1
|
Antonio J, Newmire DE, Stout JR, Antonio B, Gibbons M, Lowery LM, Harper J, Willoughby D, Evans C, Anderson D, Goldstein E, Rojas J, Monsalves-Álvarez M, Forbes SC, Gomez Lopez J, Ziegenfuss T, Moulding BD, Candow D, Sagner M, Arent SM. Common questions and misconceptions about caffeine supplementation: what does the scientific evidence really show? J Int Soc Sports Nutr 2024; 21:2323919. [PMID: 38466174 DOI: 10.1080/15502783.2024.2323919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/17/2024] [Indexed: 03/12/2024] Open
Abstract
Caffeine is a popular ergogenic aid that has a plethora of evidence highlighting its positive effects. A Google Scholar search using the keywords "caffeine" and "exercise" yields over 200,000 results, emphasizing the extensive research on this topic. However, despite the vast amount of available data, it is intriguing that uncertainties persist regarding the effectiveness and safety of caffeine. These include but are not limited to: 1. Does caffeine dehydrate you at rest? 2. Does caffeine dehydrate you during exercise? 3. Does caffeine promote the loss of body fat? 4. Does habitual caffeine consumption influence the performance response to acute caffeine supplementation? 5. Does caffeine affect upper vs. lower body performance/strength differently? 6. Is there a relationship between caffeine and depression? 7. Can too much caffeine kill you? 8. Are there sex differences regarding caffeine's effects? 9. Does caffeine work for everyone? 10. Does caffeine cause heart problems? 11. Does caffeine promote the loss of bone mineral? 12. Should pregnant women avoid caffeine? 13. Is caffeine addictive? 14. Does waiting 1.5-2.0 hours after waking to consume caffeine help you avoid the afternoon "crash?" To answer these questions, we performed an evidence-based scientific evaluation of the literature regarding caffeine supplementation.
Collapse
Affiliation(s)
- Jose Antonio
- Nova Southeastern University, Department of Health and Human Performance, Davie, FL, USA
| | - Daniel E Newmire
- Texas Woman's University, Exercise Physiology and Biochemistry Laboratory, School of Health Promotion and Kinesiology, Denton, TX, USA
| | - Jeffrey R Stout
- University of Central Florida, College of Health Professions and Sciences, Orlando, FL, USA
| | - Brandi Antonio
- University of Central Florida, College of Health Professions and Sciences, Orlando, FL, USA
| | | | - Lonnie M Lowery
- Nutrition, Exercise and Wellness Associates, Cuyahoga Falls, OH, USA
- Walsh University, Department of Exercise Science, North Canton, OH, USA
| | - Joseph Harper
- Walsh University, Department of Exercise Science, North Canton, OH, USA
| | - Darryn Willoughby
- School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX, USA
| | - Cassandra Evans
- Nova Southeastern University, Department of Health and Human Performance, Davie, FL, USA
| | - Dawn Anderson
- Indiana Tech, Exercise and Sport Performance Laboratory, Fort Wayne, IN, USA
| | - Erica Goldstein
- Stetson University, Department of Health Sciences, Deland, FL, USA
| | - Jose Rojas
- Keiser University, Fort Lauderdale, FL, USA
- Rocky Mountain University of Health Professions, Provo, UT, USA
| | - Matías Monsalves-Álvarez
- Universidad de O´Higgins, Exercise Metabolism and Nutrition Laboratory. Instituto de Ciencias de la Salud, Rancagua, Chile
- Motion Human Performance Laboratory, Lo Barnechea, Chile
| | - Scott C Forbes
- Brandon University, Department of Physical Education Studies, CBrandon, MB, Canada
| | | | - Tim Ziegenfuss
- The Center for Applied Health Sciences, Canfield, OH, USA
| | - Blake D Moulding
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, SK, Canada
| | - Darren Candow
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, SK, Canada
| | | | - Shawn M Arent
- University of South Carolina, Arnold School of Public Health, Columbia, SC, USA
| |
Collapse
|
2
|
Tallis J, Duncan MJ, Clarke ND, Morris RO, Tamilio RA. Are caffeine effects equivalent between different modes of administration: the acute effects of 3 mg.kg -1 caffeine on the muscular strength and power of male university Rugby Union players. J Int Soc Sports Nutr 2024; 21:2419385. [PMID: 39439175 PMCID: PMC11500557 DOI: 10.1080/15502783.2024.2419385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND There is growing interest in the potential of alternative modes of caffeine administration for enhancing sports performance. Given that alternative modes may evoke improved physical performance via distinct mechanisms, effects may not be comparable and studies directly comparing the erogenicity of alternative modes of caffeine administration are lacking. To address this knowledge gap, the present study evaluated the effect of 3 mg·kg-1 caffeine delivered in anhydrous form via capsule ingestion, chewing gum or mouth rinsing on measures of muscular strength, power, and strength endurance in male Rugby Union players. METHODS Twenty-seven participants completed the study (Mean ± SD: Age 20 ± 2 yrs; daily caffeine consumption 188 ± 88 mg). Following assessments and reassessment of chest press (CP), shoulder press (SP), Deadlift (DL), and Squat (SQ) 1-repetition maximum (1RM) and familiarization to the experimental procedures, participants completed six experimental trials where they were administered 3 mg.kg-1 caffeine (Caff) or placebo (Plac) capsule(CAP), chewing gum(GUM) or mouth rinse(RINSE) in a randomized, double-blind and counterbalanced fashion prior to force platform assessment of countermovement jump, drop jump and isometric mid-thigh pull performance. Strength endurance was measured across two sets of CP, SP, DL, and SQ at 70% 1RM until failure. Pre-exercise perceptions of motivation and arousal were also determined. RESULTS Caffeine increased perceived readiness to invest mental effort (p = .038; ηp2=.156), countermovement jump height (p = .035; ηp2=.160) and SQ repetitions until failure in the first set (p < .001; d = .481), but there was no effect of delivery mode (p > .687; ηp2<.015). Readiness to invest physical effort, felt arousal, drop jump height, countermovement jump, drop jump and isometric mid-thigh pull ground reaction force-time characteristics and repetitions until failure in CP, SP and DL were not affected by caffeine administration or mode of caffeine delivery (p > .0.052; ηp2< .136). CONCLUSION 3 mg.kg-1 caffeine administered via capsule, gum or mouth rinse had limited effects on muscular strength, power, and strength endurance. Small effects of caffeine on CMJ height could not be explained by changes in specific ground reaction force-time characteristics and were not transferable to DJ performance, and effects specific to the SQ RTP exercise underpin the complexity in understanding effects of caffeine on muscular function. Novel modes of caffeine administration proposed to evoke benefits via distinct mechanisms did not offer unique effects, and the small number of effects demonstrated may have little translation to a single performance trial when data examining direct comparison of each caffeine vehicle compared against a mode matched placebo is considered.
Collapse
Affiliation(s)
- Jason Tallis
- Coventry University, Centre for Physical Activity, Sport & Exercise Science, Coventry, UK
| | - Michael, J. Duncan
- Coventry University, Centre for Physical Activity, Sport & Exercise Science, Coventry, UK
| | - Neil, D. Clarke
- Birmingham City University, Research Centre for Life and Sport Science (CLaSS), School of Health Sciences, Birmingham, UK
| | - Rhys O. Morris
- Coventry University, Centre for Physical Activity, Sport & Exercise Science, Coventry, UK
| | - Ryan, A. Tamilio
- Coventry University, Centre for Physical Activity, Sport & Exercise Science, Coventry, UK
- University of Birmingham, School of Pharmacy, School of Health Sciences, College of Medicine and Health, Birmingham, UK
| |
Collapse
|
3
|
Wu W, Chen Z, Zhou H, Wang L, Li X, Lv Y, Sun T, Yu L. Effects of Acute Ingestion of Caffeine Capsules on Muscle Strength and Muscle Endurance: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:1146. [PMID: 38674836 PMCID: PMC11054210 DOI: 10.3390/nu16081146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to explore the effects of acute ingestion of caffeine capsules on muscle strength and muscle endurance. We searched the PubMed, Web of Science, Cochrane, Scopus, and EBSCO databases. Data were pooled using the weighted mean difference (WMD) and 95% confidence interval. Fourteen studies fulfilled the inclusion criteria. The acute ingestion of caffeine capsules significantly improved muscle strength (WMD, 7.09, p < 0.00001) and muscle endurance (WMD, 1.37; p < 0.00001), especially in males (muscle strength, WMD, 7.59, p < 0.00001; muscle endurance, WMD, 1.40, p < 0.00001). Subgroup analyses showed that ≥ 6 mg/kg body weight of caffeine (WMD, 6.35, p < 0.00001) and ingesting caffeine 45 min pre-exercise (WMD, 8.61, p < 0.00001) were more effective in improving muscle strength, with the acute ingestion of caffeine capsules having a greater effect on lower body muscle strength (WMD, 10.19, p < 0.00001). In addition, the acute ingestion of caffeine capsules had a greater effect in moderate-intensity muscle endurance tests (WMD, 1.76, p < 0.00001). An acute ingestion of caffeine capsules significantly improved muscle strength and muscle endurance in the upper body and lower body of males.
Collapse
Affiliation(s)
- Weiliang Wu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China;
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing 100084, China; (Z.C.); (L.W.); (X.L.)
| | - Zhizhou Chen
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing 100084, China; (Z.C.); (L.W.); (X.L.)
| | - Huixuan Zhou
- School of Sport Sciences, Beijing Sport University, Beijing 100084, China;
| | - Leiyuyang Wang
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing 100084, China; (Z.C.); (L.W.); (X.L.)
| | - Xiang Li
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing 100084, China; (Z.C.); (L.W.); (X.L.)
| | - Yuanyuan Lv
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China;
| | - Tingting Sun
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China;
| | - Laikang Yu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China;
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing 100084, China; (Z.C.); (L.W.); (X.L.)
| |
Collapse
|
4
|
Yildirim UC, Akcay N, Alexe DI, Esen O, Gulu M, Cîrtiţă-Buzoianu C, Cinarli FS, Cojocaru M, Sari C, Alexe CI, Karayigit R. Acute effect of different doses of caffeinated chewing gum on exercise performance in caffeine-habituated male soccer players. Front Nutr 2023; 10:1251740. [PMID: 37920289 PMCID: PMC10619147 DOI: 10.3389/fnut.2023.1251740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/15/2023] [Indexed: 11/04/2023] Open
Abstract
The ergogenic benefits of caffeine have been well established, but there is scarce research on its chewing gum form. The present research aimed to examine the effects of different doses (100 and 200 mg) of caffeinated chewing gum on muscle strength, vertical jump performance, and ball-kicking speed in trained male soccer players. In a double-blind, randomized counterbalanced, and crossover research design, 14 male soccer players (age = 22 ± 2 y; body mass = 74.2 ± 7.1 kg; height = 180.0 ± 6.8 cm; habitual caffeine intake = 358.9 ± 292.4 mg/day) participated in three experimental trials. In each trial, participants performed isometric handgrip strength, quadriceps and hamstring strength, ball-kicking speed, and 15 s countermovement jump test 10 min after chewing 100 mg (LCAF) or 200 mg (MCAF) of caffeinated gum or placebo (PLA). MCAF improved quadriceps strength (53.77 ± 5.77 kg) compared to LCAF (49.62 ± 8.81 kg, p = 0.048) and PLA (49.20 ± 7.20 kg, p = 0.032). However, neither LCAF nor MCAF had a significant effect on the isometric handgrip and hamstring strength, ball-kicking speed, and 15 s countermovement jump test (all p > 0.05). These findings support chewing gum as an alternative mode of caffeine administration which can be used as a nutritional ergogenic aid for trained soccer players, at least for quadriceps strength.
Collapse
Affiliation(s)
| | - Neslihan Akcay
- Hasan Doğan School of Physical Education and Sports, Karabük University, Karabük, Türkiye
| | - Dan Iulian Alexe
- Department of Physical and Occupational Therapy, Faculty of Movement, Sports and Health, Sciences, Vasile Alecsandri University of Bacau, Bacău, Romania
| | - Ozcan Esen
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Mehmet Gulu
- Faculty of Sport Sciences, Kırıkkale University, Kırıkkale, Türkiye
| | - Cristina Cîrtiţă-Buzoianu
- Faculty of Letters, Communication and Public Relations Department, Vasile Alecsandri University of Bacau, Bacău, Romania
| | | | - Marilena Cojocaru
- Faculty of Physical Education and Sport, Spiru Haret University of Bucuresti, Bucharest, Romania
| | - Cengizhan Sari
- Faculty of Sport Sciences, Mus Alparslan University, Mus, Türkiye
| | - Cristina Ioana Alexe
- Department of Physical Education and Sports Performance, Faculty of Movement, Sports and Health, Sciences, Vasile Alecsandri University of Bacau, Bacau, Romania
| | - Raci Karayigit
- Faculty of Sport Sciences, Ankara University, Ankara, Türkiye
| |
Collapse
|
5
|
Haugen ME, Vårvik FT, Grgic J, Studsrud H, Austheim E, Zimmermann EM, Falch HN, Larsen S, van den Tillaar R, Bjørnsen T. Effect of isolated and combined ingestion of caffeine and citrulline malate on resistance exercise and jumping performance: a randomized double-blind placebo-controlled crossover study. Eur J Nutr 2023; 62:2963-2975. [PMID: 37450275 PMCID: PMC10468939 DOI: 10.1007/s00394-023-03212-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE The aim of this study was to explore the isolated and combined effects of caffeine and citrulline malate (CitMal) on jumping performance, muscular strength, muscular endurance, and pain perception in resistance-trained participants. METHODS Using a randomized and double-blind study design, 35 resistance-trained males (n = 18) and females (n = 17) completed four testing sessions following the ingestion of isolated caffeine (5 mg/kg), isolated CitMal (12 g), combined doses of caffeine and CitMal, and placebo. Supplements were ingested 60 min before performing a countermovement jump (CMJ) test (outcomes included jump height, rate of force development, peak force, and peak power), one-repetition maximum (1RM) squat and bench press, and repetitions to muscular failure in the squat and bench press with 60% of 1RM. Pain perception was evaluated following the repetitions to failure tests. The study was registered at ISRCTN (registration number: ISRCTN11694009). RESULTS Compared to the placebo condition, isolated caffeine ingestion and co-ingestion of caffeine and CitMal significantly enhanced strength in 1RM bench press (Cohen's d: 0.05-0.06; 2.5-2.7%), muscular endurance in the squat (d: 0.46-0.58; 18.6-18.7%) and bench press (d: 0.48-0.64; 9.3-9.5%). However, there was no significant difference between isolated caffeine ingestion and caffeine co-ingested with CitMal, and isolated CitMal supplementation did not have an ergogenic effect in any outcome. No main effect of condition was found in the analysis for CMJ-derived variables, 1RM squat and pain perception. CONCLUSION Caffeine ingestion appears to be ergogenic for muscular strength and muscular endurance, while adding CitMal does not seem to further enhance these effects.
Collapse
Affiliation(s)
| | - Fredrik Tonstad Vårvik
- Department of Sport Science and Physical Education, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
- Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway
| | - Jozo Grgic
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Henrik Studsrud
- Department of Sport Sciences and Physical Education, Nord University, Levanger, Norway
| | - Espen Austheim
- Department of Sport Sciences and Physical Education, Nord University, Levanger, Norway
| | | | | | - Stian Larsen
- Department of Sport Sciences and Physical Education, Nord University, Levanger, Norway
| | | | - Thomas Bjørnsen
- Department of Sport Science and Physical Education, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
- Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway
| |
Collapse
|
6
|
Lattari E, Vieira LAF, Santos LER, Jesus Abreu MA, Rodrigues GM, de Oliveira BRR, Machado S, Maranhão Neto GA, Santos TM. Transcranial Direct Current Stimulation Combined With or Without Caffeine: Effects on Training Volume and Pain Perception. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2023; 94:45-54. [PMID: 35025723 DOI: 10.1080/02701367.2021.1939251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/30/2021] [Indexed: 06/14/2023]
Abstract
Purpose: This study aimed to investigate the acute effects of tDCS combined with caffeine intake on training volume and pain perception in the bench press in resistance-trained males. The correlation between training volume and pain perception was also assessed in all interventions. Methods: Sixteen healthy males (age = 25.2 ± 4.7 years, body mass = 82.8 ± 9.1 kg, and height = 178.3 ± 5.7 cm), advanced in RT, were randomized and counterbalanced for the following experimental conditions: Sham tDCS with placebo intake (Sham+Pla), Sham tDCS with caffeine intake (Sham+Caff), anodal tDCS with placebo intake (a-tDCS+Pla), and anodal tDCS with caffeine intake (a-tDCS+Caff). The caffeine or placebo ingestion (both with 5 mg.kg-1) occurred 40 minutes before the tDCS sessions. The tDCS was applied over the left DLPFC for 20 minutes, with a 2 mA current intensity. After the tDCS sessions, participants performed the bench press with an 80% of 1RM load, where training volume and pain perception were measured. Results: Training volume was higher in the 1st and 2nd sets in both a-tDCS+Caff and Sham+Caff conditions, compared to the Sham+Pla condition (P < .05). Both a-tDCS+Caff and a-tDCS+Pla showed an increased pain perception during the third set compared to the first set. Also, no correlation was found between the number of repetitions and pain perception in any condition (P > .05). Conclusion: This research revealed that caffeine intake alone could be used as an ergogenic aid during resistance training programs in resistance-trained males.
Collapse
|
7
|
Tallis J, Guimaraes-Ferreira L, Clarke ND. Not Another Caffeine Effect on Sports Performance Study-Nothing New or More to Do? Nutrients 2022; 14:4696. [PMID: 36364958 PMCID: PMC9658326 DOI: 10.3390/nu14214696] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2023] Open
Abstract
The performance-enhancing potential of acute caffeine consumption is firmly established with benefits for many aspects of physical performance and cognitive function summarised in a number of meta-analyses. Despite this, there remains near exponential growth in research articles examining the ergogenic effects of caffeine. Many such studies are confirmatory of well-established ideas, and with a wealth of convincing evidence available, the value of further investigation may be questioned. However, several important knowledge gaps remain. As such, the purpose of this review is to summarise key knowledge gaps regarding the current understanding of the performance-enhancing effect of caffeine and justify their value for future investigation. The review will provide a particular focus on ten research priorities that will aid in the translation of caffeine's ergogenic potential to real-world sporting scenarios. The discussion presented here is therefore essential in guiding the design of future work that will aid in progressing the current understanding of the effects of caffeine as a performance enhancer.
Collapse
Affiliation(s)
- Jason Tallis
- Research Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | | | | |
Collapse
|
8
|
Tamilio RA, Clarke ND, Duncan MJ, Morris RO, Tallis J. How Repeatable Is the Ergogenic Effect of Caffeine? Limited Reproducibility of Acute Caffeine (3 mg.kg -1) Ingestion on Muscular Strength, Power, and Muscular Endurance. Nutrients 2022; 14:nu14204416. [PMID: 36297102 PMCID: PMC9611362 DOI: 10.3390/nu14204416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to determine the effect of 3 mg.kg−1 acute caffeine ingestion on muscular strength, power and strength endurance and the repeatability of potential ergogenic effects across multiple trials. Twenty-two university standard male rugby union players (20 ± 2 years) completed the study. Using a double-blind, randomized, and counterbalanced within-subject experimental design. Participants completed six experimental trials (three caffeine and three placebo) where force time characteristic of the Isometric Mid-Thigh Pull (IMTP), Countermovement Jump (CMJ) and Drop Jumps (DJ) were assessed followed by assessments of Chest Press (CP), Shoulder Press (SP), Squats (SQ), and Deadlifts (DL) Repetitions Until Failure (RTF at 70% 1 RM). ANOVA indicated that caffeine improved both the CMJ and DJ (p < 0.044) and increased RTF in all RTF assessments (p < 0.002). When individual caffeine trials were compared to corresponding placebo trials, effect sizes ranged from trivial-large favoring caffeine irrespective of a main effect of treatment being identified in the ANOVA. These results demonstrate for the first time that the performance enhancing effects of caffeine may not be repeatable between days, where our data uniquely indicates that this is in part attributable to between sessions variation in caffeine’s ergogenic potential.
Collapse
|
9
|
Grgic J, Venier S, Mikulic P. Examining the Effects of Caffeine on Isokinetic Strength, Power, and Endurance. J Funct Morphol Kinesiol 2022; 7:jfmk7040071. [PMID: 36278732 PMCID: PMC9590023 DOI: 10.3390/jfmk7040071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
This study examined caffeine's effects on isokinetic strength, power, and endurance. The sample included 25 young, resistance-trained males. The participants were tested on three occasions, in a control trial (no substance ingestion) and following the ingestion of 6 mg·kg-1 of caffeine or placebo. Exercise tests involved isokinetic knee extension and flexion using angular velocities of 60° s-1 and 180° s-1. Analyzed outcomes included peak torque, average power, and total work. For knee extension at an angular velocity of 60° s-1, there were significant differences for: (1) peak torque when comparing caffeine vs. control (Hedges' g = 0.22) and caffeine vs. placebo (g = 0.30) and (2) average power when comparing caffeine vs. control (g = 0.21) and caffeine vs. placebo (g = 0.29). For knee extension at an angular velocity of 180° s-1, there were significant differences for: (1) peak torque when comparing caffeine vs. placebo (g = 0.26), (2) average power when comparing caffeine vs. control (g = 0.36) and caffeine vs. placebo (g = 0.43), and (3) total work when comparing caffeine vs. control (g = 0.33) and caffeine vs. placebo (g = 0.36). Caffeine was not ergogenic for knee flexors in any of the analyzed outcomes. Additionally, there was no significant difference between control and placebo. In summary, caffeine enhances the mechanical output of the knee extensors at lower and higher angular velocities, and these effects are present when compared to placebo ingestion or no substance ingestion (control).
Collapse
Affiliation(s)
- Jozo Grgic
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
- Correspondence:
| | - Sandro Venier
- Faculty of Kinesiology, University of Zagreb, 10000 Zagreb, Croatia
| | - Pavle Mikulic
- Faculty of Kinesiology, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
10
|
Tamilio RA, Clarke ND, Duncan MJ, Morris R, Grgic J, Tallis J. Can 3 mg·kg -1 of Caffeine Be Used as An Effective Nutritional Supplement to Enhance the Effects of Resistance Training in Rugby Union Players? Nutrients 2021; 13:nu13103367. [PMID: 34684368 PMCID: PMC8539282 DOI: 10.3390/nu13103367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/23/2022] Open
Abstract
The present study uniquely examined the effect of 3 mg·kg−1 chronic caffeine consumption on training adaptations induced by 7-weeks resistance training and assessed the potential for habituation to caffeine’s ergogenicity. Thirty non-specifically resistance-trained university standard male rugby union players (age (years): 20 ± 2; height (cm): 181 ± 7; body mass (kg): 92 ± 17) completed the study), who were moderate habitual caffeine consumers (118 ± 110 mg), completed the study. Using a within-subject double-blind, placebo-controlled experimental design, the acute effects of caffeine intake on upper and lower limb maximal voluntary concentric and eccentric torque were measured using isokinetic dynamometry (IKD) prior to and immediately following a resistance training intervention. Participants were split into strength-matched groups and completed a resistance-training program for seven weeks, consuming either caffeine or a placebo before each session. Irrespective of group, acute caffeine consumption improved peak eccentric torque of the elbow extensors (p < 0.013), peak concentric torque of the elbow flexors (p < 0.005), total eccentric work of the elbow flexors (p < 0.003), total concentric work of the knee extensors (p < 0.001), and total concentric and eccentric work of the knee flexors (p < 0.046) following repeated maximal voluntary contractions. Many of these acute caffeine effects were still prevalent following chronic exposure to caffeine throughout the intervention. The training intervention resulted in significant improvements in upper and lower body one-repetition maximum strength (p < 0.001). For the most part, the effect of the training intervention was equivalent in both the caffeine and placebo groups, despite a small but significant increase (p < 0.037) in the total work performed in the participants that consumed caffeine across the course of the intervention. These results infer that caffeine may be beneficial to evoke acute improvements in muscular strength, with acute effects prevalent following chronic exposure to the experimental dose. However, individuals that consumed caffeine during the intervention did not elicit superior post-intervention training- induced adaptations in muscular strength.
Collapse
Affiliation(s)
- Ryan A. Tamilio
- Centre for Applied Biological and Exercise Sciences, Alison Gingell Building, Coventry University, Priory Street, Coventry CV 15FB, UK; (R.A.T.); (N.D.C.); (M.J.D.); (R.M.)
| | - Neil D. Clarke
- Centre for Applied Biological and Exercise Sciences, Alison Gingell Building, Coventry University, Priory Street, Coventry CV 15FB, UK; (R.A.T.); (N.D.C.); (M.J.D.); (R.M.)
| | - Michael J. Duncan
- Centre for Applied Biological and Exercise Sciences, Alison Gingell Building, Coventry University, Priory Street, Coventry CV 15FB, UK; (R.A.T.); (N.D.C.); (M.J.D.); (R.M.)
| | - Rhys Morris
- Centre for Applied Biological and Exercise Sciences, Alison Gingell Building, Coventry University, Priory Street, Coventry CV 15FB, UK; (R.A.T.); (N.D.C.); (M.J.D.); (R.M.)
| | - Jozo Grgic
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
| | - Jason Tallis
- Centre for Applied Biological and Exercise Sciences, Alison Gingell Building, Coventry University, Priory Street, Coventry CV 15FB, UK; (R.A.T.); (N.D.C.); (M.J.D.); (R.M.)
- Correspondence:
| |
Collapse
|
11
|
Rocha JCC, da Rocha ALS, da Silva Santos Soares G, Correia-Oliveira CR. Effects of caffeine ingestion on upper and lower limb muscle power of handball players: a double-blind, placebo-controlled, crossover study. SPORT SCIENCES FOR HEALTH 2021. [DOI: 10.1007/s11332-021-00803-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Nutrition and physical activity interventions for the general population with and without cardiometabolic risk: a scoping review. Public Health Nutr 2021; 24:4718-4736. [PMID: 34030758 DOI: 10.1017/s1368980021002184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The objective of this scoping review was to examine the research question: In the adults with or without cardiometabolic risk, what is the availability of literature examining interventions to improve or maintain nutrition and physical activity-related outcomes? Sub-topics included: (1) behaviour counseling or coaching from a dietitian/nutritionist or exercise practitioner, (2) mobile applications to improve nutrition and physical activity and (3) nutritional ergogenic aids. DESIGN The current study is a scoping review. A literature search of the Medline Complete, CINAHL Complete, Cochrane Database of Systematic Reviews and other databases was conducted to identify articles published in the English language from January 2005 until May 2020. Data were synthesised using bubble charts and heat maps. SETTING Out-patient, community and workplace. PARTICIPANTS Adults with or without cardiometabolic risk factors living in economically developed countries. RESULTS Searches resulted in 19 474 unique articles and 170 articles were included in this scoping review, including one guideline, thirty systematic reviews (SR), 134 randomised controlled trials and five non-randomised trials. Mobile applications (n 37) as well as ergogenic aids (n 87) have been addressed in several recent studies, including SR. While primary research has examined the effect of individual-level nutrition and physical activity counseling or coaching from a dietitian/nutritionist and/or exercise practitioner (n 48), interventions provided by these practitioners have not been recently synthesised in SR. CONCLUSION SR of behaviour counseling or coaching provided by a dietitian/nutritionist and/or exercise practitioner are needed and can inform practice for practitioners working with individuals who are healthy or have cardiometabolic risk.
Collapse
|
13
|
Shelley S, James RS, Eustace S, Eyre E, Tallis J. The effects of high adiposity on concentric and eccentric muscle performance of upper and lower limb musculature in young and older adults. Appl Physiol Nutr Metab 2021; 46:1047-1057. [PMID: 33656946 DOI: 10.1139/apnm-2020-0945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study uniquely examined the influence of old age and adiposity on maximal concentric and eccentric torque and fatigue of the elbow and knee (KF, KE) flexors and extensors. Forty males were recruited and categorised into young (n = 21, 23.7 ± 3.4) and old (n = 19, 68.3 ± 6.1) and then further into normal (young = 16.9 ± 2.5%, old = 20.6 ± 3.1%) and high adiposity (young = 28.9 ± 5.0%, old = 31.3 ± 4.2%) groups. Handgrip strength, sit-to-stand performance, and isokinetic assessments of peak torque at 60°, 120° and 180°·s-1 were measured. Older men produced significantly less concentric and eccentric peak torque (P < 0.016) but this was not influenced by adiposity (P > 0.055). For KE and KF, high adiposity groups demonstrated reduced peak torque normalised to body mass (P < 0.021), and muscle and contractile mode specific reduction in torque normalised to segmental lean mass. Eccentric fatigue resistance was unaffected by both age and adiposity (P > 0.30) and perceived muscle soreness, measured up to 72 hours after, was only enhanced in the upper body of the young group following eccentric fatigue (P = 0.009). Despite the impact of adiposity on skeletal muscle function being comparable between ages, these results suggest high adiposity will have greater impact on functional performance of older adults. Novelty: Irrespective of age, high adiposity may negatively impact force to body mass ratio and muscle quality in a muscle and contractile mode specific manner. Whilst the magnitude of adiposity effects is similar across ages, the impact for older adults will be more substantial given the age-related decline in muscle function.
Collapse
Affiliation(s)
- Sharn Shelley
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK.,Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Rob S James
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK.,Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Steven Eustace
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK.,Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Emma Eyre
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK.,Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Jason Tallis
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK.,Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| |
Collapse
|
14
|
Domaszewski P, Pakosz P, Konieczny M, Bączkowicz D, Sadowska-Krępa E. Caffeine-Induced Effects on Human Skeletal Muscle Contraction Time and Maximal Displacement Measured by Tensiomyography. Nutrients 2021; 13:nu13030815. [PMID: 33801251 PMCID: PMC8001539 DOI: 10.3390/nu13030815] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 01/09/2023] Open
Abstract
Studies on muscle activation time in sport after caffeine supplementation confirmed the effectiveness of caffeine. The novel approach was to determine whether a dose of 9 mg/kg/ body mass (b.m.) of caffeine affects the changes of contraction time and the displacement of electrically stimulated muscle (gastrocnemius medialis) in professional athletes who regularly consume products rich in caffeine and do not comply with the caffeine discontinuation period requirements. The study included 40 professional male handball players (age = 23.13 ± 3.51, b.m. = 93.51 ± 15.70 kg, height 191 ± 7.72, BMI = 25.89 ± 3.10). The analysis showed that in the experimental group the values of examined parameters were significantly reduced (p ≤ 0.001) (contraction time: before = 20.60 ± 2.58 ms/ after = 18.43 ± 3.05 ms; maximal displacement: before = 2.32 ± 0.80 mm/after = 1.69 ± 0.51 mm). No significant changes were found in the placebo group. The main achievement of this research was to demonstrate that caffeine at a dose of 9 mg/kg in professional athletes who regularly consume products rich in caffeine has a direct positive effect on the mechanical activity of skeletal muscle stimulated by an electric pulse.
Collapse
Affiliation(s)
- Przemysław Domaszewski
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, 45-758 Opole, Poland; (M.K.); (D.B.)
- Correspondence: (P.D.); (P.P.); Tel.: +48-774498330 (P.D.); +48-774498321 (P.P.)
| | - Paweł Pakosz
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, 45-758 Opole, Poland; (M.K.); (D.B.)
- Correspondence: (P.D.); (P.P.); Tel.: +48-774498330 (P.D.); +48-774498321 (P.P.)
| | - Mariusz Konieczny
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, 45-758 Opole, Poland; (M.K.); (D.B.)
| | - Dawid Bączkowicz
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, 45-758 Opole, Poland; (M.K.); (D.B.)
| | - Ewa Sadowska-Krępa
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland;
| |
Collapse
|
15
|
Karayigit R, Naderi A, Akca F, da Cruz CJG, Sarshin A, Yasli BC, Ersoz G, Kaviani M. Effects of Different Doses of Caffeinated Coffee on Muscular Endurance, Cognitive Performance, and Cardiac Autonomic Modulation in Caffeine Naive Female Athletes. Nutrients 2020; 13:nu13010002. [PMID: 33374947 PMCID: PMC7821939 DOI: 10.3390/nu13010002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/08/2020] [Accepted: 12/18/2020] [Indexed: 01/02/2023] Open
Abstract
Caffeine is widely consumed among elite athletes for its well-known ergogenic properties, and its ability to increase exercise performance. However, studies to date have predominantly focused on the anhydrous form of caffeine in male participants. The aim of the study was to investigate the effect of caffeinated coffee ingestion on lower-upper body muscular endurance, cognitive performance, and heart rate variability (HRV) in female athletes. A total of 17 participants (mean ± standard deviation (SD): age = 23 ± 2 years, body mass = 64 ± 4 kg, height = 168 ± 3 cm) in a randomized cross-over design completed three testing sessions, following the ingestion of 3 mg/kg/bm of caffeine (3COF), 6 mg/kg/bm of caffeine (6COF) provided from coffee or decaffeinated coffee (PLA) in 600 mL of hot water. The testing results included: (1) repetition number for muscular endurance performance; (2): reaction time and response accuracy for cognitive performance; (3): HRV parameters, such as standard deviation of normal-to-normal (NN) intervals (SDNN), standard deviation of successive differences (SDSD), root mean square of successive differences (RMSSD), total power (TP), the ratio of low- and high-frequency powers (LF/HF), high-frequency power (HF), normalized HF (HFnu), low-frequency power (LF), and normalized LF (LFnu). A one-way repeated measures ANOVA revealed that 3COF (p = 0.024) and 6COF (p = 0.036) improved lower body muscular endurance in the first set as well as cognitive performance (p = 0.025, p = 0.035 in the post-test, respectively) compared to PLA. However, no differences were detected between trials for upper body muscular endurance (p = 0.07). Lastly, all HRV parameters did not change between trials (p > 0.05). In conclusion, ingesting caffeinated coffee improved lower body muscular endurance and cognitive performance, while not adversely affecting cardiac autonomic function.
Collapse
Affiliation(s)
- Raci Karayigit
- Faculty of Sport Sciences, Ankara University, Gölbaşı, Ankara 06830, Turkey; (R.K.); (F.A.); (G.E.)
| | - Alireza Naderi
- Department of Sport Physiology, Boroujerd Branch, Islamic Azad University, Boroujerd 6915136111, Iran;
| | - Firat Akca
- Faculty of Sport Sciences, Ankara University, Gölbaşı, Ankara 06830, Turkey; (R.K.); (F.A.); (G.E.)
| | - Carlos Janssen Gomes da Cruz
- Laboratory of Exercise Physiology, Faculty of Physical Education, University of Brasilia, Brasilia 70910-900, Brazil;
| | - Amir Sarshin
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Karaj Branch 3149968111, Iran;
| | - Burak Caglar Yasli
- Department of Physical Education and Sports, Iğdır University, Igdir 76000, Turkey;
| | - Gulfem Ersoz
- Faculty of Sport Sciences, Ankara University, Gölbaşı, Ankara 06830, Turkey; (R.K.); (F.A.); (G.E.)
| | - Mojtaba Kaviani
- Faculty of Pure & Applied Science, School of Nutrition and Dietetics, Acadia University, Wolfville, NS B4P 2R6, Canada
- Correspondence: ; Tel.: +1-902-585-1884
| |
Collapse
|
16
|
Harty PS, Zabriskie HA, Stecker RA, Currier BS, Tinsley GM, Surowiec K, Jagim AR, Richmond SR, Kerksick CM. Caffeine Timing Improves Lower-Body Muscular Performance: A Randomized Trial. Front Nutr 2020; 7:585900. [PMID: 33330586 PMCID: PMC7719671 DOI: 10.3389/fnut.2020.585900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022] Open
Abstract
Little is known about the optimal time to consume caffeine prior to exercise to maximize the ergogenic benefits of the substance. Purpose: To determine the optimal pre-exercise time interval to consume caffeine to improve lower-body muscular performance. A secondary aim was to identify the presence of any sex differences in responses to timed caffeine administration. Methods: Healthy, resistance-trained males (n = 18; Mean±SD; Age: 25.1 ± 5.7 years; Height: 178.4 ± 7.1 cm; Body mass: 91.3 ± 13.5 kg; Percent body fat: 20.7 ± 5.2; Average caffeine consumption: 146.6 ± 100.3 mg/day) and females (n = 11; Mean ± SD; Age: 20.1 ± 1.6 years; Height: 165.0 ± 8.8 cm; Body mass: 65.8 ± 10.0 kg; Percent bodyfat: 25.8 ± 4.2; Average caffeine consumption: 111.8 ± 91.7 mg/day) participated in this investigation. In a randomized, double-blind, placebo-controlled, crossover fashion, participants consumed 6 mg·kg−1 caffeine or placebo solution at three time points: 2 h prior (2H), 1 h prior (1H), or 30 min prior (30M) to exercise testing. During three visits, caffeine was randomly administered at one time point, and placebo was administered at the other two time points. During one visit, placebo was administered at all three time points. Next, participants performed isometric mid-thigh pulls (IMTP), countermovement vertical jumps (CMVJ), and isometric/isokinetic knee extensor testing (ISO/ISOK). Results: Caffeine administered at 1H significantly improved absolute CMVJ and ISO performance relative to placebo. Mean CMVJ jump height was significantly higher during 1H compared to 30M. However, only caffeine administered at 30M significantly improved absolute measures of isokinetic performance. Analysis of the pooled caffeine conditions revealed that muscular performance was more consistently augmented by caffeine in males compared to females. Conclusions: Pre-exercise caffeine timing significantly modulated participant responses to the substance, with 1H exerting the most consistent ergogenic benefits relative to other time points, particularly compared to 2H. Male participants were found to respond more consistently to caffeine compared to female participants. These results suggest that active individuals can maximize the ergogenic effects of caffeine by consuming the substance ~1 h prior to the point when peak muscular performance is desired.
Collapse
Affiliation(s)
- Patrick S Harty
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, United States.,Energy Balance and Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, United States
| | - Hannah A Zabriskie
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, United States
| | - Richard A Stecker
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, United States
| | - Brad S Currier
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, United States
| | - Grant M Tinsley
- Energy Balance and Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, United States
| | - Kazimierz Surowiec
- Mass Spectrometry Facility, Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Andrew R Jagim
- Sports Medicine, Mayo Clinic Health System, Onalaska, WI, United States
| | - Scott R Richmond
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, United States
| | - Chad M Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, United States
| |
Collapse
|
17
|
Giráldez-Costas V, González-García J, Lara B, Coso JD, Wilk M, Salinero JJ. Caffeine Increases Muscle Performance During a Bench Press Training Session. J Hum Kinet 2020; 74:185-193. [PMID: 33312286 PMCID: PMC7706635 DOI: 10.2478/hukin-2020-0024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Previous investigations have established the ergogenic effect of caffeine on maximal muscle strength, power output and strength-endurance. However, these investigations used testing protocols that do not replicate the structure of a regular strength training session. Thus, the aim of this study was to investigate the effect of acute caffeine ingestion on muscle performance during a simulated velocity-based training workout. In a double-blind, randomized and counterbalanced experiment, 12 participants performed two experimental trials after ingesting 3 mg/kg/b.m. of caffeine or a placebo. The trials consisted of 4 sets of 8 repetitions of the bench press exercise at 70% of their one-repetition maximum performed at maximal velocity. Bar velocity was recorded with a rotatory encoder and force, power output and work were calculated. Regarding the whole workout, caffeine increased mean bar velocity (+7.8%; p=0.002), peak bar velocity (+8.7%; p=0.006), mean force (+1.5%; p=0.002), mean power output (+10.1%; p=0.003) and peak power output (+8.2%; p=0.004) when compared to the placebo. The total work performed in the caffeine trial was superior to the placebo trial (7.01±2.36 vs 6.55±2.20 kJ, p=0.001). These results suggest that the acute intake of 3 mg/kg/b.m. of caffeine before a velocity-based strength workout increased muscle performance and the total work performed across the whole training session. Thus, caffeine can be considered as an effective strategy to enhance muscle performance during the bench press training sessions.
Collapse
Affiliation(s)
- Verónica Giráldez-Costas
- Camilo José Cela University. Exercise Physiology Laboratory. Madrid, Spain
- Autonomus University of Madrid. Department of Physical Education, Sport and Human Movement. Madrid, Spain
| | | | - Beatriz Lara
- Camilo José Cela University. Exercise Physiology Laboratory. Madrid, Spain
| | - Juan Del Coso
- Rey Juan Carlos University. Centre for Sport Studies. Fuenlabrada, Spain
| | - Michal Wilk
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Juan José Salinero
- Camilo José Cela University. Exercise Physiology Laboratory. Madrid, Spain
- Castilla-La Mancha University. Faculty of Sport Sciences. Toledo, Spain
| |
Collapse
|
18
|
Lago-RodrÍguez Á, Jodra P, Bailey S, DomÍnguez R. Caffeine improves performance but not duration of the countermovement jump phases. J Sports Med Phys Fitness 2020; 61:199-204. [PMID: 32720780 DOI: 10.23736/s0022-4707.20.11099-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The countermovement jump (CMJ) test is often employed to assess power generated in the lower limbs and has been related to performance in several sports modalities. The objective of this study was to assess the effects of caffeine supplementation on jump height, average power (AP), peak power (PP), maximum velocity (V<inf>max</inf>), force production and duration of the eccentric, isometric and concentric muscle contraction phases of a CMJ. METHODS Sixteen resistance-trained men (age: 22.69±2.12 years; height: 1.78±0.06 m; weight: 78.09±10.27 kg) performed a CMJ 60 minutes after having taken an oral supplement containing 6 mg·kg-1 of caffeine or placebo (sucrose). The study design was randomized, double-blind crossover. RESULTS Caffeine ingestion improved jump height (+3.86%, P=0.02), V<inf>max</inf> (+1.49%, P=0.023), AP (+4.83%, P=0.006), and PP (+3.49%, P=0.004). CONCLUSIONS Acute caffeine supplementation leads to improved CMJ height, V<inf>max</inf>, AP and PP without significantly affecting the duration of the different test phases. Therefore, caffeine supplementation may be employed as ergogenic aid in sports where CMJ performance has been associated with sport-specific performance enhancements.
Collapse
Affiliation(s)
| | - Pablo Jodra
- Faculty of Education, University of Alcalá, Madrid, Spain -
| | - Stephen Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Raúl DomÍnguez
- Escuela Universitaria de Osuna (Center attached to Universidad de Sevilla), Sevilla, Spain.,Departamento de Educación Fisica y Deporte, Universidad de Sevilla, Sevilla, Spain.,Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, Lavras, Brasil
| |
Collapse
|
19
|
Abstract
Caffeine is a widely utilized performance-enhancing supplement used by athletes and non-athletes alike. In recent years, a number of meta-analyses have demonstrated that caffeine's ergogenic effects on exercise performance are well-established and well-replicated, appearing consistent across a broad range of exercise modalities. As such, it is clear that caffeine is an ergogenic aid-but can we further explore the context of this ergogenic aid in order to better inform practice? We propose that future research should aim to better understand the nuances of caffeine use within sport and exercise. Here, we propose a number of areas for exploration within future caffeine research. These include an understanding of the effects of training status, habitual caffeine use, time of day, age, and sex on caffeine ergogenicity, as well as further insight into the modifying effects of genotype. We also propose that a better understanding of the wider, non-direct effects of caffeine on exercise, such as how it modifies sleep, anxiety, and post-exercise recovery, will ensure athletes can maximize the performance benefits of caffeine supplementation during both training and competition. Whilst not exhaustive, we hope that the questions provided within this manuscript will prompt researchers to explore areas with the potential to have a large impact on caffeine use in the future.
Collapse
Affiliation(s)
- Craig Pickering
- Institute of Coaching and Performance, School of Sport and Wellbeing, University of Central Lancashire, Fylde Road, Preston, PR1 2HE, UK. .,The Prenetics DNAFit Research Centre, London, UK.
| | - Jozo Grgic
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
| |
Collapse
|
20
|
Abstract
This paper aims to critically evaluate and thoroughly discuss the evidence on the topic of caffeine supplementation when performing resistance exercise, as well as provide practical guidelines for the ingestion of caffeine prior to resistance exercise. Based on the current evidence, it seems that caffeine increases both maximal strength and muscular endurance. Furthermore, power appears to be enhanced with caffeine supplementation, although this effect might, to a certain extent, be caffeine dose- and external load-dependent. A reduction in rating of perceived exertion (RPE) might contribute to the performance-enhancing effects of caffeine supplementation as some studies have observed decreases in RPE coupled with increases in performance following caffeine ingestion. However, the same does not seem to be the case for pain perception as there is evidence showing acute increases in resistance exercise performance without any significant effects of caffeine ingestion on pain perception. Some studies have reported that caffeine ingestion did not affect exercise-induced muscle damage, but that it might reduce perceived resistance exercise-induced delayed-onset muscle soreness; however, this needs to be explored further. There is some evidence that caffeine ingestion, compared with a placebo, may lead to greater increases in the production of testosterone and cortisol following resistance exercise. However, given that the acute changes in hormone levels seem to be weakly correlated with hallmark adaptations to resistance exercise, such as hypertrophy and increased muscular strength, these findings are likely of questionable practical significance. Although not without contrasting findings, the available evidence suggests that caffeine ingestion can lead to acute increases in blood pressure (primarily systolic), and thus caution is needed regarding caffeine supplementation among individuals with high blood pressure. In the vast majority of studies, caffeine was administered in capsule or powder forms, and therefore the effects of alternative forms of caffeine, such as chewing gums or mouth rinses, on resistance exercise performance remain unclear. The emerging evidence suggests that coffee might be at least equally ergogenic as caffeine alone when the caffeine dose is matched. Doses in the range of 3-9 mg·kg-1 seem to be adequate for eliciting an ergogenic effect when administered 60 min pre-exercise. In general, caffeine seems to be safe when taken in the recommended doses. However, at doses as high as 9 mg·kg-1 or higher, side effects such as insomnia might be more pronounced. It remains unclear whether habituation reduces the ergogenic benefits of caffeine on resistance exercise as no evidence exists for this type of exercise. Caution is needed when extrapolating these conclusions to females as the vast majority of studies involved only male participants.
Collapse
|
21
|
Wilk M, Filip A, Krzysztofik M, Gepfert M, Zajac A, Del Coso J. Acute Caffeine Intake Enhances Mean Power Output and Bar Velocity during the Bench Press Throw in Athletes Habituated to Caffeine. Nutrients 2020; 12:E406. [PMID: 32033103 PMCID: PMC7071256 DOI: 10.3390/nu12020406] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The main objective of the current investigation was to evaluate the effects of caffeine on power output and bar velocity during an explosive bench press throw in athletes habituated to caffeine. METHODS Twelve resistance trained individuals habituated to caffeine ingestion participated in a randomized double-blind experimental design. Each participant performed three identical experimental sessions 60 min after the intake of a placebo, 3, and 6 mg/kg/b.m. of caffeine. In each experimental session, the participants performed 5 sets of 2 repetitions of the bench press throw (with a load equivalent to 30% repetition maximum (RM), measured in a familiarization trial) on a Smith machine, while bar velocity and power output were registered with a rotatory encoder. RESULTS In comparison to the placebo, the intake of caffeine increased mean bar velocity during 5 sets of the bench press throw (1.37 ± 0.05 vs. 1.41 ± 0.05 and 1.41 ± 0.06 m/s for placebo, 3, and 6 mg/kg/b.m., respectively; p < 0.01), as well as mean power output (545 ± 117 vs. 562 ± 118 and 560 ± 107 W; p < 0.01). However, caffeine was not effective at increasing peak velocity (p = 0.09) nor peak power output (p = 0.07) during the explosive exercise. CONCLUSION The acute doses of caffeine before resistance exercise may increase mean power output and mean bar velocity during the bench press throw training session in a group of habitual caffeine users. Thus, caffeine prior to ballistic exercises enhances performance during a power-specific resistance training session.
Collapse
Affiliation(s)
- Michal Wilk
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland; (A.F.); (M.K.); (M.G.); (A.Z.)
| | - Aleksandra Filip
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland; (A.F.); (M.K.); (M.G.); (A.Z.)
| | - Michal Krzysztofik
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland; (A.F.); (M.K.); (M.G.); (A.Z.)
| | - Mariola Gepfert
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland; (A.F.); (M.K.); (M.G.); (A.Z.)
| | - Adam Zajac
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland; (A.F.); (M.K.); (M.G.); (A.Z.)
| | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, 28942 Fuenlabrada, Spain;
| |
Collapse
|
22
|
Acute Enhancement of Jump Performance, Muscle Strength, and Power in Resistance-Trained Men After Consumption of Caffeinated Chewing Gum. Int J Sports Physiol Perform 2019; 14:1415-1421. [PMID: 30958062 DOI: 10.1123/ijspp.2019-0098] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/01/2019] [Accepted: 03/26/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE To explore the acute effects of caffeinated chewing gum on vertical-jump performance, isokinetic knee-extension/flexion strength and power, barbell velocity in resistance exercise, and whole-body power. METHODS Nineteen resistance-trained men consumed, in randomized counterbalanced order, either caffeinated chewing gum (300 mg of caffeine) or placebo and completed exercise testing that included squat jump; countermovement jump; isokinetic knee extension and knee flexion at angular velocities of 60 and 180°·s-1; bench-press exercise with loads corresponding to 50%, 75%, and 90% of 1-repetition maximum (1RM); and an "all-out" rowing-ergometer test. RESULTS Compared with placebo, caffeinated chewing gum enhanced (all Ps < .05) (1) vertical-jump height in the squat jump (effect size [ES] = 0.21; +3.7%) and countermovement jump (ES = 0.27; +4.6%); (2) knee-extension peak torque (ES = 0.21; +3.6%) and average power (ES = 0.25; +4.5%) at 60°·s-1 and knee-extension average power (ES = 0.30; +5.2%) at 180°·s-1, and knee-flexion peak torque at 60°·s-1 (ES = 0.22; +4.1%) and 180°·s-1 (ES = 0.31; +5.9%); (3) barbell velocity at 50% of 1RM (ES = 0.30; +3.2%), 75% of 1RM (ES = 0.44; +5.7%), and 90% of 1RM (ES = 0.43; +9.1%); and (4) whole-body peak power on the rowing-ergometer test (ES = 0.41; +5.0%). Average power of the knee flexors did not change at either angular velocity with caffeine consumption. CONCLUSIONS Caffeinated chewing gum with a dose of caffeine of 300 mg consumed 10 min preexercise may acutely enhance vertical-jump height, isokinetic strength and power of the lower-body musculature, barbell velocity in the bench-press exercise with moderate to high loads, and whole-body power.
Collapse
|
23
|
Wilk M, Filip A, Krzysztofik M, Maszczyk A, Zajac A. The Acute Effect of Various Doses of Caffeine on Power Output and Velocity during the Bench Press Exercise among Athletes Habitually Using Caffeine. Nutrients 2019; 11:nu11071465. [PMID: 31252655 PMCID: PMC6682895 DOI: 10.3390/nu11071465] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 11/16/2022] Open
Abstract
Background: Previously studies confirm ergogenic effects of caffeine (CAF); however there is no available scientific data regarding the influence of acute CAF intake on power output in athletes habitually consuming CAF. The main goal of this study was to assess the acute effect of 3, 6, 9 mg/kg/b.m. doses of CAF intake on power output and bench press bar velocity in athletes habitually consuming CAF. Methods: The study included 15 healthy strength-trained male athletes (age = 26.8 ± 6.2 years, body mass = 82.6 ± 9.7 kg; BMI = 24.8 ± 2.7; bench press 1RM = 122.3 ± 24.5 kg). All participants were habitual caffeine consumers (5.2 ± 1.2 mg/kg/b.m.; 426 ± 102 mg of caffeine per day). This study had a randomized, crossover, double-blind study design where each participant performed four different experimental sessions, with one week interval between each trial. In every experimental session participants performed bench press, three sets of five repetitions at 50% 1RM. The power output and bar velocity assessments under four different conditions: a placebo (PLAC), and three doses of caffeine ingestion: 3 mg/kg/b.m. (CAF-3), 6 mg/kg/b.m. (CAF-6) and 9 mg/kg/b.m. (CAF-9). Results: The statistical significance was set at p < 0.05. The repeated measures ANOVA between PLAC and CAF-3; CAF-6; CAF-9 revealed no statistically significant differences in power output and velocity of the bar during the bench press exercise. A large effect size (ES) in mean power-output was found between PLAC and CAF-9 in Sets 1 and 2. A large ES in peak power-output was found between PLAC and CAF-6 in Set 2, and between PLAC and CAF-9 in Sets 1 and 2. A large ES in peak velocity was found between PLAC and CAF-9 in Sets 1–3. Conclusion: The results of the present study indicate that acute doses of CAF before exercise does not have a significant effect on power output and bar velocity in a group of habitual caffeine users.
Collapse
Affiliation(s)
- Michal Wilk
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Mikolowska 72a, 40-065 Katowice, Poland.
| | - Aleksandra Filip
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Mikolowska 72a, 40-065 Katowice, Poland
| | - Michal Krzysztofik
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Mikolowska 72a, 40-065 Katowice, Poland
| | - Adam Maszczyk
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Mikolowska 72a, 40-065 Katowice, Poland
| | - Adam Zajac
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Mikolowska 72a, 40-065 Katowice, Poland
| |
Collapse
|
24
|
Pickering C, Kiely J. Are low doses of caffeine as ergogenic as higher doses? A critical review highlighting the need for comparison with current best practice in caffeine research. Nutrition 2019; 67-68:110535. [PMID: 31400738 DOI: 10.1016/j.nut.2019.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/12/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022]
Abstract
Caffeine is a popular and widely consumed sporting ergogenic aid. Over the years, the effects of different caffeine doses have been researched, with the general consensus being that 3 to 6 mg/kg of caffeine represents the optimal dose for most people. Recently, there has been increased attention placed on lower (≤3 mg/kg) caffeine doses, with some research suggesting these doses are also ergogenic. However, a critical consideration for athletes is not merely whether caffeine is ergogenic at a given dose, but whether the consumed dose provides an optimized performance benefit. Following this logic, the aim of this review was to identify a potential oversight in the current research relating to the efficacy of lower caffeine doses. Although low caffeine doses do appear to bestow ergogenic effects, these effects have not been adequately compared with the currently accepted best practice dose of 3 to 6 mg/kg. This methodological oversight limits the practical conclusions we can extract from the research into the efficacy of lower doses of caffeine, as the relative ergogenic benefits between low and recommended doses remains unclear. Here, we examine existing research with a critical eye, and provide recommendations both for those looking to use caffeine to enhance their performance, and those conducting research into caffeine and sport.
Collapse
Affiliation(s)
- Craig Pickering
- Institute of Coaching and Performance, University of Central Lancashire, Preston, UK.
| | - John Kiely
- Institute of Coaching and Performance, University of Central Lancashire, Preston, UK
| |
Collapse
|
25
|
Duncan MJ, Eyre E, Grgic J, Tallis J. The effect of acute caffeine ingestion on upper and lower body anaerobic exercise performance. Eur J Sport Sci 2019; 19:1359-1366. [PMID: 31013204 DOI: 10.1080/17461391.2019.1601261] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The current study examined the effect of acute caffeine ingestion on mean and peak power production, fatigue index and rating of perceived exertion (RPE) during upper body and lower body Wingate anaerobic test (WANT) performance. Using a double-blind design, 22 males undertook one upper body and one lower body WANT, 60 min following ingestion of caffeine (5 mg*kg-1) and one upper body and one lower body WANT following ingestion of placebo (5 mg*kg-1 Dextrose). Peak power was significantly higher (P = .001) following caffeine ingestion in both upper and lower body WANT. Peak power and mean power was also significantly higher during lower body, compared to upper body WANTs irrespective of substance ingested. However, caffeine ingestion did not enhance mean power neither in upper nor lower-body WANT. There were no significant differences in mean fatigue index as a consequence of substance ingested or mode of exercise (all P > 0.05). For RPE there was also a significant substance ingested X mode interaction (P = .001) where there were no differences in RPE between caffeine and placebo conditions in lower body WANTs but significantly lower RPE during upper body WANT in the presence of caffeine compared to placebo (P = .014). This is the first study to compare the effects of caffeine ingestion on upper and lower body 30-second WANT performance and suggests that caffeine ingestion in the dose of 5 mg*kg-1 ingested 60 min prior to exercise significantly enhances peak power when data from upper and lower body WANTs are combined.
Collapse
Affiliation(s)
- Michael J Duncan
- Centre for Sport, Exercise and Life Sciences, Coventry University , Coventry , UK
| | - Emma Eyre
- Centre for Sport, Exercise and Life Sciences, Coventry University , Coventry , UK
| | - Jozo Grgic
- Institute for Health and Sport (IHES), Victoria University , Melbourne , Australia
| | - Jason Tallis
- Centre for Sport, Exercise and Life Sciences, Coventry University , Coventry , UK
| |
Collapse
|
26
|
Grgic J, Grgic I, Pickering C, Schoenfeld BJ, Bishop DJ, Pedisic Z. Wake up and smell the coffee: caffeine supplementation and exercise performance—an umbrella review of 21 published meta-analyses. Br J Sports Med 2019; 54:681-688. [DOI: 10.1136/bjsports-2018-100278] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2019] [Indexed: 01/07/2023]
Abstract
ObjectiveTo systematically review, summarise and appraise findings of published meta-analyses that examined the effects of caffeine on exercise performance.DesignUmbrella review.Data sourcesTwelve databases.Eligibility criteria for selecting studiesMeta-analyses that examined the effects of caffeine ingestion on exercise performance.ResultsEleven reviews (with a total of 21 meta-analyses) were included, all being of moderate or high methodological quality (assessed using the Assessing the Methodological Quality of Systematic Reviews 2 checklist). In the meta-analyses, caffeine was ergogenic for aerobic endurance, muscle strength, muscle endurance, power, jumping performance and exercise speed. However, not all analyses provided a definite direction for the effect of caffeine when considering the 95% prediction interval. Using the Grading of Recommendations Assessment, Development and Evaluation criteria the quality of evidence was generally categorised as moderate (with some low to very low quality of evidence). Most individual studies included in the published meta-analyses were conducted among young men.Summary/conclusionSynthesis of the currently available meta-analyses suggest that caffeine ingestion improves exercise performance in a broad range of exercise tasks. Ergogenic effects of caffeine on muscle endurance, muscle strength, anaerobic power and aerobic endurance were substantiated by moderate quality of evidence coming from moderate-to-high quality systematic reviews. For other outcomes, we found moderate quality reviews that presented evidence of very low or low quality. It seems that the magnitude of the effect of caffeine is generally greater for aerobic as compared with anaerobic exercise. More primary studies should be conducted among women, middle-aged and older adults to improve the generalisability of these findings.
Collapse
|
27
|
Grgic J, Pickering C. The effects of caffeine ingestion on isokinetic muscular strength: A meta-analysis. J Sci Med Sport 2018; 22:353-360. [PMID: 30217692 DOI: 10.1016/j.jsams.2018.08.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/10/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVES The aims of this paper are threefold: (1) to summarize the research examining the effects of caffeine on isokinetic strength, (2) pool the effects using a meta-analysis, and (3) to explore if there is a muscle group or a velocity specific response to caffeine ingestion. DESIGN Meta-analysis. METHODS PubMed/MEDLINE, Scopus, and SPORTDiscus were searched using relevant terms. The PEDro checklist was used for the assessment of study quality. A random-effects meta-analysis of standardized mean differences (SMDs) was done. RESULTS Ten studies of good and excellent methodological quality were included. The SMD for the effects of caffeine on strength was 0.16 (95% CI=0.06, 0.26; p=0.003; +5.3%). The subgroup analysis for knee extensor isokinetic strength showed a significant difference (p=0.004) between the caffeine and placebo conditions with SMD value of 0.19 (95% CI=0.06, 0.32; +6.1%). The subgroup analysis for the effects of caffeine on isokinetic strength of other, smaller muscle groups indicated no significant difference (p=0.092) between the caffeine and placebo conditions. The subgroup analysis for knee extensor isokinetic strength at angular velocities of 60°s-1 and 180°s-1 showed a significant difference between the caffeine and placebo conditions; however, no significant effect (p=0.193) was found at an angular velocity of 30°s-1. CONCLUSIONS This meta-analysis demonstrates that acute caffeine ingestion caffeine may significantly increase isokinetic strength. Additionally, this meta-analysis reports that the effects of caffeine on isokinetic muscular strength are predominantly manifested in knee extensor muscles and at greater angular velocities.
Collapse
Affiliation(s)
- Jozo Grgic
- Institute for Health and Sport (IHES), Victoria University, Australia.
| | - Craig Pickering
- Institute of Coaching and Performance, School of Sport and Wellbeing, University of Central Lancashire, UK; Exercise and Nutritional Genomics Research Centre, DNAFit Ltd, UK
| |
Collapse
|
28
|
Duncan MJ, Dobell AP, Caygill CL, Eyre E, Tallis J. The effect of acute caffeine ingestion on upper body anaerobic exercise and cognitive performance. Eur J Sport Sci 2018; 19:103-111. [PMID: 30102874 DOI: 10.1080/17461391.2018.1508505] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The current study examined the effect of acute caffeine ingestion on mean and peak power production during upper body Wingate test (WANT) performance, rating of perceived exertion, readiness to invest effort and cognitive performance. Using a double-blind design, 12 males undertook upper body WANTs, following ingestion of caffeine (5 mg*kg-1) or placebo. Pre-substance ingestion, 60 mins post substance ingestion and post exercise participants completed measures of readiness to invest physical and mental effort and cognitive performance. Peak power was significantly higher (P = .026), fatigue index greater (P = .02) and rating of perceived exertion lower (P = .025) in the presence of caffeine. Readiness to invest physical effort was also higher (P = .016) in the caffeine condition irrespective of time point (pre, 60 mins post ingestion and post exercise). Response accuracy for incongruent trials on the Flanker task was superior in the presence of caffeine (P = .006). There was a significant substance × time interaction for response speed in both congruent and incongruent conditions (both P = .001) whereby response speeds were faster at 60 mins post ingestion and post exercise in the caffeine condition, compared to placebo. This is the first study to examine the effects of caffeine ingestion on this modality of exercise and suggests that caffeine ingestion significantly enhances peak power, readiness to invest physical effort, and cognitive performance during WANT performance.
Collapse
Affiliation(s)
| | | | - Chloe L Caygill
- a School of Life Sciences , Coventry University , Coventry , UK
| | - Emma Eyre
- a School of Life Sciences , Coventry University , Coventry , UK
| | - Jason Tallis
- a School of Life Sciences , Coventry University , Coventry , UK
| |
Collapse
|