1
|
Romanenko MN, Shikov AE, Savina IA, Shmatov FM, Nizhnikov AA, Antonets KS. Genomic Insights into the Bactericidal and Fungicidal Potential of Bacillus mycoides b12.3 Isolated in the Soil of Olkhon Island in Lake Baikal, Russia. Microorganisms 2024; 12:2450. [PMID: 39770653 PMCID: PMC11676374 DOI: 10.3390/microorganisms12122450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
The dispersal of plant pathogens is a threat to the global economy and food industry which necessitates the need to discover efficient biocontrol agents such as bacteria, fungi, etc., inhibiting them. Here, we describe the Bacillus mycoides strain b12.3 isolated from the soil of Olkhon Island in Lake Baikal, Russia. By applying the co-cultivation technique, we found that the strain inhibits the growth of plant pathogens, such as the bacteria Xanthomonas campestris, Clavibacter michiganensis, and Pectobacterium atrospecticum, as well as the fungus Alternaria solani. To elucidate the genomic fundament explaining these activities, we leveraged next-generation whole-genome sequencing and obtained a high-quality assembly based on short reads. The isolate bore seven known BGCs (biosynthetic gene clusters), including those responsible for producing bacillibactin, fengycin, and petrobactin. Moreover, the genome contained insecticidal genes encoding for App4Aa1, Tpp78Ba1, and Spp1Aa1 toxins, thus implicating possible pesticidal potential. We compared the genome with the 50 closest assemblies and found that b12.3 is enriched with BGCs. The genomic analysis also revealed that genomic architecture corresponds to the experimentally observed activity spectrum implying that the combination of produced secondary metabolites delineates the range of inhibited phytopathogens Therefore, this study deepens our knowledge of the biology and ecology of B. mycoides residing in the Lake Baikal region.
Collapse
Affiliation(s)
- Maria N. Romanenko
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton E. Shikov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Iuliia A. Savina
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
| | - Fedor M. Shmatov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
| | - Anton A. Nizhnikov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
2
|
Yu Y, Huang J, Deng Z, Wang Y, Jiang X, Wang J. Soil Application of Bacillus subtilis Regulates Flavonoid and Alkaloids Biosynthesis in Mulberry Leaves. Metabolites 2024; 14:180. [PMID: 38668308 PMCID: PMC11052171 DOI: 10.3390/metabo14040180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Flavonoids and alkaloids are the major active ingredients in mulberry leaves that have outstanding medicinal value. Bacillus subtilis can effectively activate the plants defense response and regulate the plant secondary metabolism. In this study, we explored the effects of soil application of B. subtilis on the content of flavonoids and the most important alkaloids (1-deoxynojirimycin, DNJ) in mulberry leaves. Significant decreases in flavonoid content were observed in tender leaves and mature leaves after treatment with B. subtilis; at the same time, significant increases in DNJ content were observed in tender leaves. Based on widely targeted LC-MS/MS and high-throughput approaches, we screened out 904 differentially synthesized metabolites (DSMs) and 9715 differentially expressed genes (DEGs). KEGG analyses showed that these DSMs and DEGs were both significantly enriched in the biosynthesis of secondary metabolites, flavonoid synthesis and plant hormone signal transduction. Further correlation analysis of DEMs and DEGs showed that 40 key genes were involved in flavonoid biosynthesis, with 6 key genes involved in DNJ biosynthesis. The expression of CHS, CHI, F3H, F3'H, FLS, UGT and AOC significantly responded to B. subtilis soil application. This study broadens our understanding of the molecular mechanisms underlying the accumulation of flavonoids and alkaloids in mulberry leaves.
Collapse
Affiliation(s)
- Yanfang Yu
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (Y.Y.); (J.H.); (Z.D.); (Y.W.); (X.J.)
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Nanchang 330202, China
| | - Jinzhi Huang
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (Y.Y.); (J.H.); (Z.D.); (Y.W.); (X.J.)
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Nanchang 330202, China
| | - Zhenhua Deng
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (Y.Y.); (J.H.); (Z.D.); (Y.W.); (X.J.)
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Nanchang 330202, China
| | - Yawei Wang
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (Y.Y.); (J.H.); (Z.D.); (Y.W.); (X.J.)
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Nanchang 330202, China
| | - Xinfeng Jiang
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (Y.Y.); (J.H.); (Z.D.); (Y.W.); (X.J.)
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Nanchang 330202, China
| | - Junwen Wang
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (Y.Y.); (J.H.); (Z.D.); (Y.W.); (X.J.)
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Nanchang 330202, China
| |
Collapse
|
3
|
Yadav U, Anand V, Kumar S, Srivastava S, Mishra SK, Chauhan PS, Singh PC. Endophytic biofungicide Bacillus subtilis (NBRI-W9) reshapes the metabolic homeostasis disrupted by the chemical fungicide, propiconazole in tomato plants to provide sustainable immunity against non-target bacterial pathogens. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123144. [PMID: 38123116 DOI: 10.1016/j.envpol.2023.123144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 11/05/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Chemical and microbial fungicides (Bio/fungicide) act differentially on plant systems. The present work assessed the metabolic profile of tomato plants vis-a-vis endophytic diversity after spraying of Propiconazole (PCZ) and endophytic biofungicide Bacillus subtilis (W9). Bio/fungicides were sprayed on tomato plants and evaluated for phenotypic, biochemical, and metabolic profiles after one week. In W9 treatment, a significant increase in relative abundance of several metabolites was observed including sugars, sugar alcohols, fatty-acids, organic-acids, and amino-acids. Polysaccharides and fatty acids showed a significant positive correlation with Rhizobiales, Burkholderiales, Bacillales, and Lactobacillales, respectively (p < 0.05). The PCZ and W9 treated plant's metabolic status significantly affected their resistance to non-target, bacterial pathogen P. syringae. Compared to PCZ and control, W9 treatment reduced the ROS deposition and expression of antioxidants gene GPx, PO (~0.1-1.7fold). It enhanced the genes related to the Phenylpropanoid pathway (∼1.6-5.2 fold), PR protein (~1.2-3.4 fold), and JA biosynthesis (~1.7-4.3 fold), resulting in reduced disease incidence. The results provide novel insights into the effects of endophytic biofungicide and chemical fungicides on the plant's metabolic status, its relation to the endophytes, and role in altering the plant's immune system.
Collapse
Affiliation(s)
- Udit Yadav
- Microbial Technology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research (AcSIR) CSIR-HRDC, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Vandana Anand
- Microbial Technology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research (AcSIR) CSIR-HRDC, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Sanjeev Kumar
- Microbial Technology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research (AcSIR) CSIR-HRDC, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Suchi Srivastava
- Microbial Technology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research (AcSIR) CSIR-HRDC, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Shashank K Mishra
- Microbial Technology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Puneet Singh Chauhan
- Microbial Technology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research (AcSIR) CSIR-HRDC, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Poonam C Singh
- Microbial Technology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research (AcSIR) CSIR-HRDC, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
4
|
Li Q, Zhang W, Liao S, Xing D, Xiao Y, Zhou D, Yang Q. Mechanism of lead adsorption by a Bacillus cereus strain with indole-3-acetic acid secretion and inorganic phosphorus dissolution functions. BMC Microbiol 2023; 23:57. [PMID: 36869296 PMCID: PMC9985246 DOI: 10.1186/s12866-023-02795-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Heavy metal pollution has become a major source of environmental pollution because of increasing industrialization. Microbial remediation is a promising approach to remediate lead-contaminated environments owing to its cost-effective, environment-friendly, ecologically sustainable, and highly efficient properties. In this study, the growth-promoting functions and lead-adsorption ability of Bacillus cereus SEM-15 were examined, and the functional mechanism of the strain was preliminarily identified using scanning electron microscopy, energy spectrum, infrared spectrum, and genome analyses, providing theoretical support for utilization of B. cereus SEM-15 in heavy metals remediation. RESULTS B. cereus SEM-15 showed strong ability to dissolve inorganic phosphorus and secrete indole-3-acetic acid. The lead adsorption efficiency of the strain at lead ion concentration of 150 mg/L was more than 93%. Single factor analysis revealed the optimal conditions for heavy metal adsorption by B. cereus SEM-15 (adsorption time, initial lead ion concentration, pH, and inoculum amount were 10 min, 50-150 mg/L, 6-7, and 5 g/L, respectively) in nutrient-free environment, with the lead adsorption rate reaching 96.58%. Scanning electron microscopy of B. cereus SEM-15 cells before and after lead adsorption showed adherence of a large number of granular precipitates to the cell surface after lead adsorption. X-Ray photoelectron spectroscopy and Fourier transform infrared spectroscopy results indicated the characteristic peaks of Pb-O, Pb-O-R (R = functional group), and Pb-S bonds after lead adsorption, and a shift in the characteristic peaks of bonds and groups related to C, N, and O. Genome annotation results showed the presence of genes related to heavy metals tolerance and plant growth promotion in B. cereus SEM-15, providing a molecular basis for the strain's heavy metals tolerance and plant growth promotion functions. CONCLUSIONS This study analyzed the lead adsorption characteristics of B. cereus SEM-15 and the associated influencing factors, and discussed the adsorption mechanism and related functional genes, providing a basis for clarifying the underlying molecular mechanism and offering a reference for further research on plant-microorganisms combined remediation of heavy metals polluted environments.
Collapse
Affiliation(s)
- Qingrong Li
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510610, China.,Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, GuangZhou, 510610, China
| | - Wenbo Zhang
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510610, China
| | - Sentai Liao
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510610, China
| | - Dongxu Xing
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510610, China.,Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, GuangZhou, 510610, China
| | - Yang Xiao
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510610, China.,Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, GuangZhou, 510610, China
| | - Donglai Zhou
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510610, China
| | - Qiong Yang
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510610, China. .,Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, GuangZhou, 510610, China.
| |
Collapse
|
5
|
Jabborova D, Davranov K, Jabbarov Z, Bhowmik SN, Ercisli S, Danish S, Singh S, Desouky SE, Elazzazy AM, Nasif O, Datta R. Dual Inoculation of Plant Growth-Promoting Bacillus endophyticus and Funneliformis mosseae Improves Plant Growth and Soil Properties in Ginger. ACS OMEGA 2022; 7:34779-34788. [PMID: 36211029 PMCID: PMC9535732 DOI: 10.1021/acsomega.2c02353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Co-inoculation with beneficial microbes has been suggested as a useful practice for the enhancement of plant growth, nutrient uptake, and soil nutrients. For the first time in Uzbekistan the role of plant-growth-promoting Bacillus endophyticus IGPEB 33 and arbuscular mycorrhizal fungi (AMF) on plant growth, the physiological properties of ginger (Zingiber officinale), and soil enzymatic activities was studied. Moreover, the coinoculation of B. endophyticus IGPEB 33 and AMF treatment significantly increased the plant height by 81%, leaf number by 70%, leaf length by 82%, and leaf width by 40% compared to the control. B. endophyticus IGPEB 33 individually increased plant height significantly by 51%, leaf number by 56%, leaf length by 67%, and leaf width by 27% as compared to the control treatment. Compared to the control, B. endophyticus IGPEB 33 and AMF individually significantly increased chlorophyll a by 81-58%, chlorophyll b by 68-37%, total chlorophyll by 74-53%, and carotenoid content by 67-55%. However, combination of B. endophyticus IGPEB 33 and AMF significantly increased chlorophyll a by 86%, chlorophyll b by 72%, total chlorophyll by 82%, and carotenoid content by 83% compared to the control. Additionally, plant-growth-promoting B. endophyticus IGPEB 33 and AMF inoculation improved soil nutrients and soil enzyme activities compared to the all treatments. Co-inoculation with plant-growth-promoting B. endophyticus and AMF could be an alternative for the production of ginger that is more beneficial to soil nutrient deficiencies. We suggest that a combination of plant-growth-promoting B. endophyticus and AMF inoculation could be a more sustainable and eco-friendly approach in a nutrient-deficient soil.
Collapse
Affiliation(s)
- Dilfuza Jabborova
- Institute
of Genetics and Plant Experimental Biology, Uzbekistan Academy of Sciences, Kibray 111208, Uzbekistan
- Faculty
of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Kakhramon Davranov
- Institute
of Microbiology of the Academy of Sciences of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Zafarjon Jabbarov
- Faculty
of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Subrata Nath Bhowmik
- Division
of Microbiology, ICAR-Indian Agricultural
Research Institute, Pusa,
New Delhi 110012, India
| | - Sezai Ercisli
- Department
of Horticulture, Agricultural Faculty, Ataturk
University, Erzurum 252240, Turkey
| | - Subhan Danish
- Department
of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Sachidanand Singh
- Department
of Biotechnology, Smt. S. S. Patel Nootan
Science & Commerce College, Sankalchand Patel University, Visnagar 384315, Gujarat, India
| | - Said E. Desouky
- Department
of Botany and Microbiology, Faculty of Science,
Al-azhar University, 11884 Nasr, Cairo, Egypt
| | - Ahmed M. Elazzazy
- Department
of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Omaima Nasif
- King Saud
University, Department of Physiology, College of Medicine and King
Khalid University Hospital, King Saud University, Medical City, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| | - Rahul Datta
- Department
of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
| |
Collapse
|
6
|
Plant-derived tormentic acid alters the gut microbiota of the silkworm (Bombyx mori). Sci Rep 2022; 12:13005. [PMID: 35906393 PMCID: PMC9338012 DOI: 10.1038/s41598-022-17478-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
In recent years, phytochemicals have started to attract more attention due to their contribution to health and bioactivity. Microorganisms in the intestines of organisms contribute to the processing, function, and biotransformation of these substances. The silkworm (Bombyx mori) is one of the organisms used for the biotransformation of phytochemicals due to its controlled reproduction and liability to microbial manipulation. In this study, a bioactive compound, tormentic acid (TA), extracted from Sarcopoterium spinosum was used in the silkworm diet, and the alterations of intestinal microbiota of the silkworm were assessed. To do this, silkworms were fed on a diet with various tormentic acid content, and 16S metagenomic analysis was performed to determine the alterations in the gut microbiota profile of these organisms. Diet with different TA content did not cause a change in the bacterial diversity of the samples. A more detailed comparison between different feeding groups indicated increased abundance of bacteria associated with health, i.e., Intestinibacter spp., Flavonifractor spp., Senegalimassilia spp., through the utilization of bioactive substances such as flavonoids. In conclusion, it might be said that using TA as a supplementary product might help ameliorate the infected gut, promote the healthy gut, and relieve the undesirable effects of medicines on the gastrointestinal system.
Collapse
|
7
|
Reddy R, Jiang Q, Aramwit P, Reddy N. Litter to Leaf: The Unexplored Potential of Silk Byproducts. Trends Biotechnol 2020; 39:706-718. [PMID: 33279278 DOI: 10.1016/j.tibtech.2020.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Silk has remained the most preferred protein fiber since its discovery in 3000 BC. However, the cost, availability, and resources required to rear the silkworms and process silk are imposing considerable constraints on the future of silk. It is often unrealized that apart from the fibers, production and processing of silk are a source for a diverse range of sustainable, biodegradable, and biocompatible polymers. Hence, delineating itself from being the primary source of protein fibers for millenniums, the silk industry worldwide is transitioning into a biobased industry and as a source for pharmaceuticals, biomaterials, cosmetics, food, and energy. Toward this, byproducts (BPs) and co-products (CPs) that are inevitably generated are now being considered to be of immense economic value and could be up to 10 times more valuable than the silk fibers. Here, we elucidate the properties and potential applications of silk BPs and CPs to present the true potential of silkworms and to promote the establishment of silkworm-based bioeconomy and biorefineries.
Collapse
Affiliation(s)
- Roopa Reddy
- Center for Incubation, Innovation, Research and Consultancy, Jyothy Institute of Technology, Thataguni Post, Bengaluru 560082, Karnataka, India
| | - Qiuran Jiang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; College of Textiles, Donghua University, Shanghai 201620, China
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand 10330; The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, Thailand 10330
| | - Narendra Reddy
- Center for Incubation, Innovation, Research and Consultancy, Jyothy Institute of Technology, Thataguni Post, Bengaluru 560082, Karnataka, India.
| |
Collapse
|
8
|
Li Q, Liao S, Wei J, Xing D, Xiao Y, Yang Q. Isolation of Bacillus subtilis strain SEM-2 from silkworm excrement and characterisation of its antagonistic effect against Fusarium spp. Can J Microbiol 2020; 66:401-412. [PMID: 32160477 DOI: 10.1139/cjm-2019-0621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fusarium wilt is a devastating soil-borne disease mainly caused by highly host-specific formae speciales of Fusarium spp. Antagonistic microorganisms play a very important role in Fusarium wilt control. Isolation of potential biocontrol strains has become increasingly important. Bacterial strain SEM-2 was isolated from the high-temperature stage of silkworm excrement composting. SEM-2 exhibited a considerable antagonistic effect against Fusarium graminearum mycelial growth and spore germination. The results of pot experiments suggested that SEM-2 has a better inhibitory effect on the early stage of disease occurrence. The green fluorescent protein labelled SEM-2 coated on the surface of tomato seeds colonised the roots of tomato plants in 15 days. Genome sequencing identified SEM-2 as a new strain of Bacillus subtilis, and genome annotation and analysis determined gene clusters related to the biosynthesis of antimicrobials, such as bacillaene, fengycin, bacillibactin, subtilosin A, surfactin, and bacilysin. Interestingly, liquid chromatography - quadrupole time-of-flight mass spectrometry revealed that metabolites in pathways associated with the synthesis of secondary metabolites and antibiotics were highly differentially expressed. These findings may help to explain the mode of action of B. subtilis SEM-2 against Fusarium spp.
Collapse
Affiliation(s)
- Qingrong Li
- The Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, P.R. China.,Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou 510610, P.R. China
| | - Sentai Liao
- The Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, P.R. China
| | - Junhong Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P.R. China
| | - Dongxu Xing
- The Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, P.R. China.,Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou 510610, P.R. China
| | - Yang Xiao
- The Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, P.R. China.,Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou 510610, P.R. China
| | - Qiong Yang
- The Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, P.R. China.,Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou 510610, P.R. China
| |
Collapse
|
9
|
Pesticides Decrease Bacterial Diversity and Abundance of Irrigated Rice Fields. Microorganisms 2020; 8:microorganisms8030318. [PMID: 32106524 PMCID: PMC7142973 DOI: 10.3390/microorganisms8030318] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 02/22/2020] [Accepted: 02/22/2020] [Indexed: 11/16/2022] Open
Abstract
Bacteria play an important role in soil ecosystems and their activities are crucial in nutrient composition and recycling. Pesticides are extensively used in agriculture to control pests and improve yield. However, increased use of pesticides on agricultural lands results in soil contamination, which could have adverse effect on its bacterial communities. Here, we investigated the effect of pesticides commonly used on irrigated rice fields on bacterial abundance and diversity. Irrigated soil samples collected from unexposed, pesticide-exposed, and residual exposure areas were cultured under aerobic and anaerobic conditions. DNA was extracted and analysed by 16S rRNA sequencing. The results showed overall decrease in bacterial abundance and diversity in areas exposed to pesticides. Operational taxonomic units of the genera Enterobacter, Aeromonas, Comamonas, Stenotrophomonas, Bordetella, and Staphylococcus decreased in areas exposed to pesticides. Conversely, Domibacillus, Acinetobacter, Pseudomonas, and Bacillus increased in abundance in pesticide-exposed areas. Simpson and Shannon diversity indices and canonical correspondence analysis demonstrated a decrease in bacterial diversity and composition in areas exposed to pesticides. These results suggest bacteria genera unaffected by pesticides that could be further evaluated to identify species for bioremediation. Moreover, there is a need for alternative ways of improving agricultural productivity and to educate farmers to adopt innovative integrated pest management strategies to reduce deleterious impacts of pesticides on soil ecosystems.
Collapse
|
10
|
Liu J, Cui X, Liu Z, Guo Z, Yu Z, Yao Q, Sui Y, Jin J, Liu X, Wang G. The Diversity and Geographic Distribution of Cultivable Bacillus-Like Bacteria Across Black Soils of Northeast China. Front Microbiol 2019; 10:1424. [PMID: 31293554 PMCID: PMC6598460 DOI: 10.3389/fmicb.2019.01424] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/05/2019] [Indexed: 11/21/2022] Open
Abstract
Bacillus-like species are gram-positive bacteria that are ubiquitous in soils. Many of Bacillus-like bacteria are demonstrated as beneficial microbes widely used in industry and agriculture. However, the knowledge related to their diversity and distribution patterns in soils is still rudimentary. In this study, we developed a combined research method of using culture-dependent and high-throughput sequencing to investigate the composition and diversity of cultivable Bacillus-like bacterial communities across 26 soil samples obtained from the black soil zone in northeast China. Nearly all bacterial 16S rDNA sequences were classified into the order Bacillales. Fifteen genera were detected, with Bacillus, Paenibacillus, and Brevibacillus being the three most abundant genera. Although more than 2,000 OTUs were obtained across all samples, 33 OTUs were confirmed as the abundant species with a relative abundance over 5% in at least one sample. Pairwise analysis showed that the diversity of Bacillus-like bacterial communities were significantly and positively correlated with soil total carbon contents and soil sampling latitudes, which suggests that a latitudinal gradient diversity of Bacillus-like bacterial communities exists in the black soil zone. The principal coordinates analysis revealed that the Bacillus-like bacterial communities were remarkably affected by soil sampling latitudes and soil total carbon content. In general, this study demonstrated that a distinct biogeographic distribution pattern of cultivable Bacillus-like bacterial communities existed in the black soil zone, which emphasizes that the strategy of local isolation and application of beneficial Bacillus-like strains is rather important in black soil agriculture development.
Collapse
Affiliation(s)
- Junjie Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xiao Cui
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- School of Life Sciences and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Zhuxiu Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhaokui Guo
- Institute of Tobacco Science, Heilongjiang Branch, China National Tobacco Corporation, Harbin, China
| | - Zhenhua Yu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Qin Yao
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Yueyu Sui
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Jian Jin
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xiaobing Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Guanghua Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| |
Collapse
|