidenced by diminished seminiferous epithelium height-with apoptosis of germinative cell-and Sertoli cell number.
Collapse
Affiliation(s)
- Gláucia E M L Siervo
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Londrina, Paraná, Brazil.,Department of General Biology, Biological Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Fernanda M Ogo
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Londrina, Paraná, Brazil.,Department of General Biology, Biological Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Larissa Staurengo-Ferrari
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Janete A Anselmo-Franci
- Department of Morphology, Stomatology and Physiology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rubens Cecchini
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Flávia A Guarnier
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Waldiceu A Verri
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Glaura S A Fernandes
- Department of General Biology, Biological Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
14
|
Ma B, Chen J, Mu Y, Xue B, Zhao A, Wang D, Chang D, Pan Y, Liu J. Proteomic analysis of rat serum revealed the effects of chronic sleep deprivation on metabolic, cardiovascular and nervous system. PLoS One 2018; 13:e0199237. [PMID: 30235220 PMCID: PMC6147403 DOI: 10.1371/journal.pone.0199237] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022] Open
Abstract
Sleep is an essential and fundamental physiological process that plays crucial roles in the balance of psychological and physical health. Sleep disorder may lead to adverse health outcomes. The effects of sleep deprivation were extensively studied, but its mechanism is still not fully understood. The present study aimed to identify the alterations of serum proteins associated with chronic sleep deprivation, and to seek for potential biomarkers of sleep disorder mediated diseases. A label-free quantitative proteomics technology was used to survey the global changes of serum proteins between normal rats and chronic sleep deprivation rats. A total of 309 proteins were detected in the serum samples and among them, 117 proteins showed more than 1.8-folds abundance alterations between the two groups. Functional enrichment and network analyses of the differential proteins revealed a close relationship between chronic sleep deprivation and several biological processes including energy metabolism, cardiovascular function and nervous function. And four proteins including pyruvate kinase M1, clusterin, kininogen1 and profilin-1were identified as potential biomarkers for chronic sleep deprivation. The four candidates were validated via parallel reaction monitoring (PRM) based targeted proteomics. In addition, protein expression alteration of the four proteins was confirmed in myocardium and brain of rat model. In summary, the comprehensive proteomic study revealed the biological impacts of chronic sleep deprivation and discovered several potential biomarkers. This study provides further insight into the pathological and molecular mechanisms underlying sleep disorders at protein level.
Collapse
Affiliation(s)
- Bo Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jincheng Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongying Mu
- Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Bingjie Xue
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aimei Zhao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Daoping Wang
- Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Dennis Chang
- National Institute of Complementary Medicine, Western Sydney University, Penrith, Australia
| | - Yinghong Pan
- Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing, China
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Science, Beijing, China
- * E-mail: (JL); (YP)
| | - Jianxun Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Institute of Complementary Medicine, Western Sydney University, Penrith, Australia
- * E-mail: (JL); (YP)
| |
Collapse
|
15
|
Brianza-Padilla M, Sánchez-Muñoz F, Vázquez-Palacios G, Huang F, Almanza-Pérez JC, Bojalil R, Bonilla-Jaime H. Cytokine and microRNA levels during different periods of paradoxical sleep deprivation and sleep recovery in rats. PeerJ 2018; 6:e5567. [PMID: 30225174 PMCID: PMC6139242 DOI: 10.7717/peerj.5567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/13/2018] [Indexed: 01/19/2023] Open
Abstract
Background Sleep has a fundamental role in the regulation of homeostasis. The aim of this study was to assess the effect of different periods of paradoxical sleep deprivation (PSD) and recovery on serum levels of cytokines and miRNAs related to inflammatory responses. Methods Male Wistar rats were submitted to a PSD of 24, 96, or 192 h, or of 192 h followed by 20 days of recovery (192 h PSD+R). The concentrations of corticosterone, cytokines (IL-6, TNF, IL-10, Adiponectin) and miRNAs (miR-146a, miR-155, miR-223, miR-16, miR-126, miR-21) in serum were evaluated. Results At PSD 24 h a significant increase of IL-6 and decrease of IL-10 were observed. At PSD 96h adiponectin increased. At 192 h of PSD IL-6 increased significantly again, accompanied by a threefold increase of IL-10 and an increase of serum corticosterone. After 20 days of recovery (192 h PSD+R) corticosterone, IL-6 and TNF levels increased significantly, while IL-10 decreased also significantly. Regarding the miRNAs at 24 h of PSD serum miR-146a, miR-155, miR-223, and miR-16 levels all increased. At 96 h of PSD miR-223 decreased. At 192 h of PSD decreases in miR-16 and miR-126 were observed. After recovery serum miR-21 increased and miR-16 decreased. Conclusion PSD induces a dynamic response likely reflecting the induced cellular stress and manifested as variating hormonal and inflammatory responses. Sleep deprivation disturbed corticosterone, cytokine and miRNA levels in serum related to the duration of sleep deprivation, as short-term PSD produced effects similar to those of an acute inflammatory response and long-term PSD induced long-lasting disturbances of biological mediators.
Collapse
Affiliation(s)
- Malinalli Brianza-Padilla
- Posgrado en Biologia Experimental, División de Ciencias Biológicas y de la Salud, Universidad Autonoma Metropolitana Iztapalapa, Ciudad de Mexico, Mexico
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiologia Ignacio Chavez, Ciudad de Mexico, Mexico
| | - Gonzalo Vázquez-Palacios
- Colegio de Ciencias y Humanidades, Universidad Autonoma de la Ciudad de Mexico, Ciudad de Mexico, Mexico
| | - Fengyang Huang
- Laboratorio de Investigación en Farmacología y Toxicología, Hospital Infantil de Mexico Federico Gomez, Ciudad de Mexico, Mexico
| | - Julio César Almanza-Pérez
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autonoma Metropolitana Iztapalapa, Ciudad de Mexico, Mexico
| | - Rafael Bojalil
- Departamento de Inmunología, Instituto Nacional de Cardiologia Ignacio Chavez, Ciudad de Mexico, Mexico.,Departamento de Atención a la Salud, Universidad Autónoma Metropolitana Xochimilco, Ciudad de México, México
| | - Herlinda Bonilla-Jaime
- Departamento de Biologia de la Reproducción, División de Ciencias Biológicas y de la Salud, Universidad Autonoma Metropolitana Iztapalapa, Ciudad de Mexico, Mexico
| |
Collapse
|
16
|
Shift-work: is time of eating determining metabolic health? Evidence from animal models. Proc Nutr Soc 2018; 77:199-215. [DOI: 10.1017/s0029665117004128] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The circadian disruption in shift-workers is suggested to be a risk factor to develop overweight and metabolic dysfunction. The conflicting time signals given by shifted activity, shifted food intake and exposure to light at night occurring in the shift-worker are proposed to be the cause for the loss of internal synchrony and the consequent adverse effects on body weight and metabolism. Because food elicited signals have proven to be potent entraining signals for peripheral oscillations, here we review the findings from experimental models of shift-work and verify whether they provide evidence about the causal association between shifted feeding schedules, circadian disruption and altered metabolism. We found mainly four experimental models that mimic the conditions of shift-work: protocols of forced sleep deprivation, of forced activity during the normal rest phase, exposure to light at night and shifted food timing. A big variability in the intensity and duration of the protocols was observed, which led to a diversity of effects. A common result was the disruption of temporal patterns of activity; however, not all studies explored the temporal patterns of food intake. According to studies that evaluate time of food intake as an experimental model of shift-work and studies that evaluate shifted food consumption, time of food intake may be a determining factor for the loss of balance at the circadian and metabolic level.
Collapse
|