1
|
Twible LE, Whaley-Martin K, Chen LX, Colenbrander Nelson T, Arrey JL, Jarolimek CV, King JJ, Ramilo L, Sonnenberg H, Banfield JF, Apte SC, Warren LA. pH and thiosulfate dependent microbial sulfur oxidation strategies across diverse environments. Front Microbiol 2024; 15:1426584. [PMID: 39101034 PMCID: PMC11294248 DOI: 10.3389/fmicb.2024.1426584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/18/2024] [Indexed: 08/06/2024] Open
Abstract
Sulfur oxidizing bacteria (SOB) play a key role in sulfur cycling in mine tailings impoundment (TI) waters, where sulfur concentrations are typically high. However, our understanding of SOB sulfur cycling via potential S oxidation pathways (sox, rdsr, and S4I) in these globally ubiquitous contexts, remains limited. Here, we identified TI water column SOB community composition, metagenomics derived metabolic repertoires, physicochemistry, and aqueous sulfur concentration and speciation in four Canadian base metal mine, circumneutral-alkaline TIs over four years (2016 - 2019). Identification and examination of genomes from nine SOB genera occurring in these TI waters revealed two pH partitioned, metabolically distinct groups, which differentially influenced acid generation and sulfur speciation. Complete sox (csox) dominant SOB (e.g., Halothiobacillus spp., Thiomonas spp.) drove acidity generation and S2O3 2- consumption via the csox pathway at lower pH (pH ~5 to ~6.5). At circumneutral pH conditions (pH ~6.5 to ~8.5), the presence of non-csox dominant SOB (hosting the incomplete sox, rdsr, and/or other S oxidation reactions; e.g. Thiobacillus spp., Sulfuriferula spp.) were associated with higher [S2O3 2-] and limited acidity generation. The S4I pathway part 1 (tsdA; S2O3 2- to S4O6 2-), was not constrained by pH, while S4I pathway part 2 (S4O6 2- disproportionation via tetH) was limited to Thiobacillus spp. and thus circumneutral pH values. Comparative analysis of low, natural (e.g., hydrothermal vents and sulfur hot springs) and high (e.g., Zn, Cu, Pb/Zn, and Ni tailings) sulfur systems literature data with these TI results, reveals a distinct TI SOB mining microbiome, characterized by elevated abundances of csox dominant SOB, likely sustained by continuous replenishment of sulfur species through tailings or mining impacted water additions. Our results indicate that under the primarily oxic conditions in these systems, S2O3 2- availability plays a key role in determining the dominant sulfur oxidation pathways and associated geochemical and physicochemical outcomes, highlighting the potential for biological management of mining impacted waters via pH and [S2O3 2-] manipulation.
Collapse
Affiliation(s)
- Lauren E. Twible
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| | - Kelly Whaley-Martin
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| | - Lin-Xing Chen
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, United States
| | | | - James L.S. Arrey
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| | - Chad V. Jarolimek
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Josh J. King
- Commonwealth Scientific Industrial and Research Organization, Black Mountain, ACT, Australia
| | | | | | - Jillian F. Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, United States
| | - Simon C. Apte
- Commonwealth Scientific Industrial and Research Organization, Clayton, VIC, Australia
| | - Lesley A. Warren
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Dopson M, González-Rosales C, Holmes DS, Mykytczuk N. Eurypsychrophilic acidophiles: From (meta)genomes to low-temperature biotechnologies. Front Microbiol 2023; 14:1149903. [PMID: 37007468 PMCID: PMC10050440 DOI: 10.3389/fmicb.2023.1149903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/16/2023] [Indexed: 03/17/2023] Open
Abstract
Low temperature and acidic environments encompass natural milieus such as acid rock drainage in Antarctica and anthropogenic sites including drained sulfidic sediments in Scandinavia. The microorganisms inhabiting these environments include polyextremophiles that are both extreme acidophiles (defined as having an optimum growth pH < 3), and eurypsychrophiles that grow at low temperatures down to approximately 4°C but have an optimum temperature for growth above 15°C. Eurypsychrophilic acidophiles have important roles in natural biogeochemical cycling on earth and potentially on other planetary bodies and moons along with biotechnological applications in, for instance, low-temperature metal dissolution from metal sulfides. Five low-temperature acidophiles are characterized, namely, Acidithiobacillus ferriphilus, Acidithiobacillus ferrivorans, Acidithiobacillus ferrooxidans, “Ferrovum myxofaciens,” and Alicyclobacillus disulfidooxidans, and their characteristics are reviewed. Our understanding of characterized and environmental eurypsychrophilic acidophiles has been accelerated by the application of “omics” techniques that have aided in revealing adaptations to low pH and temperature that can be synergistic, while other adaptations are potentially antagonistic. The lack of known acidophiles that exclusively grow below 15°C may be due to the antagonistic nature of adaptations in this polyextremophile. In conclusion, this review summarizes the knowledge of eurypsychrophilic acidophiles and places the information in evolutionary, environmental, biotechnological, and exobiology perspectives.
Collapse
Affiliation(s)
- Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
- *Correspondence: Mark Dopson
| | - Carolina González-Rosales
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile
| | - Nadia Mykytczuk
- Goodman School of Mines, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
3
|
Indigenous microbial populations of abandoned mining sites and their role in natural attenuation. Arch Microbiol 2022; 204:251. [PMID: 35411412 DOI: 10.1007/s00203-022-02861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 11/02/2022]
Abstract
Environmental contamination by toxic effluents discharged by anthropogenic activities including the mining industries has increased extensively in the recent past. Microbial communities and their biofilms inhabiting these extreme habitats have developed different adaptive strategies in metabolizing and transforming the persistent pollutants. They also play a crucial role in natural attenuation of these abandoned mining sites and act as a major driver of many biogeochemical processes, which helps in ecological rehabilitation and is a viable approach for restoration of wide stretches of land. In this review, the types of mine wastes including the overburden and mine drainage and the types of microbial communities thriving in such environments were probed in detail. The types of biofilms formed along with their possible role in metal bioremediation were also reviewed. This review also provides an overview of the shift in microbial communities in natural reclamation process and also provides an insight into the restoration of the enzyme activities of the soils which may help in further revegetation of abundant mining areas in a sustainable manner. Moreover, the role of indigenous microbiota in bioremediation of heavy metals and their plant growth-promoting activity weres discussed to assess their role in phytoremedial processes.
Collapse
|
4
|
Hou D, Zhang P, Wei D, Zhang J, Yan B, Cao L, Zhou Y, Luo L. Simultaneous removal of iron and manganese from acid mine drainage by acclimated bacteria. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122631. [PMID: 32339872 DOI: 10.1016/j.jhazmat.2020.122631] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 05/28/2023]
Abstract
A bacterial consortium for efficient decontamination of high-concentration Fe-Mn acid mine drainage (AMD) was successfully isolated. The removal efficiencies of Fe and Mn were effective, reaching 99.8 % and 98.6 %, respectively. High-throughput sequencing of the 16S rRNA genes demonstrated that the microbial community had changed substantially during the treatment. The Fe-Mn oxidizing bacteria Flavobacterium, Brevundimonas, Stenotrophomonas and Thermomonas became dominant genera, suggesting that they might play vital roles in Fe and Mn removal. Moreover, the pH of culture increased obviously after incubation, which was benefit for depositing Fe and Mn from AMD. The specific surface area of the biogenic Fe-Mn oxides was 108-121 m2/g, and the surface contained reactive oxygen functional groups (-OH and -COOH), which also improved Fe and Mn removal efficiency. Thus, this study provides an alternative method to treat AMD containing high concentrations of Fe and Mn.
Collapse
Affiliation(s)
- Dongmei Hou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Pan Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Dongning Wei
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Linying Cao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China.
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China.
| |
Collapse
|
5
|
Giddings LA, Chlipala G, Kunstman K, Green S, Morillo K, Bhave K, Peterson H, Driscoll H, Maienschein-Cline M. Characterization of an acid rock drainage microbiome and transcriptome at the Ely Copper Mine Superfund site. PLoS One 2020; 15:e0237599. [PMID: 32785287 PMCID: PMC7423320 DOI: 10.1371/journal.pone.0237599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/29/2020] [Indexed: 01/20/2023] Open
Abstract
The microbial oxidation of metal sulfides plays a major role in the formation of acid rock drainage (ARD). We aimed to broadly characterize the ARD at Ely Brook, which drains the Ely Copper Mine Superfund site in Vermont, USA, using metagenomics and metatranscriptomics to assess the metabolic potential and seasonal ecological roles of microorganisms in water and sediment. Using Centrifuge against the NCBI "nt" database, ~25% of reads in sediment and water samples were classified as acid-tolerant Proteobacteria (61 ± 4%) belonging to the genera Pseudomonas (2.6-3.3%), Bradyrhizobium (1.7-4.1%), and Streptomyces (2.9-5.0%). Numerous genes (12%) were differentially expressed between seasons and played significant roles in iron, sulfur, carbon, and nitrogen cycling. The most abundant RNA transcript encoded the multidrug resistance protein Stp, and most expressed KEGG-annotated transcripts were involved in amino acid metabolism. Biosynthetic gene clusters involved in secondary metabolism (BGCs, 449) as well as metal- (133) and antibiotic-resistance (8501) genes were identified across the entire dataset. Several antibiotic and metal resistance genes were colocalized and coexpressed with putative BGCs, providing insight into the protective roles of the molecules BGCs produce. Our study shows that ecological stimuli, such as metal concentrations and seasonal variations, can drive ARD taxa to produce novel bioactive metabolites.
Collapse
Affiliation(s)
- Lesley-Ann Giddings
- Department of Chemistry & Biochemistry, Middlebury College, Middlebury, Vermont, United States of America
- Department of Chemistry, Smith College, Northampton, Massachusetts, United States of America
| | - George Chlipala
- Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Kevin Kunstman
- Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Stefan Green
- Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Katherine Morillo
- Department of Chemistry & Biochemistry, Middlebury College, Middlebury, Vermont, United States of America
| | - Kieran Bhave
- Department of Chemistry & Biochemistry, Middlebury College, Middlebury, Vermont, United States of America
| | - Holly Peterson
- Department of Geology, Guilford College, Greensboro, North Carolina, United States of America
| | - Heather Driscoll
- Vermont Genetics Network, Department of Biology, Norwich University, Northfield, Vermont, United States of America
| | - Mark Maienschein-Cline
- Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
6
|
Glamoclija M, Ramirez S, Sirisena K, Widanagamage I. Subsurface Microbial Ecology at Sediment-Groundwater Interface in Sulfate-Rich Playa; White Sands National Monument, New Mexico. Front Microbiol 2019; 10:2595. [PMID: 31781077 PMCID: PMC6861310 DOI: 10.3389/fmicb.2019.02595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/25/2019] [Indexed: 01/23/2023] Open
Abstract
The hypersaline sediment and groundwater of playa lake, Lake Lucero, at the White Sands National Monument in New Mexico were examined for microbial community composition, geochemical gradients, and mineralogy during the dry season along a meter and a half depth profile of the sediment vs. the groundwater interface. Lake Lucero is a highly dynamic environment, strongly characterized by the capillary action of the groundwater, the extreme seasonality of the climate, and the hypersalinity. Sediments are predominantly composed of gypsum with minor quartz, thenardite, halite, quartz, epsomite, celestine, and clays. Geochemical analysis has revealed the predominance of nitrates over ammonium in all of the analyzed samples, indicating oxygenated conditions throughout the sediment column and in groundwater. Conversely, the microbial communities are primarily aerobic, gram-negative, and are largely characterized by their survival adaptations. Halophiles and oligotrophs are ubiquitous for all the samples. The very diverse communities contain methanogens, phototrophs, heterotrophs, saprophytes, ammonia-oxidizers, sulfur-oxidizers, sulfate-reducers, iron-reducers, and nitrifiers. The microbial diversity varied significantly between groundwater and sediment samples as their temperature adaptation inferences that revealed potential psychrophiles inhabiting the groundwater and thermophiles and mesophiles being present in the sediment. The dynamism of this environment manifests in the relatively even character of the sediment hosted microbial communities, where significant taxonomic distinctions were observed. Therefore, sediment and groundwater substrates are considered as separate ecological entities. We hope that the variety of the discussed playa environments and the microorganisms may be considered a useful terrestrial analog providing valuable information to aid future astrobiological explorations.
Collapse
Affiliation(s)
- Mihaela Glamoclija
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, United States
| | - Steven Ramirez
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, United States
| | - Kosala Sirisena
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, United States.,Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC, United States.,Department of Environmental Technology, Faculty of Technology, University of Colombo, Colombo, Sri Lanka
| | - Inoka Widanagamage
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, United States.,Department of Geology and Geological Engineering, The University of Mississippi, Oxford, MS, United States
| |
Collapse
|
7
|
Acid Mine Drainage as Habitats for Distinct Microbiomes: Current Knowledge in the Era of Molecular and Omic Technologies. Curr Microbiol 2019; 77:657-674. [DOI: 10.1007/s00284-019-01771-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/09/2019] [Indexed: 11/27/2022]
|
8
|
Lukhele T, Selvarajan R, Nyoni H, Mamba BB, Msagati TAM. Diversity and functional profile of bacterial communities at Lancaster acid mine drainage dam, South Africa as revealed by 16S rRNA gene high-throughput sequencing analysis. Extremophiles 2019; 23:719-734. [PMID: 31520125 DOI: 10.1007/s00792-019-01130-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/14/2019] [Indexed: 12/23/2022]
Abstract
This study surveyed physicochemical properties and bacterial community structure of water and sediments from an acid mine drainage (AMD) dam in South Africa. High-throughput sequence analysis revealed low diversity bacterial communities affiliated within 8 dominant phyla; Acidobacteria, Actinobacteria, Chloroflexi, Firmicutes, Nitrospirae, Proteobacteria, Saccharibacteria, and ca. TM6_(Dependentiae). Acidiphilium spp. which are common AMD inhabitants but rarely occur as dominant taxa, were the most abundant in both AMD water and sediments. Other groups making up the community are less common AMD inhabitants; Acidibacillus, Acidibacter, Acidobacterium, Acidothermus, Legionella, Metallibacterium, Mycobacterium, as well as elusive taxa (Saccharibacteria, ca. TM6_(Dependentiae) and ca. JG37-AG-4). Although most of the taxa are shared between sediment and water communities, alpha diversity indices indicate a higher species richness in the sediments. From canonical correspondence analysis, DOC, Mn, Cu, Cr, Al, Fe, Ca were identified as important determinants of community structure in water, compared to DOC, Ca, Cu, Fe, Zn, Mg, K, Mn, Al, sulfates, and nitrates in sediments. Predictive functional profiling recovered genes associated with bacterial growth and those related to survival and adaptation to the harsh environmental conditions. Overall, the study reports on a distinct AMD bacterial community and highlights sediments as microhabitats with higher species richness than water.
Collapse
Affiliation(s)
- Thabile Lukhele
- Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology, University of South Africa, Science Campus, Johannesburg, 1709, South Africa
| | - Ramganesh Selvarajan
- College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Johannesburg, 1709, South Africa
| | - Hlengilizwe Nyoni
- Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology, University of South Africa, Science Campus, Johannesburg, 1709, South Africa
| | - Bheki Brilliance Mamba
- Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology, University of South Africa, Science Campus, Johannesburg, 1709, South Africa.,State Key Laboratory of Separation and Membranes, Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tianjin, 300387, People's Republic of China
| | - Titus Alfred Makudali Msagati
- Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology, University of South Africa, Science Campus, Johannesburg, 1709, South Africa.
| |
Collapse
|
9
|
Sirisena KA, Ramirez S, Steele A, Glamoclija M. Microbial Diversity of Hypersaline Sediments from Lake Lucero Playa in White Sands National Monument, New Mexico, USA. MICROBIAL ECOLOGY 2018; 76:404-418. [PMID: 29380029 DOI: 10.1007/s00248-018-1142-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
Lake Lucero is a gypsum-rich, hypersaline, ephemeral playa located on the southern part of the Alkali Flat at the White Sands National Monument (WSNM), New Mexico, USA. This modern playa setting provides a dynamic extreme environment that changes from a freshwater lake to a hypersaline dry desert during the year. We investigated the microbial diversity (bacteria, archaea, and microbial eukaryotes) of the Lake Lucero sediments using 16S- and 18S-based amplicon sequencing approach and explored the diversity patterns in different geochemical microenvironments. Our results indicated that similar microbial communities, in particular bacterial communities colonized, were remarkably consistent across our depth profiles. Therefore, these communities show a first-order relevance on the environmental conditions (moisture content, oxygen content, and mineral composition). We found that Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes, and Gemmatimonadetes were the major bacterial phyla, while Cyanobacteria were present in relatively low abundances and appeared only at the surface. Genus level assessment reflected that Truepera, Delftia, and Pseudomonas were the predominant bacterial genera across all samples. Euryarchaeota was the major archaeal phylum in all the samples, while Candidatus Halobonum and Candidatus Nitrososphaera were the main genera. Diatoms were the dominant eukaryotic group in surface samples and Fungi, Ciliophora, Metazoa, and Nematodes were the other major groups. As expected, metabolic inference indicated that aerobic microbial communities were near surface colonizers, with anaerobic communities dominating with increasing depth. We demonstrated that these microbial communities could be used to characterize unique geochemical microenvironments enabling us to extrapolate these results into other terrestrial and possibly extraterrestrial environments with comparable geochemical characteristics.
Collapse
Affiliation(s)
- Kosala Ayantha Sirisena
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, USA.
- Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC, USA.
- Department of Zoology, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| | - Steven Ramirez
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, USA
| | - Andrew Steele
- Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC, USA
| | - Mihaela Glamoclija
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, USA
| |
Collapse
|
10
|
Bonilla JO, Kurth DG, Cid FD, Ulacco JH, Gil RA, Villegas LB. Prokaryotic and eukaryotic community structure affected by the presence of an acid mine drainage from an abandoned gold mine. Extremophiles 2018; 22:699-711. [DOI: 10.1007/s00792-018-1030-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/20/2018] [Indexed: 12/11/2022]
|
11
|
Mesa V, Gallego JLR, González-Gil R, Lauga B, Sánchez J, Méndez-García C, Peláez AI. Bacterial, Archaeal, and Eukaryotic Diversity across Distinct Microhabitats in an Acid Mine Drainage. Front Microbiol 2017; 8:1756. [PMID: 28955322 PMCID: PMC5600952 DOI: 10.3389/fmicb.2017.01756] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
Acid mine drainages are characterized by their low pH and the presence of dissolved toxic metallic species. Microorganisms survive in different microhabitats within the ecosystem, namely water, sediments, and biofilms. In this report, we surveyed the microbial diversity within all domains of life in the different microhabitats at Los Rueldos abandoned mercury underground mine (NW Spain), and predicted bacterial function based on community composition. Sediment samples contained higher proportions of soil bacteria (AD3, Acidobacteria), as well as Crenarchaeota and Methanomassiliicoccaceae archaea. Oxic and hypoxic biofilm samples were enriched in bacterial iron oxidizers from the genus Leptospirillum, order Acidithiobacillales, class Betaproteobacteria, and archaea from the class Thermoplasmata. Water samples were enriched in Cyanobacteria and Thermoplasmata archaea at a 3–98% of the sunlight influence, whilst Betaproteobacteria, Thermoplasmata archaea, and Micrarchaea dominated in acid water collected in total darkness. Stalactites hanging from the Fe-rich mine ceiling were dominated by the neutrophilic iron oxidizer Gallionella and other lineages that were absent in the rest of the microhabitats (e.g., Chlorobi, Chloroflexi). Eukaryotes were detected in biofilms and open-air water samples, and belonged mainly to clades SAR (Alveolata and Stramenopiles), and Opisthokonta (Fungi). Oxic and hypoxic biofilms displayed higher proportions of ciliates (Gonostomum, Oxytricha), whereas water samples were enriched in fungi (Paramicrosporidium and unknown microbial Helotiales). Predicted function through bacterial community composition suggested adaptive evolutive convergence of function in heterogeneous communities. Our study showcases a broad description of the microbial diversity across different microhabitats in the same environment and expands the knowledge on the diversity of microbial eukaryotes in AMD habitats.
Collapse
Affiliation(s)
- Victoria Mesa
- Department of Functional Biology - IUBA, University of OviedoOviedo, Spain.,Vedas Research and Innovation, Vedas CIIMedellín, Colombia
| | - Jose L R Gallego
- Department of Mining Exploitation and Prospecting - IUBA, University of OviedoMieres, Spain
| | - Ricardo González-Gil
- Department of Biology of Organisms and Systems - University of OviedoOviedo, Spain
| | - Béatrice Lauga
- Equipe Environnement et Microbiologie, CNRS/Université de Pau et des Pays de l'Adour, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, UMR5254Pau, France
| | - Jesús Sánchez
- Department of Functional Biology - IUBA, University of OviedoOviedo, Spain
| | | | - Ana I Peláez
- Department of Functional Biology - IUBA, University of OviedoOviedo, Spain
| |
Collapse
|