1
|
Song J, Zhang B, Zhang H, Cheng W, Liu P, Kang J. Quantitative Proteomics Combined with Network Pharmacology Analysis Unveils the Biological Basis of Schisandrin B in Treating Diabetic Nephropathy. Comb Chem High Throughput Screen 2024; 27:284-297. [PMID: 37151069 DOI: 10.2174/1386207326666230505111903] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a major complication of diabetes. Schisandrin B (Sch) is a natural pharmaceutical monomer that was shown to prevent kidney damage caused by diabetes and restore its function. However, there is still a lack of comprehensive and systematic understanding of the mechanism of Sch treatment in DN. OBJECTIVE We aim to provide a systematic overview of the mechanisms of Sch in multiple pathways to treat DN in rats. METHODS Streptozocin was used to build a DN rat model, which was further treated with Sch. The possible mechanism of Sch protective effects against DN was predicted using network pharmacology and was verified by quantitative proteomics analysis. RESULTS High dose Sch treatment significantly downregulated fasting blood glucose, creatinine, blood urea nitrogen, and urinary protein levels and reduced collagen deposition in the glomeruli and tubule-interstitium of DN rats. The activities of superoxide dismutase (SOD) and plasma glutathione peroxidase (GSH-Px) in the kidney of DN rats significantly increased with Sch treatment. In addition, the levels of IL-6, IL-1β, and TNF-α were significantly reduced in DN rats treated with Sch. 11 proteins that target both Sch and DN were enriched in pathways such as MAPK signaling, PI3K-Akt signaling, renal cell carcinoma, gap junction, endocrine resistance, and TNF signaling. Furthermore, quantitative proteomics showed that Xaf1 was downregulated in the model vs. control group and upregulated in the Sch-treated vs. model group. Five proteins, Crb3, Tspan4, Wdr45, Zfp512, and Tmigd1, were found to be upregulated in the model vs. control group and downregulated in the Sch vs. model group. Three intersected proteins between the network pharmacology prediction and proteomics results, Crb3, Xaf1, and Tspan4, were identified. CONCLUSION Sch functions by relieving oxidative stress and the inflammatory response by regulating Crb3, Xaf1, and Tspan4 protein expression levels to treat DN disease.
Collapse
Affiliation(s)
- Jianying Song
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China
| | - Bo Zhang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Huiping Zhang
- Shanghai Applied Protein Technology Co., Ltd., 58 Yuanmei Road, Shanghai, 200233, People's Republic of China
| | - Wenbo Cheng
- Tianjin Key Laboratory of Medical Mass Spectrometry for Accurate Diagnosis, Tianjin, 300399, People's Republic of China
| | - Peiyuan Liu
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China
| | - Jun Kang
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China
| |
Collapse
|
2
|
Hong QL, Ding YH, Chen JY, Shi SS, Liang RS, Tu XK. Schisandrin B Protects against Ischemic Brain Damage by Regulating PI3K/AKT Signaling in Rats. Chin J Integr Med 2023; 29:885-894. [PMID: 37357242 DOI: 10.1007/s11655-023-3596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 06/27/2023]
Abstract
OBJECTIVE To explore the effect and mechanism of schisandrin B (Sch B) in the treatment of cerebral ischemia in rats. METHODS The cerebral ischemia models were induced by middle cerebral artery occlusion (MCAO) and reperfusion. Sprague-Dawley rats were divided into 6 groups using a random number table, including sham, MCAO, MCAO+Sch B (50 mg/kg), MCAO+Sch B (100 mg/kg), MCAO+Sch B (100 mg/kg)+LY294002, and MCAO+Sch B (100 mg/kg)+wortmannin groups. The effects of Sch B on pathological indicators, including neurological deficit scores, cerebral infarct volume, and brain edema, were subsequently studied. Tissue apoptosis was identified by terminal transferase-mediated dUTP nick end-labeling (TUNEL) staining. The protein expressions involved in apoptosis, inflammation response and oxidative stress were examined by immunofluorescent staining, biochemical analysis and Western blot analysis, respectively. The effect of Sch B on phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling was also explored. RESULTS Sch B treatment decreased neurological deficit scores, cerebral water content, and infarct volume in MCAO rats (P<0.05 or P<0.01). Neuronal nuclei and TUNEL staining indicated that Sch B also reduced apoptosis in brain tissues, as well as the Bax/Bcl-2 ratio and caspase-3 expression (P<0.01). Sch B regulated the production of myeloperoxidase, malondialdehyde, nitric oxide and superoxide dismutase, as well as the release of cytokine interleukin (IL)-1 β and IL-18, in MCAO rats (P<0.05 or P<0.01). Sch B promoted the phosphorylation of PI3K and AKT. Blocking the PI3K/AKT signaling pathway with LY294002 or wortmannin reduced the protective effect of Sch B against cerebral ischemia (P<0.05 or P<0.01). CONCLUSIONS Sch B reduced apoptosis, inflammatory response, and oxidative stress of MCAO rats by modulating the PI3K/AKT pathway. Sch B had a potential for treating cerebral ischemia.
Collapse
Affiliation(s)
- Quan-Long Hong
- Department of Neurology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yi-Hang Ding
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Jing-Yi Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Song-Sheng Shi
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Ri-Sheng Liang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xian-Kun Tu
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
3
|
Analysis of Proteomic Characteristics of Peripheral Blood in Preeclampsia and Study of Changes in Fetal Arterial Doppler Parameters Based on Magnetic Nanoparticles. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:7145487. [PMID: 34765014 PMCID: PMC8577888 DOI: 10.1155/2021/7145487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022]
Abstract
Background Traditional mass spectrometry detection methods have low detection efficiency for low-abundance proteins, thus limiting the application of proteomic analysis in the diagnosis of preeclampsia. Magnetic nanomaterials have good superparamagnetism and have obvious advantages in the field of biological separation and enrichment. Aim The objective of this study is to explore the value of superparamagnetic iron oxide nanoparticles in the proteomic analysis of preeclampsia. Materials and Methods 42 patients and 40 normal pregnant women were selected in this study for analysis. Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed to evaluate the function of these differential proteins. Proteomic analysis was used to analyze the differential proteins. Color Doppler ultrasound technology was used to detect changes in the blood flow of the fetal umbilical artery and cerebral artery. Results 16 differential proteins in the serum of pregnant women with preeclampsia and normal pregnant women were detected. The 16 proteins are mainly related to angiogenesis and endothelial function proteins, coagulation cascade proteins, placental growth factor, and so on. Biological function analysis revealed that these proteins are mainly enriched in the nuclear factor kB (NF-κB) signaling pathway. Moreover, our data suggested that compared with the fetus in the uterus of normal pregnant women, the umbilical artery S/D, PI, and RI of the fetus in preeclampsia were greatly increased, and the cerebral artery S/D, PI, and RI were greatly decreased. Conclusion Biological function analysis revealed that 16 proteins are mainly enriched in the NF-κB signaling pathway. Compared with the normal group, the umbilical artery S/D, PI, and RI of the preeclampsia group were greatly increased, and the cerebral artery S/D, PI, and RI were all greatly reduced. Our findings provided a more comprehensive reference for us to study the mechanism of preeclampsia at the molecular level and also provide data support for the screening of relevant markers for early diagnosis of preeclampsia.
Collapse
|
4
|
Zhou Y, Men L, Sun Y, Wei M, Fan X. Pharmacodynamic effects and molecular mechanisms of lignans from Schisandra chinensis Turcz. (Baill.), a current review. Eur J Pharmacol 2020; 892:173796. [PMID: 33345853 DOI: 10.1016/j.ejphar.2020.173796] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Fruit of Schisandra chinensis Turcz. (Baill.) (S. chinensis) is a traditional herbal medicine widely used in China, Korea, and many other east Asian countries. At present, S. chinensis commonly forms Chinese medicinal formulae with other herbal medicines to treat liver disease and neurological disease in clinical. Modern researches indicated that lignans were the main active ingredients of S. chinensis with high content and novel dibenzocyclooctadiene skeletal structure, exhibited considerable antioxidant, anti-inflammatory, and neuroprotective properties. Additionally, some of these lignans also showed certain potentials in anti-cancer, anti-fibrosis, and other effects. In the current review, we summarize literature reported lignans from S. chinensis in the past five years, and highlight the molecular mechanisms of lignans in exerting their biological functions. Also, we point out some deficiencies of existing researches and discuss the future direction of lignans study.
Collapse
Affiliation(s)
- Yuan Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Lihui Men
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yunxia Sun
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengying Wei
- Natural Medicine Institute of Zhejiang YangShengTang Co., Hangzhou, 310000, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
5
|
Yang Y, Liu MC, Li H, Yang YG, Su N, Wu YJ, Wang H. Proteomics analysis of the protective effect of canola (Brassica campestris L.) bee pollen flavonoids on the tert-butyl hydroperoxide-induced EA.hy926 cell injury model. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
6
|
Du J, Han R, Li Y, Liu X, Liu S, Cai Z, Xu Z, Li Y, Yuan X, Guo X, Lu B, Sun K. LncRNA HCG11/miR-26b-5p/QKI5 feedback loop reversed high glucose-induced proliferation and angiogenesis inhibition of HUVECs. J Cell Mol Med 2020; 24:14231-14246. [PMID: 33128346 PMCID: PMC7753996 DOI: 10.1111/jcmm.16040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Acute coronary syndrome caused by the rupture of atherosclerotic plaques is one of the primary causes of cerebrovascular and cardiovascular events. Neovascularization within the plaque is closely associated with its stability. Long non-coding RNA (lncRNA) serves a crucial role in regulating vascular endothelial cells (VECs) proliferation and angiogenesis. In this study, we identified lncRNA HCG11, which is highly expressed in patients with vulnerable plaque compared with stable plaque. Then, functional experiments showed that HCG11 reversed high glucose-induced vascular endothelial injury through increased cell proliferation and tube formation. Meanwhile, vascular-related RNA-binding protein QKI5 was greatly activated. Luciferase reporter assays and RNA-binding protein immunoprecipitation (RIP) assays verified interaction between them. Interestingly, HCG11 can also positively regulated by QKI5. Bioinformatics analysis and luciferase reporter assays showed HCG11 can worked as a competing endogenous RNA by sponging miR-26b-5p, and QKI5 was speculated as the target of miR-26b-5p. Taken together, our findings revered that the feedback loop of lncRNA HCG11/miR-26b-5p/QKI-5 played a vital role in the physiological function of HUVECs, and this also provide a potential target for therapeutic strategies of As.
Collapse
Affiliation(s)
- Jiao Du
- Department of RadiologyState Key Laboratory of Cardiovascular DiseaseFu Wai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of RadiologyFuwai Hospital Chinese Academy of Medical SciencesShenzhenChina
- Department of RadiologyBayannur HospitalBayannurChina
| | - Ruijuan Han
- Department of RadiologyState Key Laboratory of Cardiovascular DiseaseFu Wai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of RadiologyFuwai Hospital Chinese Academy of Medical SciencesShenzhenChina
| | - Yihua Li
- Department of RadiologyFuwai Hospital Chinese Academy of Medical SciencesShenzhenChina
| | - Xiaolin Liu
- Department of RadiologyBaotou Central HospitalBaotouChina
| | - Shurong Liu
- Department of RadiologyBaotou Central HospitalBaotouChina
| | - Zhenyu Cai
- Department of RadiologyFuwai Hospital Chinese Academy of Medical SciencesShenzhenChina
| | - Zhaolong Xu
- Institute of cardiovascular diseasethe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Ya Li
- Department of RadiologyFuwai Hospital Chinese Academy of Medical SciencesShenzhenChina
| | - Xuchun Yuan
- Department of RadiologyFuwai Hospital Chinese Academy of Medical SciencesShenzhenChina
| | - Xiuhai Guo
- Department of NeurologyXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Bin Lu
- Department of RadiologyState Key Laboratory of Cardiovascular DiseaseFu Wai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Kai Sun
- Department of RadiologyState Key Laboratory of Cardiovascular DiseaseFu Wai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of RadiologyFuwai Hospital Chinese Academy of Medical SciencesShenzhenChina
| |
Collapse
|
7
|
Wang J, Fang Z, Song C, Kang H, Guo Q, Dong Y, Zhang Y, Peng R, Guan H, Li F. Schisandrin B Inhibits Osteoclastogenesis and Protects Against Ovariectomy-Induced Bone Loss. Front Pharmacol 2020; 11:1175. [PMID: 32848781 PMCID: PMC7413103 DOI: 10.3389/fphar.2020.01175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoporosis is a systemic skeletal disease which is highly prevalent worldwide and considered to be associated with excessive bone resorption mediated by osteoclast. Osteoclast differentiation is featured by the activation of inflammation-related pathways and the generation of reactive oxygen species. Schisandrin B is a bioactive compound with strong antiinflammation and antioxidative properties, we thus speculated that Schisandrin B might serve as a potential candidate for osteoporosis. In the present study, we found that the formation and` function of osteoclasts were dramatically suppressed by Schisandrin B. And consistent with the in vitro results, treatment with Schisandrin B attenuated ovariectomy-induced bone loss in mice. Moreover, Schisandrin B notably inhibited the activation of mitogen activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathways and scavenged ROS by activating nuclear factor E2 p45-related factor 2 (Nrf2) signaling. In conclusion, our study indicates that Schisandrin B is an effective approach to treat osteoporosis and other osteoclast-related diseases.
Collapse
Affiliation(s)
- Jia Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhong Fang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Song
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honglei Kang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Dong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renpeng Peng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanfeng Guan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|