1
|
Mendoza-Salazar I, Fragozo A, González-Martínez AP, Trejo-Martínez I, Arreola R, Pavón L, Almagro JC, Vallejo-Castillo L, Aguilar-Alonso FA, Pérez-Tapia SM. Almost 50 Years of Monomeric Extracellular Ubiquitin (eUb). Pharmaceuticals (Basel) 2024; 17:185. [PMID: 38399400 PMCID: PMC10892293 DOI: 10.3390/ph17020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Monomeric ubiquitin (Ub) is a 76-amino-acid highly conserved protein found in eukaryotes. The biological activity of Ub first described in the 1970s was extracellular, but it quickly gained relevance due to its intracellular role, i.e., post-translational modification of intracellular proteins (ubiquitination) that regulate numerous eukaryotic cellular processes. In the following years, the extracellular role of Ub was relegated to the background, until a correlation between higher survival rate and increased serum Ub concentrations in patients with sepsis and burns was observed. Although the mechanism of action (MoA) of extracellular ubiquitin (eUb) is not yet well understood, further studies have shown that it may ameliorate the inflammatory response in tissue injury and multiple sclerosis diseases. These observations, compounded with the high stability and low immunogenicity of eUb due to its high conservation in eukaryotes, have made this small protein a relevant candidate for biotherapeutic development. Here, we review the in vitro and in vivo effects of eUb on immunologic, cardiovascular, and nervous systems, and discuss the potential MoAs of eUb as an anti-inflammatory, antimicrobial, and cardio- and brain-protective agent.
Collapse
Affiliation(s)
- Ivette Mendoza-Salazar
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Ana Fragozo
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Aneth P González-Martínez
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Ismael Trejo-Martínez
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Rodrigo Arreola
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, Mexico City 14370, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Juan C Almagro
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- GlobalBio, Inc., 320 Concord Ave, Cambridge, MA 02138, USA
| | - Luis Vallejo-Castillo
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Francisco A Aguilar-Alonso
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Sonia M Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| |
Collapse
|
2
|
Lian K, Li X, Wang X, Wang F, Yang M, Ye J, Li L, Hu Z. A bibliometric and visual analysis of research trends and hotspots of myocardial apoptosis: A review. Medicine (Baltimore) 2023; 102:e35236. [PMID: 37746983 PMCID: PMC10519457 DOI: 10.1097/md.0000000000035236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/19/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Recent studies have found that cardiomyocyte apoptosis is closely associated with the pathophysiological development of various cardiovascular diseases, for example chronic heart failure and myocardial infarction. At present, there are many researches in this field, such as pharmacological research, traditional Chinese medicine intervention research and pathway research. However, the relevant research is fragmented, with few comprehensive analysis and systematic combing. METHODS The relevant literature on cardiomyocyte apoptosis was downloaded from the Web of Science Core Collection (WoSCC) and PubMed databases. Citespace 6.1.R2 software Microsoft Excel 2019 and VOSviewer1.6.18.0 were used for bibliometric and visual analysis of publication volume, countries, institutions, journals, authors, keywords. RESULTS Since 1996, there are 1881 research articles and reviews related to cardiomyocyte apoptosis published by 10,313 researchers from 1648 institutions in 58 countries or regions were included. The number of annual publications showed an upward trend, especially in recent years. Countries participating in this research area include China, the United States, and Japan. Capital Medical University, Harbin Medical University are the key research institution, and other institutions also have substantial contribution on the project as to cardiomyocyte apoptosis. The journal EUR REV MED PHARMACO has a large number of publications, whereas CIRCULATION has the highest number of co-citations. Keywords analysis showed that apoptosis, expression and oxidative stress had higher frequencies, leading to 8 clusters. CONCLUSIONS Cardiomyocyte apoptosis is a hot research field in recent years. Through visualization and bibliometric analysis, it is found that this field focus on hotspots like clinical manifestations including heart failure or myocardial infarction, and microscopic mechanisms such as oxidative stress and inflammation.
Collapse
Affiliation(s)
- Kun Lian
- Hunan University of Chinese Medicine, Changsha, China
| | - Xin Li
- Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoyi Wang
- Hunan University of Chinese Medicine, Changsha, China
| | - Fei Wang
- Hunan University of Chinese Medicine, Changsha, China
| | - Meng Yang
- Hunan University of Chinese Medicine, Changsha, China
| | - Jiahao Ye
- Hunan University of Chinese Medicine, Changsha, China
| | - Lin Li
- Hunan University of Chinese Medicine, Changsha, China
| | - Zhixi Hu
- Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
3
|
Shook PL, Singh M, Singh K. Macrophages in the Inflammatory Phase following Myocardial Infarction: Role of Exogenous Ubiquitin. BIOLOGY 2023; 12:1258. [PMID: 37759657 PMCID: PMC10526096 DOI: 10.3390/biology12091258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death worldwide. One of the most common implications of CVD is myocardial infarction (MI). Following MI, the repair of the infarcted heart occurs through three distinct, yet overlapping phases of inflammation, proliferation, and maturation. Macrophages are essential to the resolution of the inflammatory phase due to their role in phagocytosis and efferocytosis. However, excessive and long-term macrophage accumulation at the area of injury and dysregulated function can induce adverse cardiac remodeling post-MI. Ubiquitin (UB) is a highly evolutionarily conserved small protein and is a normal constituent of plasma. Levels of UB are increased in the plasma during a variety of pathological conditions, including ischemic heart disease. Treatment of mice with UB associates with decreased inflammatory response and improved heart function following ischemia/reperfusion injury. This review summarizes the role of macrophages in the infarct healing process of the heart post-MI, and discusses the role of exogenous UB in myocardial remodeling post-MI and in the modulation of macrophage phenotype and function.
Collapse
Affiliation(s)
- Paige L. Shook
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (P.L.S.); (M.S.)
| | - Mahipal Singh
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (P.L.S.); (M.S.)
| | - Krishna Singh
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (P.L.S.); (M.S.)
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- James H. Quillen Veterans Affairs Medical Center, Mountain Home, TN 37684, USA
| |
Collapse
|
4
|
Dalal S, Shook PL, Singh M, Singh K. Post-ischemic cardioprotective potential of exogenous ubiquitin in myocardial remodeling late after ischemia/reperfusion injury. Life Sci 2023; 312:121216. [PMID: 36435225 PMCID: PMC9784153 DOI: 10.1016/j.lfs.2022.121216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
AIMS Pretreatment with ubiquitin (UB) associates with preservation of heart function 3 days post-ischemia/reperfusion (I/R) injury. This study investigated the cardioprotective potential of exogenous UB late after myocardial I/R injury. To enhance the clinical relevance, UB treatment was started at the time of reperfusion and continued for 28 days post-I/R. MAIN METHODS Mice underwent ligation of the left anterior descending coronary artery for 45 min. At the time of reperfusion, mice were treated with UB or saline which was continued until 28 days post-I/R. Heart function was measured at 3, 7, 14 and 28 days post-I/R using echocardiography. Biochemical parameters of the heart and serum cytokines/chemokines levels were measured 28 days post-I/R. KEY FINDINGS I/R decreased heart function and induced LV dilation at all time points post-I/R. However, I/R + UB exhibited improved heart function throughout the observation period, while LV dilation was lower in I/R + UB group at 3, 14 and 28 days post-I/R. I/R-mediated increase in myocardial fibrosis, hypertrophy and apoptosis were significantly lower in I/R + UB vs. I/R. Collagen-1α1 and MMP-2 expression was lower, while MMP-9 and TIMP-2 expression was higher in I/R + UB vs. I/R. MYH-7B (hypertrophy marker) expression was lower in I/R + UB vs. I/R. GSK3β activation was lower (vs. Sham), while activation of ERK1/2 (vs. I/R) and AKT (vs. Sham) was higher in I/R + UB. Serum levels of IL-6, G-CSF and IL-2 were lower in I/R + UB vs. I/R. SIGNIFICANCE Post-ischemic UB treatment improves heart function, and associates with decreased myocardial fibrosis, apoptosis, hypertrophy and serum cytokine/chemokine levels.
Collapse
Affiliation(s)
- Suman Dalal
- Department of Biomedical Sciences, James H Quillen College of Medicine, USA; Department of Health Sciences, USA; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| | - Paige L Shook
- Department of Biomedical Sciences, James H Quillen College of Medicine, USA
| | - Mahipal Singh
- Department of Biomedical Sciences, James H Quillen College of Medicine, USA
| | - Krishna Singh
- Department of Biomedical Sciences, James H Quillen College of Medicine, USA; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA; James H Quillen Veterans Affairs Medical Center, Mountain Home, TN, USA.
| |
Collapse
|
5
|
Paeoniflorin Protects H9c2 Cardiomyocytes against Hypoxia/Reoxygenation Induced Injury via Regulating the AMPK/Nrf2 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7667770. [PMID: 36276847 PMCID: PMC9584672 DOI: 10.1155/2022/7667770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022]
Abstract
Myocardial ischemia/reperfusion (MIR) injury contributes to the exacerbation of heart disease by causing cardiac arrhythmias, myocardial infarction, and even sudden death. Studies have found that paeoniflorin (PF) has a protective effect on coronary artery disease (CAD). However, the mechanism of PF in MIR has not been fully investigated. The purpose of this study was to investigate the functional role of PF in H9c2 cells subjected to hypoxia/reoxygenation (H/R). Here, PF treatment enhanced cell viability in H/R-stimulated H9c2 cells. In H9c2 cells, PF treatment reduced the formation of reactive oxygen species (ROS) induced by H/R. In H/R-stimulated H9c2 cells, PF also increased the activity of antioxidant enzymes such as superoxide dismutase and glutathione peroxidase. Furthermore, PF protected H9c2 cells against H/R-induced apoptosis, as demonstrated by increased Bcl-2 expression, decreased Bax expression, and decreased caspase-3 activity. Furthermore, PF increased the levels of p-AMPK and nuclear Nrf2 expression in response to H/R stimulation. AMPK inhibition, on the other hand, abolished the PF-mediated increase in Nrf2 signaling and the cardiac-protective effect in H9c2 cells exposed to H/R. These data suggest that PF protected H9c2 cells against H/R-induced oxidative stress and apoptosis through modulating the AMPK/Nrf2 signaling pathway. Our findings support the therapeutic potential of PF in myocardial I/R damage.
Collapse
|
6
|
Shams AS, Arpke RW, Gearhart MD, Weiblen J, Mai B, Oyler D, Bosnakovski D, Mahmoud OM, Hassan GM, Kyba M. The chemokine receptor CXCR4 regulates satellite cell activation, early expansion, and self-renewal, in response to skeletal muscle injury. Front Cell Dev Biol 2022; 10:949532. [PMID: 36211464 PMCID: PMC9536311 DOI: 10.3389/fcell.2022.949532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Acute skeletal muscle injury is followed by satellite cell activation, proliferation, and differentiation to replace damaged fibers with newly regenerated muscle fibers, processes that involve satellite cell interactions with various niche signals. Here we show that satellite cell specific deletion of the chemokine receptor CXCR4, followed by suppression of recombination escapers, leads to defects in regeneration and satellite cell pool repopulation in both the transplantation and in situ injury contexts. Mechanistically, we show that endothelial cells and FAPs express the gene for the ligand, SDF1α, and that CXCR4 is principally required for proper activation and for transit through the first cell division, and to a lesser extent the later cell divisions. In the absence of CXCR4, gene expression in quiescent satellite cells is not severely disrupted, but in activated satellite cells a subset of genes normally induced by activation fail to upregulate normally. These data demonstrate that CXCR4 signaling is essential to normal early activation, proliferation, and self-renewal of satellite cells.
Collapse
Affiliation(s)
- Ahmed S. Shams
- Lillehei Heart Institute, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Robert W. Arpke
- Lillehei Heart Institute, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Micah D. Gearhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - Johannes Weiblen
- Lillehei Heart Institute, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Ben Mai
- Lillehei Heart Institute, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - David Oyler
- Lillehei Heart Institute, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Darko Bosnakovski
- Lillehei Heart Institute, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Omayma M. Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Gamal M. Hassan
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Michael Kyba
- Lillehei Heart Institute, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Michael Kyba,
| |
Collapse
|
7
|
Xin Y, Zhang X, Li J, Gao H, Li J, Li J, Hu W, Li H. New Insights Into the Role of Mitochondria Quality Control in Ischemic Heart Disease. Front Cardiovasc Med 2021; 8:774619. [PMID: 34901234 PMCID: PMC8661033 DOI: 10.3389/fcvm.2021.774619] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023] Open
Abstract
IHD is a significant cause of mortality and morbidity worldwide. In the acute phase, it's demonstrated as myocardial infarction and ischemia-reperfusion injury, while in the chronic stage, the ischemic heart is mainly characterised by adverse myocardial remodelling. Although interventions such as thrombolysis and percutaneous coronary intervention could reduce the death risk of these patients, the underlying cellular and molecular mechanisms need more exploration. Mitochondria are crucial to maintain the physiological function of the heart. During IHD, mitochondrial dysfunction results in the pathogenesis of ischemic heart disease. Ischemia drives mitochondrial damage not only due to energy deprivation, but also to other aspects such as mitochondrial dynamics, mitochondria-related inflammation, etc. Given the critical roles of mitochondrial quality control in the pathological process of ischemic heart disease, in this review, we will summarise the efforts in targeting mitochondria (such as mitophagy, mtROS, and mitochondria-related inflammation) on IHD. In addition, we will briefly revisit the emerging therapeutic targets in this field.
Collapse
Affiliation(s)
- Yanguo Xin
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jingye Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hui Gao
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiayu Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Junli Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyu Hu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongwei Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Beijing, China.,Department of Geriatrics, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Wang X, Yang P, Jiang Y, Xu Y, Wang N, Rao P, Yang L, Sun L, Lu D. UBE2D3 contributes to myocardial ischemia-reperfusion injury by regulating autophagy in dependence of p62/SQSTM1. Cell Signal 2021; 87:110118. [PMID: 34391873 DOI: 10.1016/j.cellsig.2021.110118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022]
Abstract
The impairment of autophagic flux has been widely recognized in myocardial ischemia-reperfusion (I/R) injury, but its underlying mechanism contributing to impaired autophagic flux is poorly understood. As celluar major degradation systems, autophagy and ubiquitin proteasome(UPS) participate in the multitudinous progression of disease by interactive relationship. Especially UBE2D3, the ubiquitin-binding enzyme E2 family, is closely related to the regulation impairment of autophagic flux under I/R in our study. Therefore, this study aims to further explore the regulatory mechanism of UBE2D3 in I/R induced autophagy. We determined interference with UBE2D3 alleviated injury of myocardial cells both in vivo and in vitro. Conversely, when inhibiting proteasome function by injecting MG-132, myocardial infarct size of rats became increasingly enhanced, along with the high expression levels of LDH and CK-MB in serum, compared with myocardial I/R injury without treatment of MG-132. This had been caused by UBE2D3 promoting p62/SQSTM1(p62) ubiquitination(Ub), which lead to worsen the impairment of autophagic flux induced by myocardial I/R injury. In addition, UBE2D3 could also participate in the regulation of autophagy by negatively regulating mTOR. But more surprisingly, this mechanism was independent of the known mTOR-beclin1 pathway. These results suggested that in myocardial I/R injury, UBE2D3 promoted p62 ubiquitination to aggravate the impairment of autophagic flux. Moreover, mTOR was also involved in its regulation of autophagic flux in a way escaped from beclin1.
Collapse
Affiliation(s)
- Xun Wang
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China
| | - Ping Yang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Yongliang Jiang
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China
| | - Yazhou Xu
- Technology Transfer Center, Kunming Medical University, Kunming 650500, China
| | - Nan Wang
- Technology Transfer Center, Kunming Medical University, Kunming 650500, China
| | - Peng Rao
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China
| | - Lin Yang
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China
| | - Lin Sun
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China.
| | - Di Lu
- Technology Transfer Center, Kunming Medical University, Kunming 650500, China.
| |
Collapse
|
9
|
Liu J, Zhong L, Guo R. The Role of Posttranslational Modification and Mitochondrial Quality Control in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6635836. [PMID: 33680284 PMCID: PMC7910068 DOI: 10.1155/2021/6635836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/31/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the world. The mechanism behind CVDs has been studied for decades; however, the pathogenesis is still controversial. Mitochondrial homeostasis plays an essential role in maintaining the normal function of the cardiovascular system. The alterations of any protein function in mitochondria may induce abnormal mitochondrial quality control and unexpected mitochondrial dysfunction, leading to CVDs. Posttranslational modifications (PTMs) affect protein function by reversibly changing their conformation. This review summarizes how common and novel PTMs influence the development of CVDs by regulating mitochondrial quality control. It provides not only ideas for future research on the mechanism of some types of CVDs but also ideas for CVD treatments with therapeutic potential.
Collapse
Affiliation(s)
- Jinlin Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Li Zhong
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Rui Guo
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
10
|
Abstract
Ischemic heart disease (IHD) accounts for the majority of heart disease-related deaths worldwide. Ubiquitin (UB), found in all eukaryotic cells, is a highly conserved low molecular weight (~8.5 kDa) protein. A well-known intracellular function of UB is to regulate protein turnover via the UB-proteasome system. UB is a normal constituent of plasma, and elevated levels of UB are observed in the serum of patients under a variety of pathological conditions. Recent studies provide evidence for cardioprotective potential of exogenous UB in the remodeling process of the heart in IHD, including effects on cardiac myocyte apoptosis, inflammatory response, and reorganization of the vasculature and extracellular matrix. This review summarizes functions of UB with an emphasis on the role of exogenous UB in myocardial remodeling in IHD.
Collapse
|
11
|
Ajoolabady A, Aslkhodapasandhokmabad H, Aghanejad A, Zhang Y, Ren J. Mitophagy Receptors and Mediators: Therapeutic Targets in the Management of Cardiovascular Ageing. Ageing Res Rev 2020; 62:101129. [PMID: 32711157 DOI: 10.1016/j.arr.2020.101129] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/10/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022]
Abstract
Mitophagy serves as a cardinal regulator in the maintenance of mitochondrial integrity, function, and cardiovascular homeostasis, through the fine control and governance of cellular metabolism, ATP production, redox balance, and mitochondrial quality and quantity control. As a unique form of selective autophagy, mitophagy specifically recognizes and engulfs long-lived or damaged (depolarized) mitochondria through formation of the double-membraned intracellular organelles - mitophagosomes, ultimately resulting in lysosomal degradation. Levels of mitophagy are reported to be altered in pathological settings including cardiovascular diseases and biological ageing although the precise nature of mitophagy change in ageing and ageing-associated cardiovascular deterioration remains poorly defined. Ample clinical and experimental evidence has depicted a convincing tie between cardiovascular ageing and altered mitophagy. In particular, ageing perturbs multiple enigmatic various signal machineries governing mitophagy, mitochondrial quality, and mitochondrial function, contributing to ageing-elicited anomalies in the cardiovascular system. This review will update novel regulatory mechanisms of mitophagy especially in the perspective of advanced ageing, and discuss how mitophagy dysregulation may be linked to cardiovascular abnormalities in ageing. We hope to pave the way for development of new therapeutic strategies against the growing health and socieconomical issue of cardiovascular ageing through targeting mitophagy.
Collapse
|