McBeath ST, Zhang Y, Hoffmann MR. Novel Synthesis Pathways for Highly Oxidative Iron Species: Generation, Stability, and Treatment Applications of Ferrate(IV/V/VI).
ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023;
57:18700-18709. [PMID:
36794970 PMCID:
PMC10690715 DOI:
10.1021/acs.est.2c09237]
[Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Difficulties arise related to the economy-of-scale and practicability in applying conventional water treatment technologies to small and remote systems. A promising oxidation technology better suited for these applications is that of electro-oxidation (EO), whereby contaminants are degraded via direct, advanced, and/or electrosynthesized oxidant-mediated reactions. One species of oxidants of particular interest includes ferrates (Fe(VI)/(V)/(IV)), where only recently has their circumneutral synthesis been demonstrated, using high oxygen overpotential (HOP) electrodes, namely boron-doped diamond (BDD). In this study, the generation of ferrates using various HOP electrodes (BDD, NAT/Ni-Sb-SnO2, and AT/Sb-SnO2) was investigated. Ferrate synthesis was pursued in a current density range of 5-15 mA cm-2 and initial Fe3+ concentrations of 10-15 mM. Faradaic efficiencies ranged from 11-23%, depending on operating conditions, with BDD and NAT significantly outperforming AT electrodes. Speciation tests revealed that NAT synthesizes both ferrate(IV/V) and ferrate(VI), while the BDD and AT electrodes synthesized only ferrate(IV/V) species. A number of organic scavenger probes were used to test the relative reactivity, including nitrobenzene, carbamazepine, and fluconazole, whereby ferrate(IV/V) was significantly more oxidative than ferrate(VI). Finally, the ferrate(VI) synthesis mechanism by NAT electrolysis was elucidated, where coproduction of ozone was found to be a key phenomenon for Fe3+ oxidation to ferrate(VI).
Collapse