1
|
Ding Z, Jiang C. Transcriptome Profiling to the Effects of Drought Stress on Different Propagation Modes of Tea Plant (Camellia sinensis). Front Genet 2022; 13:907026. [PMID: 36035143 PMCID: PMC9399340 DOI: 10.3389/fgene.2022.907026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/20/2022] [Indexed: 11/24/2022] Open
Abstract
Tea plant (Camellia sinensis) is an important economic beverage crop. Drought stress seriously affects the growth and development of tea plant and the accumulation of metabolites, as well as the production, processing, yield and quality of tea. Therefore, it is necessary to understand the reaction mechanism of tea plant under drought conditions and find efficient control methods. Based on transcriptome sequencing technology, this study studied the difference of metabolic level between sexual and asexual tea plants under drought stress. In this study, there were multiple levels of up-regulation and down-regulation of differential genes related to cell composition, molecular function and biological processes. Transcriptomic data show that the metabolism of tea plants with different propagation modes of QC and ZZ is different under drought conditions. In the expression difference statistics, it can be seen that the differential genes of QC are significantly more than ZZ; GO enrichment analysis also found that although differential genes in biological process are mainly enriched in the three pathways of metabolic, single organism process and cellular process, cellular component is mainly enriched in cell, cell part, membrane, and molecular function, and binding, catalytic activity, and transporter activity; the enrichment order of differential genes in these pathways is different in QC and ZZ. This difference is caused by the way of reproduction. The further study of these differential genes will lay a foundation for the cultivation methods and biotechnology breeding to improve the quality of tea.
Collapse
Affiliation(s)
- Zhou Ding
- School of Tea and Food Science Technology, Anhui Agricultural University, Hefei, China
- State Key Laboratory of Tea Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Changjun Jiang
- School of Tea and Food Science Technology, Anhui Agricultural University, Hefei, China
- State Key Laboratory of Tea Biology and Utilization, Anhui Agricultural University, Hefei, China
- *Correspondence: Changjun Jiang,
| |
Collapse
|
2
|
Nowak K, Jabłońska E, Ratajczak-Wrona W. Controversy around parabens: Alternative strategies for preservative use in cosmetics and personal care products. ENVIRONMENTAL RESEARCH 2021; 198:110488. [PMID: 33221305 DOI: 10.1016/j.envres.2020.110488] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Parabens usage as preservatives in cosmetics and personal care products have been debated among scientists and consumers. Parabens are easy to production, effective and cheap, but its safety status remains controversial. Other popular cosmetics preservatives are formaldehyde, triclosan, methylisothiazolinone, methylchloroisothiazolinone, phenoxyethanol, benzyl alcohol and sodium benzoate. Although their high antimicrobial effectiveness, they also exhibit some adverse health effects. Lately, scientists have shown that natural substances such as essential oils and plant extracts present antimicrobial potential. However, their use in cosmetic is a challenge. The present review article is a comprehensive summary of the available methods to prevent microbial contamination of cosmetics and personal care products, which can allow reducing the use of parabens in these products.
Collapse
Affiliation(s)
- Karolina Nowak
- Department of Immunology, Medical University of Bialystok, Poland.
| | - Ewa Jabłońska
- Department of Immunology, Medical University of Bialystok, Poland
| | | |
Collapse
|
3
|
Chen Z, Zhang Y, Zhou J, Lu L, Wang X, Liang Y, Loor JJ, Gou D, Xu H, Yang Z. Tea Tree Oil Prevents Mastitis-Associated Inflammation in Lipopolysaccharide-Stimulated Bovine Mammary Epithelial Cells. Front Vet Sci 2020; 7:496. [PMID: 32851050 PMCID: PMC7427202 DOI: 10.3389/fvets.2020.00496] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/30/2020] [Indexed: 12/26/2022] Open
Abstract
The main purpose of this study was to explore the effect of tea tree oil (TTO) on lipopolysaccharide (LPS)-induced mastitis model using isolated bovine mammary epithelial cells (BMEC). This mastitis model was used to determine cellular responses to TTO and LPS on cellular cytotoxicity, mRNA abundance and cytokine production. High-throughput sequencing was used to select candidate genes, followed by functional evaluation of those genes. In the first experiment, LPS at a concentration of 200 μg/mL reduced cell proliferation, induced apoptosis and upregulated protein concentrations of tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), and signal transducer and activator of transcription 1 (STAT1). Addition of TTO led to reduced cellular apoptosis along with downregulated protein concentrations of nuclear factor kappa B, mitogen-activated protein kinase 4 (MAPK4) and caspase-3. In the second experiment, BMEC challenged with LPS had a total of 1,270 differentially expressed genes of which 787 were upregulated and 483 were downregulated. Differentially expressed genes included TNF-α, IL6, STAT1, and MAPK4. Overall, results showed that TTO (at least in vitro) has a protective effect against LPS-induced mastitis. Further in vivo research should be performed to determine strategies for using TTO for prevention and treatment of mastitis and improvement of milk quality.
Collapse
Affiliation(s)
- Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jingpeng Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lu Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaolong Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yusheng Liang
- Mammalian Nutrition Physiology Genomics, Division of Nutritional Sciences, Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Juan J Loor
- Mammalian Nutrition Physiology Genomics, Division of Nutritional Sciences, Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Deming Gou
- College of Life Sciences, Shenzhen University, Shenzhen, Guangzhou, China
| | - Huifen Xu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
The antimicrobial and antiadhesion activities of micellar solutions of surfactin, CTAB and CPCl with terpinen-4-ol: applications to control oral pathogens. World J Microbiol Biotechnol 2018; 34:86. [PMID: 29876752 DOI: 10.1007/s11274-018-2472-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
Abstract
The oral pathogen Streptococcus mutans is involved in tooth decay by a process that initiates with biofilm adhesion and caries development. The presence of other microbes such as Candida albicans may worsen the demineralization process. Since both microbes are virulent to the host and will proliferate under specific host immune deficiencies and systemic diseases, it is important to study antimicrobial substances and their effects on both pathogens. There are several antiseptic agents used to reduce plaque biofilm and its outcome (dental caries and/or periodontal disease). However, some of these have undesired effects. In the current study we investigated the antimicrobial and anti-adhesion properties of micellar solutions of surfactants and the plant natural product terpinen-4-ol (TP). The results revealed an increase in antimicrobial properties of the synthetic surfactants, cetylpyridinium chloride (CPC) and cetyltrimethylammonium bromide (CTAB), when mixed with TP. In addition, although surfactin, a biosurfactant, has little antimicrobial activity, it was demonstrated that it enhanced the effect of TP both as antimicrobial and anti-adhesion compound. Surfactin and the synthetic surfactants promote the antimicrobial activity of TP against S. mutans, the causal agent of tooth decay, suggesting specificity for membrane interactions that may be facilitated by surfactants. This is the first report on the successful use of surfactin in association with TP to inhibit the growth and adhesion of microbial pathogens. Surfactin has other beneficial properties besides being biodegradable, it has antiviral and anti-mycoplasma activities in addition to adjuvant properties and encapsulating capacity at low concentration.
Collapse
|
5
|
Li Y, Shao X, Xu J, Wei Y, Xu F, Wang H. Effects and possible mechanism of tea tree oil against Botrytis cinerea and Penicillium expansum in vitro and in vivo test. Can J Microbiol 2017; 63:219-227. [DOI: 10.1139/cjm-2016-0553] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The purpose of this study was to investigate the antifungal activities and possible mechanisms of tea tree oil (TTO) against Botrytis cinerea and Penicillium expansum in vitro and in vivo. The results show that TTO exhibits dose-dependent antifungal activity against both pathogens, but P. expansum is less sensitive than B. cinerea to TTO not only in the in vitro test but also in artificially inoculated cherry fruits. TTO vapor treatment reduced the decay caused by these pathogens in inoculated cherry fruits, but the effect on P. expansum was less than that on B. cinerea. While the total lipid and ergosterol contents of the cell membrane are greater in P. expansum than in B. cinerea, TTO treatment lowers the total lipid content in the membranes of both species by well over 50%, and ergosterol content is reduced to a greater extent in B. cinerea than in P. expansum. In both pathogens, TTO alters mycelial morphology and cellular ultrastructure. Oxygen consumption measurements show that TTO inhibits respiratory metabolism via the tricarboxylic acid cycle pathway in both pathogens, though more severely in B. cinerea than in P. expansum. The relatively decreased sensitivity of P. expansum to TTO may be due to the fact that TTO causes less disruption of the cell membrane in this organism, and higher inhibition the respiratory metabolism to the extent observed in B. cinerea.
Collapse
Affiliation(s)
- Yonghua Li
- Department of Food Science and Engineering, Ningbo University, Ningbo, People’s Republic of China
- Department of Food Science and Engineering, Ningbo University, Ningbo, People’s Republic of China
| | - Xingfeng Shao
- Department of Food Science and Engineering, Ningbo University, Ningbo, People’s Republic of China
- Department of Food Science and Engineering, Ningbo University, Ningbo, People’s Republic of China
| | - Jiayu Xu
- Department of Food Science and Engineering, Ningbo University, Ningbo, People’s Republic of China
- Department of Food Science and Engineering, Ningbo University, Ningbo, People’s Republic of China
| | - Yingying Wei
- Department of Food Science and Engineering, Ningbo University, Ningbo, People’s Republic of China
- Department of Food Science and Engineering, Ningbo University, Ningbo, People’s Republic of China
| | - Feng Xu
- Department of Food Science and Engineering, Ningbo University, Ningbo, People’s Republic of China
- Department of Food Science and Engineering, Ningbo University, Ningbo, People’s Republic of China
| | - Hongfei Wang
- Department of Food Science and Engineering, Ningbo University, Ningbo, People’s Republic of China
- Department of Food Science and Engineering, Ningbo University, Ningbo, People’s Republic of China
| |
Collapse
|
6
|
Clinical evaluation of an antiinflammatory and antioxidant diet effect in 30 dogs affected by chronic otitis externa: preliminary results. Vet Res Commun 2016; 40:29-38. [PMID: 26743397 PMCID: PMC4754334 DOI: 10.1007/s11259-015-9651-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023]
Abstract
The aim of this evaluation study was to assess the possible role of a specific nutraceutical diet in relieving main clinical symptoms of chronic bilateral otitis externa (occlusion of ear canal, erythema, discharge quantity, and odor) in 30 adult dogs. Thirty dogs of different breeds (mean age ± SEM; 6.03 ± 0.15 years and mean weight ± SEM; 32.01 ± 1.17 Kg; 53.3% males, 46.6% females) with evident chronic clinical otitis symptoms were equally divided and randomly assigned to receive either the nutraceutical diet (ND group) or a standard diet (SD group) over a period of 90 days. In all cases a topical pharmacological treatment was given. The nutraceutical diet, also endowed with anti-inflammatory and antioxidant activities, significantly decreased the mean score intensity of all symptoms after 90 days of intervention (P < 0.0001) with the exception of Malassezia pachydermatis infection which was only slightly reduced. Our investigation is one of the few evidence-based results where a commercial nutraceutical diet has been proven effective, in combination with drugs, in relieving otitis externa-related symptoms. This study opens new insights into otitis externa clinical management providing evidence of efficacy of a combined therapy with drugs and a specific nutraceutical diet.
Collapse
|