1
|
Lockyer EJ, Compton CT, Forman DA, Pearcey GE, Button DC, Power KE. Moving forward: methodological considerations for assessing corticospinal excitability during rhythmic motor output in humans. J Neurophysiol 2021; 126:181-194. [PMID: 34133230 DOI: 10.1152/jn.00027.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The use of transcranial magnetic stimulation to assess the excitability of the central nervous system to further understand the neural control of human movement is expansive. The majority of the work performed to-date has assessed corticospinal excitability either at rest or during relatively simple isometric contractions. The results from this work are not easily extrapolated to rhythmic, dynamic motor outputs, given that corticospinal excitability is task-, phase-, intensity-, direction-, and muscle-dependent (Power KE, Lockyer EJ, Forman DA, Button DC. Appl Physiol Nutr Metab 43: 1176-1185, 2018). Assessing corticospinal excitability during rhythmic motor output, however, involves technical challenges that are to be overcome, or at the minimum considered, when attempting to design experiments and interpret the physiological relevance of the results. The purpose of this narrative review is to highlight the research examining corticospinal excitability during a rhythmic motor output and, importantly, to provide recommendations regarding the many factors that must be considered when designing and interpreting findings from studies that involve limb movement. To do so, the majority of work described herein refers to work performed using arm cycling (arm pedaling or arm cranking) as a model of a rhythmic motor output used to examine the neural control of human locomotion.
Collapse
Affiliation(s)
- Evan J Lockyer
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Chris T Compton
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Davis A Forman
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Gregory E Pearcey
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Shirley Ryan Ability Lab, Chicago, Illinois
| | - Duane C Button
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Kevin E Power
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
2
|
Chaytor CP, Forman D, Byrne J, Loucks-Atkinson A, Power KE. Changes in muscle activity during the flexion and extension phases of arm cycling as an effect of power output are muscle-specific. PeerJ 2020; 8:e9759. [PMID: 32983635 PMCID: PMC7500348 DOI: 10.7717/peerj.9759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/28/2020] [Indexed: 01/08/2023] Open
Abstract
Arm cycling is commonly used in rehabilitation settings for individuals with motor impairments in an attempt to facilitate neural plasticity, potentially leading to enhanced motor function in the affected limb(s). Studies examining the neural control of arm cycling, however, typically cycle using a set cadence and power output. Given the importance of motor output intensity, typically represented by the amplitude of electromyographic (EMG) activity, on neural excitability, surprisingly little is known about how arm muscle activity is modulated using relative workloads. Thus, the objective of this study was to characterize arm muscle activity during arm cycling at different relative workloads. Participants (n = 11) first completed a 10-second maximal arm ergometry sprint to determine peak power output (PPO) followed by 11 randomized trials of 20-second arm cycling bouts ranging from 5–50% of PPO (5% increments) and a standard 25 W workload. All submaximal trials were completed at 60 rpm. Integrated EMG amplitude (iEMG) was assessed from the biceps brachii, brachioradialis, triceps brachii, flexor carpi radialis, extensor carpi radialis and anterior deltoid of the dominant arm. Arm cycling was separated into two phases, flexion and extension, relative to the elbow joint for all comparisons. As expected, iEMG amplitude increased during both phases of cycling for all muscles examined. With the exception of the triceps brachii and extensor carpi radialis, iEMG amplitudes differed between the flexion and extension phases. Finally, there was a linear relationship between iEMG amplitude and the %PPO for all muscles during both elbow flexion and extension.
Collapse
Affiliation(s)
- Carla P Chaytor
- Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Davis Forman
- Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Jeannette Byrne
- Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Angela Loucks-Atkinson
- Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Kevin E Power
- Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|