1
|
Sikdar B, Mukherjee S, Bhattacharya R, Raj A, Roy A, Banerjee D, Gangopadhyay G, Roy S. The anti-quorum sensing and biofilm inhibitory potential of Piper betle L. leaf extract and prediction of the roles of the potent phytocompounds. Microb Pathog 2024; 195:106864. [PMID: 39153575 DOI: 10.1016/j.micpath.2024.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
The leaves of Piper betle L., known as betel leaf, have immense medicinal properties. It possesses potent antimicrobial efficacies and can be a valuable tool to combat drug-resistant microorganisms. Quorum sensing (QS) inhibition is one of the best strategies to combat drug resistance. The present study investigates the anti-quorum sensing and biofilm inhibitory potential of Piper betle L. leaf extract against two bacterial strains, Chromobacterium violaceum and Pseudomonas aeruginosa. The extract produced substantial QS-inhibition zones in a biosensor strain of C. violaceum (CV026), indicating interference with quorum-sensing signals. The Results demonstrated significant inhibition in biofilm formation and different QS-regulated virulence factors (violacein, exopolysaccharides, pyocyanin, pyoverdine, elastase) in both C. violaceum and P. aeruginosa at sub-MIC concentrations of the extract and tetracycline, an antibiotic with known anti-QS activity. The quantitative real-time PCR (qRT-PCR) revealed decreased gene expression in different QS-related genes in C. violaceum (cviI, cviR, and vioA) and P. aeruginosa (lasI, lasR, lasB, rhlI, rhlR, and rhlA) strains after treatment. Gas Chromatography-Mass Spectrometry (GC-MS) analysis identified the significant phytocompounds, mainly derivatives of chavicol and eugenol, in the extract. Of these compounds, chavicol acetate (affinity: -7.00 kcal/mol) and acetoxy chavicol acetate (affinity: -7.87 kcal/mol) showed the highest potential to bind with the CviR and LasR protein, respectively, as evident from the in-silico molecular docking experiment. The findings of this endeavour highlight the promising role of Piper betle L. as a source of natural compounds with anti-quorum sensing properties against pathogenic bacteria, opening avenues for developing novel therapeutic agents to combat bacterial infections.
Collapse
Affiliation(s)
- Bratati Sikdar
- Department of Botany, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India; Department of Biological Sciences, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata, 700091, West Bengal, India
| | - Sourav Mukherjee
- Department of Botany, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India
| | - Rupsa Bhattacharya
- Department of Botany, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India
| | - Adarsha Raj
- Department of Botany, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India
| | - Alokesh Roy
- Department of Botany, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India; Department of Biological Sciences, Midnapore City College, Kuturiya, Bhadutala, Paschim Medinipore, 721129, West Bengal, India
| | - Debarati Banerjee
- Department of Botany, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India
| | - Gaurab Gangopadhyay
- Department of Biological Sciences, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata, 700091, West Bengal, India.
| | - Sudipta Roy
- Department of Botany, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India.
| |
Collapse
|
2
|
Xu Y, Luo J, Guo Y, Zhou J, Shen L, Gu F, Shi C, Yao L, Hua M. Chemical compounds, anti-tumor and anti-neuropathic pain effect of hemp essential oil in vivo. Fitoterapia 2024; 177:106092. [PMID: 38914272 DOI: 10.1016/j.fitote.2024.106092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/18/2024] [Accepted: 06/22/2024] [Indexed: 06/26/2024]
Abstract
Hemp (Cannabis sativa L.), an annual dioecious plant, has shown extensive application in the fields of fibers, food, oil, medicine, etc. Currently, most attention has been paid to the therapeutic properties of phytocannabinoids. However, the pharmaceutical research on essential oil from hemp is still lacking. In this study, hemp essential oil (HEO) was extracted from hemp flowers and leaves, and the components were analyzed by GC-MS. Quatitative analysis of three main compounds β-caryophyllene, β-caryophyllene oxide, α -humulene were determined by GC-FID. The anti-tumor and anti-neuropathic pain effects of HEO were evaluated. In the paclitaxel induced neuropathic mice model, HEO reduced the serum level of inflammatory cytokines TNF-α to achieve the analgesic effect, which was tested by evaluating mechanical and thermal hyperalgesia. Further investigation with cannabinoid receptor 2 (CB2 R) antagonist AM630 revealed the mechanism of reversing mechanical hyperalgesia may be related to CB2 R. In Lewis lung cancer grafted mice model, the tumor growth was significantly inhibited, the levels of tumor inflammatory cytokines TNF-α and IL-6 were downregulated, immune organ index was modified and immune-related CD4+, CD8+ T lymphocytes level, CD4+/CD8+ ratio were increased when administered with HEO. These results reveal that HEO plays a role not only in tumor chemotherapy induced peripheral neuropathy treatment, but also in anti-tumor treatment which offers key information for new strategies in cancer treatment and provides reference for the medicinal development of hemp.
Collapse
Affiliation(s)
- Yunhui Xu
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Jiajia Luo
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Yuhan Guo
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Jing Zhou
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Longhai Shen
- Center for Pharmacological Evaluation and Research of SIPI, Shanghai Institute of Pharmaceutical Industry Co., Ltd., Shanghai 200437, China
| | - Fenghua Gu
- Center for Pharmacological Evaluation and Research of SIPI, Shanghai Institute of Pharmaceutical Industry Co., Ltd., Shanghai 200437, China
| | - Chenfeng Shi
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Lijuan Yao
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Moli Hua
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China.
| |
Collapse
|
3
|
Dalavaye N, Nicholas M, Pillai M, Erridge S, Sodergren MH. The Clinical Translation of α-humulene - A Scoping Review. PLANTA MEDICA 2024; 90:664-674. [PMID: 38626911 PMCID: PMC11254484 DOI: 10.1055/a-2307-8183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/16/2024] [Indexed: 07/19/2024]
Abstract
α-humulene, a sesquiterpene found in essential oils of various plant species, has garnered interest due to its potential therapeutic applications. This scoping review aims to consolidate α-humulene's evidence base, informing clinical translation, and guiding future research directions. A scoping review was conducted of EMBASE, MEDLINE, and PubMed databases up to 14th July 2023. All studies describing original research on α-humulene extraction, as well as pre-clinical and clinical research, were included for review. Three hundred and forty articles were analysed. α-humulene yields ranged from negligible to 60.90% across plant species. In vitro experiments demonstrated cytotoxicity against adenocarcinomas (such as colorectal, pulmonary, breast, prostatic, lung, and ovarian), with varying responses in other cell models. Mechanistic insights revealed its involvement in mitochondrial dysfunction, diminished intracellular glutathione levels, and the induction of oxidative stress. In rodent studies, oral administration of α-humulene at 50 mg/kg reduced inflammation markers in paw oedema and ovalbumin-induced airway inflammation. Intraperitoneal administration of α-humulene (50 - 200 mg/kg) exhibited cannabimimetic properties through cannabinoid 1 and adenosine A2a receptors. α-humulene also exhibited a multitude of properties with potential scope for therapeutic utilisation. However, there is a paucity of studies that have successfully translated this research into clinical populations with the associated disease. Potential barriers to clinical translation were identified, including yield variability, limited isolation studies, and challenges associated with terpene bioavailability. Consequently, rigorous pharmacokinetic studies and further mechanistic investigations are warranted to effectively uncover the potential of α-humulene.
Collapse
Affiliation(s)
- Nishaanth Dalavaye
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, UK
| | - Martha Nicholas
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, UK
| | - Manaswini Pillai
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, UK
| | - Simon Erridge
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, UK
- Curaleaf Clinic, London, UK
| | - Mikael H. Sodergren
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, UK
- Curaleaf International, London, UK
| |
Collapse
|
4
|
Ivanova S, Dzhakova Z, Staynova R, Ivanov K. Salvia verticillata (L.)-Biological Activity, Chemical Profile, and Future Perspectives. Pharmaceuticals (Basel) 2024; 17:859. [PMID: 39065710 PMCID: PMC11280111 DOI: 10.3390/ph17070859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Species belonging to the genus Salvia, Lamiaceae, have been deeply involved in the folk medicine of different nations since ancient times. Lilac sage, or Salvia verticillata L. (S. verticillata) is a less studied species from the genus. However, it seems to have a prominent potential for the future drug discovery strategies of novel phytopharmaceuticals. This review aims to summarise the data on the biological activity and the phytochemical profile of extracts and essential oils derived from S. verticillata. This review is based on data from 57 in vitro and in vivo studies. The chemical profile of S. verticillata includes different synergic compounds like phenolic acids, flavonoids, terpenes, and salvianolic acids. Although some small amounts of salvianolic acid B were found in S. verticillata extracts, the major compound among the salvianolic acids is salvianolic acid C, a compound associated with the potential for improving liver fibrosis, cardio- and hepatoprotection, and the inhibition of SARS-CoV-2 infection. The cannabinoid type 2 receptor agonist β-caryophyllene is one of the major compounds in S. verticillata essential oils. It is a compound with a prominent potential in regenerative medicine, neurology, immunology, and other medical fields. The in vivo and the in vitro studies, regarding S. verticillata highlighted good antioxidant potential, anti-inflammatory, antibacterial, and antifungal activity. S.verticillata was also reported as a potential source of drug candidates for the treatment of neurodegenerative diseases such as Alzheimer's disease, because of the inhibitory activity on the acetylcholinesterase. However, the number of studies in this direction is limited.
Collapse
Affiliation(s)
- Stanislava Ivanova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (Z.D.); (K.I.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Zoya Dzhakova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (Z.D.); (K.I.)
| | - Radiana Staynova
- Department of Organisation and Economics of Pharmacy, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Kalin Ivanov
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (Z.D.); (K.I.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
5
|
Becker L, Holtmann D. Anti-inflammatory effects of α-humulene on the release of pro-inflammatory cytokines in lipopolysaccharide-induced THP-1 cells. Cell Biochem Biophys 2024; 82:839-847. [PMID: 38388989 PMCID: PMC11344727 DOI: 10.1007/s12013-024-01235-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
While acute inflammation is an essential physical response to harmful external influences, the transition to chronic inflammation is problematic and associated with the development and worsening of many deadly diseases. Until now, established pharmaceutical agents have had many side effects when used for long periods. In this study, a possible anti-inflammatory effect of the sesquiterpene α-humulene on lipopolysaccharide (LPS) induction was tested. Herein, human THP-1-derived macrophages were used and their pro-inflammatory interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and interleukin-1β (IL-1β) cytokine release was measured by means of enzyme-linked immunosorbent assay. A dose-dependent effect of α-humulene on IL-6 release was observed at 0.5 and 100 µM α-humulene, with a maximum IL-6 inhibition of 60% compared to the LPS reference value after the addition of 100 µM α-humulene. TNF-α as well as IL-1β cytokine concentrations were not reduced by the addition of 0.5 and 100 µM α-humulene. This study suggests that α-humulene has potential as a promising natural alternative to established pharmaceuticals for the treatment of elevated IL-6 levels and chronic inflammation in humans.
Collapse
Affiliation(s)
- Lucas Becker
- Bioprocess Intensification, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390, Giessen, Germany
| | - Dirk Holtmann
- Bioprocess Intensification, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390, Giessen, Germany.
- Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
| |
Collapse
|
6
|
Zhao X, He Y, Shao S, Ci Q, Chen L, Lu X, Liu Q, Chen J. CRISPR/Cas14 and G-Quadruplex DNAzyme-Driven Biosensor for Paper-Based Colorimetric Detection of African Swine Fever Virus. ACS Sens 2024; 9:2413-2420. [PMID: 38635911 PMCID: PMC11216275 DOI: 10.1021/acssensors.4c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The highly contagious nature and 100% fatality rate contribute to the ongoing and expanding impact of the African swine fever virus (ASFV), causing significant economic losses worldwide. Herein, we developed a cascaded colorimetric detection using the combination of a CRISPR/Cas14a system, G-quadruplex DNAzyme, and microfluidic paper-based analytical device. This CRISPR/Cas14a-G4 biosensor could detect ASFV as low as 5 copies/μL and differentiate the wild-type and mutated ASFV DNA with 2-nt difference. Moreover, this approach was employed to detect ASFV in porcine plasma. A broad linear detection range was observed, and the limit of detection in spiked porcine plasma was calculated to be as low as 42-85 copies/μL. Our results indicate that the developed paper platform exhibits the advantages of high sensitivity, excellent specificity, and low cost, making it promising for clinical applications in the field of DNA disease detection and suitable for popularization in low-resourced areas.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yawen He
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Shengjie Shao
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Qiaoqiao Ci
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Lin Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3 V9, Canada
| | - Qian Liu
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3 V9, Canada
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
7
|
Thakur M, Guleria P, Sobti RC, Gautam A, Kaur T. Comparative analysis of the antibacterial efficacy and bioactive components of Thuja occidentalis obtained from four different geographical sites. Mol Cell Biochem 2024; 479:283-296. [PMID: 37059893 DOI: 10.1007/s11010-023-04729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023]
Abstract
The purpose of this study was to determine whether or not there were significant differences in the antibacterial potential of Thuja occidentalis collected from four distinct geographical sites, namely Chamba (Himachal Pradesh, India), Jalandhar (Punjab, India), Aurangabad (Bihar, India) and Kakching (Manipur, India). The plant extracts were prepared in three different solvents: ethanol, methanol, and acetone. The antibacterial potential of the plant extracts was tested against five different bacterial species using well diffusion test. The minimum inhibitory and bactericidal concentrations of the plant sample exhibiting maximum zone of inhibition against different bacterial strains were calculated. Further, the total phenols, flavonoids, and antioxidant efficacy (using DPPH assay) were also analysed biochemically. The activity of different antioxidant enzymes including SOD, CAT and APX were also recorded as these enzymes protect the cells from free radical damage. GC-MS analysis was also performed on all plant extracts to identify the bioactive components. The results showed that the T. occidentalis collected from the Kakching, Manipur, East side of India showed the highest zone of inhibition against all the bacterial strains, followed by Chamba, Jalandhar, and lastly Aurangabad. To analyse the impact of phytochemicals on the antibacterial efficacy, a correlation was drawn between the biochemical parameters and zone of inhibition using Karl Pearson's method. Most bacterial species demonstrated a positive correlation between antibacterial effectiveness (zone of inhibition) and biochemical markers. The GC-MS study revealed positive correlation between zone of inhibition and peak area percentages of α-Pinene, β-caryophyllene, Germacrene-D, and Humulene in all bacterial species indicating that these chemicals may play a key role in the bactericidal potential of T. occidentalis. Based on the results of this investigation, it is evident that the antibacterial effectiveness of T. occidentalis varies with its geographical location which may be attributed to the differences in the phytochemical makeup.
Collapse
Affiliation(s)
- Manish Thakur
- Department of Microbiology, DAV University, Jalandhar, Punjab, India
| | - Praveen Guleria
- Department of Biotechnology, DAV University, Jalandhar, Punjab, India
| | | | - Ayushi Gautam
- Department of Biotechnology, DAV University, Jalandhar, Punjab, India
| | - Tejinder Kaur
- Department of Zoology, DAV University, Jalandhar, Punjab, India.
| |
Collapse
|
8
|
Sydow A, Becker L, Lombard E, Ulber R, Guillouet SE, Holtmann D. Autotrophic Production of the Sesquiterpene α-Humulene with Cupriavidus necator in a Controlled Bioreactor. Bioengineering (Basel) 2023; 10:1194. [PMID: 37892924 PMCID: PMC10603880 DOI: 10.3390/bioengineering10101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Cupriavidus necator is a facultative chemolithotrophic organism that grows under both heterotrophic and autotrophic conditions. It is becoming increasingly important due to its ability to convert CO2 into industrially valuable chemicals. To translate the potential of C. necator into technical applications, it is necessary to optimize and scale up production processes. A previous proof-of-principle study showed that C. necator can be used for the de novo production of the terpene α-humulene from CO2 up to concentrations of 11 mg L-1 in septum flasks. However, an increase in final product titer and space-time yield will be necessary to establish an economically viable industrial process. To ensure optimized growth and production conditions, the application of an improved process design in a gas bioreactor with the control of pH, dissolved oxygen and temperature including a controlled gas supply was investigated. In the controlled gas bioreactor, the concentration of α-humulene was improved by a factor of 6.6 and the space-time yield was improved by a factor of 13.2. These results represent an important step toward the autotrophic production of high-value chemicals from CO2. In addition, the in situ product removal of α-humulene was investigated and important indications of the critical logP value were obtained, which was in the range of 3.0-4.2.
Collapse
Affiliation(s)
- Anne Sydow
- Industrial Biotechnology, DECHEMA Research Institute, Theodor Heuss Allee 25, 60486 Frankfurt, Germany
| | - Lucas Becker
- Bioprocess Intensification, Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany
| | - Eric Lombard
- TBI, Université de Toulouse, National Institute of Applied Sciences (INSA), 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Roland Ulber
- Institute of Bioprocess Engineering, University of Kaiserslautern-Landau, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany
| | - Stephane E. Guillouet
- TBI, Université de Toulouse, National Institute of Applied Sciences (INSA), 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Dirk Holtmann
- Bioprocess Intensification, Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany
- Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| |
Collapse
|
9
|
Ben Akacha B, Ben Hsouna A, Generalić Mekinić I, Ben Belgacem A, Ben Saad R, Mnif W, Kačániová M, Garzoli S. Salvia officinalis L. and Salvia sclarea Essential Oils: Chemical Composition, Biological Activities and Preservative Effects against Listeria monocytogenes Inoculated into Minced Beef Meat. PLANTS (BASEL, SWITZERLAND) 2023; 12:3385. [PMID: 37836125 PMCID: PMC10574192 DOI: 10.3390/plants12193385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
In this study, Salvia officinalis L. and Salvia sclarea essential oils (EOs) were investigated using gas chromatography-mass spectrometry (GC-MS) to describe their chemical composition. The obtained results show, for both EOs, a profile rich in terpene metabolites, with monoterpenes predominating sesquiterpenes but with significant qualitative and quantitative differences. The main compound found in the Salvia officinalis EO (SOEO) was camphor (19.0%), while in Salvia sclarea EO (SCEO), it was linalyl acetate (59.3%). Subsequently, the in vitro antimicrobial activity of the EOs against eight pathogenic strains was evaluated. The disc diffusion method showed a significant lysis zone against Gram-positive bacteria. The minimum inhibitory concentrations (MICs) ranged from 3.7 mg/mL to 11.2 mg/mL, indicating that each EO has specific antimicrobial activity. Both EOs also showed significant antiradical activity against DPPH radicals and total antioxidant activity. In addition, the preservative effect of SOEO (9.2%) and SCEO (9.2%), alone or in combination, was tested in ground beef, and the inhibitory effect against Listeria monocytogenes inoculated into the raw ground beef during cold storage was evaluated. Although the effect of each individual EO improved the biochemical, microbiological, and sensory parameters of the samples, their combination was more effective and showed complete inhibition of L. monocytogenes after 7 days of storage at 4 °C. The results show that both EOs could be used as safe and natural preservatives in various food and/or pharmaceutical products.
Collapse
Affiliation(s)
- Boutheina Ben Akacha
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (B.B.A.); (A.B.H.); (A.B.B.); (R.B.S.)
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (B.B.A.); (A.B.H.); (A.B.B.); (R.B.S.)
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia;
| | - Améni Ben Belgacem
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (B.B.A.); (A.B.H.); (A.B.B.); (R.B.S.)
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (B.B.A.); (A.B.H.); (A.B.B.); (R.B.S.)
| | - Wissem Mnif
- Department of Chemistry, College of Sciences at Bisha, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia;
| | - Miroslava Kačániová
- Faculty of Horticulture, Institute of Horticulture, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|
10
|
Shakhpazyan N, Mikhaleva L, Bedzhanyan A, Gioeva Z, Sadykhov N, Mikhalev A, Atiakshin D, Buchwalow I, Tiemann M, Orekhov A. Cellular and Molecular Mechanisms of the Tumor Stroma in Colorectal Cancer: Insights into Disease Progression and Therapeutic Targets. Biomedicines 2023; 11:2361. [PMID: 37760801 PMCID: PMC10525158 DOI: 10.3390/biomedicines11092361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/31/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is a major health burden worldwide and is the third most common type of cancer. The early detection and diagnosis of CRC is critical to improve patient outcomes. This review explores the intricate interplay between the tumor microenvironment, stromal interactions, and the progression and metastasis of colorectal cancer. The review begins by assessing the gut microbiome's influence on CRC development, emphasizing its association with gut-associated lymphoid tissue (GALT). The role of the Wnt signaling pathway in CRC tumor stroma is scrutinized, elucidating its impact on disease progression. Tumor budding, its effect on tumor stroma, and the implications for patient prognosis are investigated. The review also identifies conserved oncogenic signatures (COS) within CRC stroma and explores their potential as therapeutic targets. Lastly, the seed and soil hypothesis is employed to contextualize metastasis, accentuating the significance of both tumor cells and the surrounding stroma in metastatic propensity. This review highlights the intricate interdependence between CRC cells and their microenvironment, providing valuable insights into prospective therapeutic approaches targeting tumor-stroma interactions.
Collapse
Affiliation(s)
- Nikolay Shakhpazyan
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Liudmila Mikhaleva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Arkady Bedzhanyan
- Department of Abdominal Surgery and Oncology II (Coloproctology and Uro-Gynecology), Petrovsky National Research Center of Surgery, 119435 Moscow, Russia;
| | - Zarina Gioeva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Nikolay Sadykhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Alexander Mikhalev
- Department of Hospital Surgery No. 2, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Dmitri Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Igor Buchwalow
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Institute for Hematopathology, 22547 Hamburg, Germany;
| | | | - Alexander Orekhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Institute for Atherosclerosis Research, 121096 Moscow, Russia
| |
Collapse
|
11
|
Hammouda ZK, Wasfi R, Abdeltawab NF. Hormonal drugs: Influence on growth, biofilm formation, and adherence of selected gut microbiota. Front Cell Infect Microbiol 2023; 13:1147585. [PMID: 36992682 PMCID: PMC10042233 DOI: 10.3389/fcimb.2023.1147585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/17/2023] [Indexed: 03/14/2023] Open
Abstract
Many studies have reported the influence of hormonal drugs on gut microbiota composition. However, the underlying mechanism of this interaction is still under study. Therefore, this study aimed to evaluate the possible in vitro changes in selected members of gut bacteria exposed to oral hormonal drugs used for years. Selected members of gut bacteria were Bifidobacterium longum, Limosilactobacillus reuteri, Bacteroides fragilis, and Escherichia coli representing the four main phyla in the gut. Selected hormonal drugs used for a long time were estradiol, progesterone, and thyroxine. The effect of intestinal concentrations of these drugs on the selected bacterial growth, biofilm formation, and adherence to Caco-2/HT-29 cell line was assessed. Short-chain fatty acids (SCFAs) have been included in host functions including the gut, immune and nervous functions; thus, the drug’s effects on their production were assayed using High- Performance Liquid Chromatography. Sex steroids significantly increased the growth of all tested bacteria except B. longum, similarly, thyroxine increased the growth of tested Gram-negative bacteria however reducing that of tested Gram-positive bacteria. The effect of drugs on biofilm formation and bacterial adherence to cell lines cocultures was variable. Progesterone decreased the biofilm formation of tested Gram-positive bacteria, it nevertheless increased L. reuteri adherence to Caco-2/HT-29 cell line cell lines coculture. By contrast, progesterone increased biofilm formation by Gram-negative bacteria and increased adherence of B. fragilis to the cell lines coculture. Moreover, thyroxine and estradiol exhibited antibiofilm activity against L. reuteri, while thyroxine increased the ability of E. coli to form a biofilm. Moreover, hormones affected bacterial adherence to cell lines independently of their effect on hydrophobicity suggesting other specific binding factors might contribute to this effect. Tested drugs affected SCFAs production variably, mostly independent of their effect on bacterial growth. In conclusion, our results showed that the microbiota signature associated with some hormonal drug consumption could be the result of the direct effect of these drugs on bacterial growth, and adherence to enterocytes besides the effect of these drugs on the host tissue targets. Additionally, these drugs affect the production of SCFAs which could contribute to some of the side effects of these drugs.
Collapse
Affiliation(s)
- Zainab K. Hammouda
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Reham Wasfi
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
- *Correspondence: Reham Wasfi,
| | - Nourtan F. Abdeltawab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
12
|
Anyamele T, Onwuegbuchu PN, Ugbogu EA, Ibe C. Phytochemical composition, bioactive properties, and toxicological profile of Tetrapleura tetraptera. Bioorg Chem 2023; 131:106288. [PMID: 36470194 DOI: 10.1016/j.bioorg.2022.106288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
The use of medicinal plants has gained renewed wide popularity in Africa, Asia, and most parts of the world because of the decreasing efficacy of synthetic drugs. Thus, natural products serve as a potent source of alternative remedy. Tetrapleura tetraptera is a medicinal plant with cultural and traditional significance in West Africa. In addition to the plant being commonly used as a spice in the preparation of traditional spicy food for postpartum care it is also widely used to constitute herbal concoctions and decoctions for treatment of diseases. This review aimed to provide an up-to-date information on the ethnomedicinal uses, pharmacological activities and phytoconstituents of T. tetraptera. Preclinical studies regarding the plant's toxicity profile were also reviewed. For this updated review, literature search was done on PubMed, Science Direct, Wiley, and Google Scholar databases using the relevant keywords. The review used a total of 106 papers that met the inclusion criteria from January 1989 - February 2022 and summarised the bioactivities that have been reported for the rich phytoconstituents of T. tetraptera studied using various chemical methods. Considering the huge report, the review focused on the antimicrobial and antiinflammatory activities of the plant extracts and isolated compounds. Aridan, aridanin and several bioactive compounds of T. tetraptera have shown pharmacological activities though their mechanisms of action are yet to be fully understood. This study also highlighted the influence of plant parts and extraction solvents on its biological activities. It also presented data on the toxicological profile of the plant extracts using different models. From cultural uses to modern pharmacological research the bioactive compounds of T. tetraptera have proved effective in infectious disease management. We hope that this paper provided a robust summary of the biological activities and toxicological profile of T. tetraptera, thus calling for more research into the pharmacological and pharmacokinetic activities of natural products to help combat the growing threat of drug resistance and provide guidelines for their ethnomedicinal uses.
Collapse
Affiliation(s)
- ThankGod Anyamele
- Department of Microbiology, Faculty of Biological Sciences, Abia State University, Uturu, Nigeria
| | | | - Eziuche Amadike Ugbogu
- Department of Biochemistry, Faculty of Biological Sciences, Abia State University, Uturu, Nigeria
| | - Chibuike Ibe
- Department of Microbiology, Faculty of Biological Sciences, Abia State University, Uturu, Nigeria.
| |
Collapse
|
13
|
Lipińska MM, Haliński ŁP, Gołębiowski M, Kowalkowska AK. Active Compounds with Medicinal Potential Found in Maxillariinae Benth. (Orchidaceae Juss.) Representatives-A Review. Int J Mol Sci 2023; 24:739. [PMID: 36614181 PMCID: PMC9821772 DOI: 10.3390/ijms24010739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
Orchids are widely used in traditional medicine for the treatment of a whole range of different health conditions, and representatives of the Neotropical subtribe Maxillariinae are not an exception. They are utilized, for instance, for their spasmolytic and anti-inflammatory activities. In this work, we analyze the literature concerning the chemical composition of the plant extracts and secretions of this subtribe's representatives published between 1991 and 2022. Maxillariinae is one of the biggest taxa within the orchid family; however, to date, only 19 species have been investigated in this regard and, as we report, they produce 62 semiochemicals of medical potential. The presented review is the first summary of biologically active compounds found in Maxillariinae.
Collapse
Affiliation(s)
- Monika M. Lipińska
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdansk, Poland
- Foundation Polish Orchid Association, 81-825 Sopot, Poland
| | - Łukasz P. Haliński
- Laboratory of Analysis of Natural Compounds, Department of Environmental Analytics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Marek Gołębiowski
- Laboratory of Analysis of Natural Compounds, Department of Environmental Analytics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Agnieszka K. Kowalkowska
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
14
|
Langsdorf A, Drommershausen AL, Volkmar M, Ulber R, Holtmann D. Fermentative α-Humulene Production from Homogenized Grass Clippings as a Growth Medium. Molecules 2022; 27:8684. [PMID: 36557817 PMCID: PMC9788380 DOI: 10.3390/molecules27248684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Green waste, e.g., grass clippings, is currently insufficiently recycled and has untapped potential as a valuable resource. Our aim was to use juice from grass clippings as a growth medium for microorganisms. Herein, we demonstrate the production of the sesquiterpene α-humulene with the versatile organism Cupriavidus necator pKR-hum on a growth medium from grass clippings. The medium was compared with established media in terms of microbial growth and terpene production. C. necator pKR-hum shows a maximum growth rate of 0.43 h-1 in the grass medium and 0.50 h-1 in a lysogeny broth (LB) medium. With the grass medium, 2 mg/L of α-humulene were produced compared to 10 mg/L with the LB medium. By concentrating the grass medium and using a controlled bioreactor in combination with an optimized in situ product removal, comparable product concentrations could likely be achieved. To the best of our knowledge, this is the first time that juice from grass clippings has been used as a growth medium without any further additives for microbial product synthesis. This use of green waste as a material represents a new bioeconomic utilization option of waste materials and could contribute to improving the economics of grass biorefineries.
Collapse
Affiliation(s)
- Alexander Langsdorf
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, D-35390 Giessen, Germany
| | - Anna-Lena Drommershausen
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, D-35390 Giessen, Germany
| | - Marianne Volkmar
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Strasse 49, D-67663 Kaiserslautern, Germany
| | - Roland Ulber
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Strasse 49, D-67663 Kaiserslautern, Germany
| | - Dirk Holtmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, D-35390 Giessen, Germany
| |
Collapse
|
15
|
Alanazi AK, Alqasmi MH, Alrouji M, Kuriri FA, Almuhanna Y, Joseph B, Asad M. Antibacterial Activity of Syzygium aromaticum (Clove) Bud Oil and Its Interaction with Imipenem in Controlling Wound Infections in Rats Caused by Methicillin-Resistant Staphylococcus aureus. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238551. [PMID: 36500645 PMCID: PMC9736006 DOI: 10.3390/molecules27238551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the leading causes of infection worldwide. Clove oil's ability to inhibit the growth of MRSA was studied through in vitro and in vivo studies. The phytochemical components of clove oil were determined through gas chromatography-mass spectrometry (GC-MS) analysis. The antibacterial effects of clove oil and its interaction with imipenem were determined by studying MIC, MBC, and FIC indices in vitro. The in vivo wound-healing effect of the clove oil and infection control were determined using excision wound model rats. The GC-MS analysis of clove oil revealed the presence of 16 volatile compounds. Clove oil showed a good antibacterial effect in vitro but no interaction was observed with imipenem. Clove bud oil alone or in combination with imipenem healed wounds faster and reduced the microbial load in wounds. The findings of this study confirmed the antibacterial activity of clove oil in vitro and in vivo and demonstrated its interaction with imipenem.
Collapse
Affiliation(s)
- Abdulaziz Khaleef Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
- Medical Laboratory, Hafar Albatin Central Hospital, Hafar Albatin 39513, Saudi Arabia
| | - Mohammed Hussein Alqasmi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Fahd A. Kuriri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Yasir Almuhanna
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
- Correspondence: ; Tel.: +966-506253022
| | - Babu Joseph
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Mohammed Asad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| |
Collapse
|
16
|
Shahid M, Law D, Azfaralariff A, Mackeen MM, Chong TF, Fazry S. Phytochemicals and Biological Activities of Garcinia atroviridis: A Critical Review. TOXICS 2022; 10:656. [PMID: 36355947 PMCID: PMC9692539 DOI: 10.3390/toxics10110656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Garcinia atriviridis Griff ex T. Anders (G. atroviridis) is one of the well-known species of the genus Garicinia that is native to Thailand, Myanmar, Peninsular Malaysia, and India. G. atroviridis is a perennial medium-sized tree that has a wide range of values, from food to medicinal use. Different parts of G. atroviridis are a great source of bioactive substances that have a positive impact on health. The extracts or bioactive constituents from G. atroviridis have demonstrated various therapeutic functions, including antioxidant, antimicrobial, anticancer, anti-inflammatory, antihyperlipidemic, and anti-diabetic. In this paper, we provide a critical review of G. atroviridis and its bioactive constituents in the prevention and treatment of different diseases, which will provide new insight to explore its putative domains of research.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Douglas Law
- Faculty of Health and Life Sciences, Inti International University, Persiaran Perdana BBN Putra Nilai, Nilai 71800, Malaysia
| | - Ahmad Azfaralariff
- Green Biopolymer, Coating and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Mukram M. Mackeen
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Teek Foh Chong
- Faculty of Health and Life Sciences, Inti International University, Persiaran Perdana BBN Putra Nilai, Nilai 71800, Malaysia
| | - Shazrul Fazry
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
17
|
Ghavam M. A GC-MC analysis of chemical compounds and identification of the antibacterial characteristics of the essential oil of two species exclusive to Iranian habitats: New chemotypes. PLoS One 2022; 17:e0273987. [PMID: 36201544 PMCID: PMC9536594 DOI: 10.1371/journal.pone.0273987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The diversity found in the chemical compounds of a single species in different regions results in different biologic characteristics which can be considered as a strong source for identifying new chemotypes. Hymenocrater incanus Bunge and Dracocephalum kotschyi Boiss. are exclusive species of the Lamiaceae family which grow in the western and central habitats of Iran. This study was designed and carried out to determine the yield, identify the chemical compounds, and evaluate the antimicrobial characteristics of the essential oil (EO) of these two species in Iran for the first time. METHODS The flowering twigs of the species D. kotschyi and H. incanus were collected from the villages of Totmach and Kamu in Isfahan province respectively, in May 2019. The EO of these plants was extracted and separated using the water distillation method, utilizing the Clevenger device. The EO compounds were analyzed using a gas chromatograph coupled with a mass spectrometer (GC-MS). The evaluation of antimicrobial characteristics was carried out by determining the growth inhibition zone implementing the Agar method, the minimum inhibition concentration (MIC), and the minimum bactericidal/fungicidal concentration (MFC/MBC) utilizing liquid dilution culture. RESULTS The results indicated that the highest yield belonged to the EO of D. kotschyi at %2.6 (w/w). In this EO there were citral (%25.44), neral (%20.87), α-pinene (%14.48), trans-geranic acid methyl ester (%9.74), and D-limonene (%6.87). Moreover, H. incanus had the dominant compounds (-)-Spathulenol (%12.61), caryophyllene (%10.00), linolenic acid (%8.54), 1,8-cineole (%5.95), palmitic acid (%5.35), and α-cadinol (%5.17). The largest diameter of growth inhibition zone belonged to the H. incanus EO against the Gram-positive bacteria S. pyogenes (~17.67mm). The strongest inhibition activities in the form of growth inhibition diameter exhibited by the D. kotschyi EO were against the Gram-negative bacteria S. paratyphi-A serotype (~ 12 mm), K. pneumoniae, and Sh. dysenteriae (~ 11 mm) which was significant compared to the Gram-positive rifampin (~ 8 mm). CONCLUSIONS It can be seen that these species are new chemotypes with special and novel chemical compounds which can potentially be used to manufacture natural antibiotics against some bacterial strains.
Collapse
Affiliation(s)
- Mansureh Ghavam
- Department of Range and Watershed Management, Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran
| |
Collapse
|
18
|
Preliminary Study on Phytochemical Constituents and Biological Activities of Essential Oil from Myriactis nepalensis Less. Molecules 2022; 27:molecules27144631. [PMID: 35889501 PMCID: PMC9324352 DOI: 10.3390/molecules27144631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
In response to the need for novel therapeutic strategies to combat the development of microbial resistance, plant essential oils may represent a promising alternative source. This study set out to characterize the chemical composition and assess the antibacterial potential of Myriactis nepalensis Less. essential oil (MNEO). Essential oil isolated from M. nepalensis by hydrodistillation was analyzed using a GC–MS technique. The antibacterial properties of MNEO alone and combined with antibiotics (chloramphenicol and streptomycin) were tested via the disc diffusion, microbroth dilution, and checkerboard methods. MNEO was represented by oxygenated sesquiterpenes (60.3%) and sesquiterpene hydrocarbons (28.6%), with caryophyllene oxide, spathulenol, humulene epoxide II, β-elemene, neointermedeol, and β-caryophyllene as the main compounds. MNEO exhibited a strong antibacterial effect against Gram-positive bacteria, with MIC and MBC values of 0.039 mg/mL and 0.039–0.156 mg/mL, respectively, and synergistic effects were observed in both combinations with chloramphenicol and streptomycin. Furthermore, the antibiofilm and cytotoxic activities of MNEO were also evaluated. The crystal violet assay was used for quantification of Staphylococcus aureus biofilm formation, and an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay was conducted to determine cell viability. The results revealed MNEO could dose-dependently inhibit Staphylococcus aureus biofilm formation and possessed potential cytotoxic on both normal and cancer cells (IC50 values from 13.13 ± 1.90 to 35.22 ± 8.36 μg/mL). Overall, the results indicate that MNEO may have promising applications in the field of bacterial infections.
Collapse
|
19
|
Mitić ZS, Stojanović-Radić ZZ, Jovanović SČ, Cvetković VJ, Nikolić JS, Ickovski JD, Mitrović TL, Nikolić BM, Zlatković BK, Stojanović GS. Essential Oils of Three Balkan Abies Species: Chemical Profiles, Antimicrobial Activity and Toxicity toward Artemia salina and Drosophila melanogaster. Chem Biodivers 2022; 19:e202200235. [PMID: 35507018 DOI: 10.1002/cbdv.202200235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 11/09/2022]
Abstract
This study focused on the essential oils (EOs) isolated from needles with twigs of three indigenous Balkan Abies species (A. alba, A. × borisii-regis and A. cephalonica) regarding their chemical composition, antimicrobial activity and toxicity toward crustaceans and insects. Even though distinct phytochemical profiles of dominant volatiles were revealed for each species, β-pinene and α-pinene represented the first two major volatiles in all three EOs. Antimicrobial activity of EOs has shown inhibitory effect against all 17 studied strains (ATCC and respiratory isolates) in the range of 0.62-20.00 mg/mL (MICs). Further, all three EOs exhibited strong toxicity (LC50 <100 μg/mL) in Artemia salina lethality bioassay, but with significant differences that depended on the EO type. Additionally, tested EOs have shown a certain level of toxicity against Drosophila melanogaster, mostly at the highest tested concentration (3 %) which caused significant prolongation of developmental time, larvicidal effect and pupal mortality. In the three biological assays performed, there was no observed inhibitory effect or weakest activity for A. alba EO. Further, A. cephalonica EO has shown the highest levels of antimicrobial activity and toxicity toward A. salina, while in relation to the insecticidal potential, A. cephalonica and A. × borisii-regis EOs exhibited similar level of toxicity against D. melanogaster.
Collapse
Affiliation(s)
- Zorica S Mitić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Zorica Z Stojanović-Radić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Snežana Č Jovanović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Vladimir J Cvetković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Jelena S Nikolić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Jovana D Ickovski
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Tatjana Lj Mitrović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | | | - Bojan K Zlatković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Gordana S Stojanović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| |
Collapse
|
20
|
Xing J, Fang Y, Zhang W, Zhang H, Tang D, Wang D. Bacterial driver-passenger model in biofilms: a new mechanism in the development of colorectal cancer. Clin Transl Oncol 2022; 24:784-795. [PMID: 35000132 DOI: 10.1007/s12094-021-02738-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is a heterogeneous disease of the intestinal epithelium and ranks the third largest diagnosed malignancy in the world. Many studies have shown that the high risk of CRC is believed to be related to the formation of biofilms. To prove causation, it will be significant to decipher which specific bacteria in biofilms initiate and maintain CRC and fully describe their underlying mechanisms. Here we introduce a bacterial driver-passenger model. This model added a novel and compelling angle to the role of microorganisms, putting more emphasis on the transformation of bacterial composition in biofilms which play different roles in the development of CRC. In this model, bacterial drivers can initiate the formation of CRC through genotoxicity, while bacterial passengers maintain the CRC process through metabolites. On the basis of these pathogens, we further turned our attention to strategies that can inhibit and eradicate these pathogenic biofilms, with the aim of finding new ways to hinder colorectal carcinogenesis.
Collapse
Affiliation(s)
- J Xing
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, People's Republic of China
| | - Y Fang
- Department of Clinical Medical College, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - W Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, People's Republic of China
| | - H Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, People's Republic of China
| | - D Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu Province Hospital, Yangzhou University, Yangzhou, 225001, People's Republic of China.
| | - D Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu Province Hospital, Yangzhou University, Yangzhou, 225001, People's Republic of China
| |
Collapse
|
21
|
Nabhan GP, Daugherty E, Hartung T. Health Benefits of the Diverse Volatile Oils in Native Plants of Ancient Ironwood-Giant Cactus Forests of the Sonoran Desert: An Adaptation to Climate Change? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3250. [PMID: 35328938 PMCID: PMC8950382 DOI: 10.3390/ijerph19063250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 11/16/2022]
Abstract
We document the species richness and volatile oil diversity in Sonoran Desert plants found in the Arizona Uplands subdivision of this binational USA/Mexico region. Using floristics, we determined that more than 60 species of 178 native plants in the ancient ironwood-giant cactus forests emit fragrant biogenic volatile organic compounds (BVOCs), especially with the onset of summer monsoons. From these desert species, more than 115 volatile oils have been identified from one biogeographic region. For the 5 BVOCs most commonly associated with "forest bathing" practices in Asian temperate forests, at least 15 Sonoran Desert plant species emit them in Arizona Uplands vegetation. We document the potential health benefits attributed to each of 13 BVOCs in isolation, but we also hypothesize that the entire "suite" of BVOCs emitted from a diversity of desert plants during the monsoons may function synergistically to generate additional health benefits. Regular exposure to these BVOC health benefits may become more important to prevent or mitigate diseases of oxidative stress and other climate maladies in a hotter, drier world.
Collapse
Affiliation(s)
| | - Eric Daugherty
- Southwest Center, University of Arizona, Tucson, AZ 85721, USA;
| | | |
Collapse
|
22
|
Alghamdi MD, Nazreen S, Ali NM, Amna T. ZnO Nanocomposites of Juniperus procera and Dodonaea viscosa Extracts as Antiproliferative and Antimicrobial Agents. NANOMATERIALS 2022; 12:nano12040664. [PMID: 35214995 PMCID: PMC8875860 DOI: 10.3390/nano12040664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 02/04/2023]
Abstract
Cancer and microbial infections constitute a major burden and leading cause of death globally. The development of therapeutic compounds from natural products is considered a cornerstone in drug discovery. Therefore, in the present study, the ethanolic extract and the fractions of Dodonaea viscosa and Juniperus procera were evaluated for anticancer and antimicrobial activities. It was found that two fractions, JM and DC, exhibited promising anticancer and antimicrobial activities. The JM and DC fractions were further modified into ZnO nanocomposites, which were characterized by SEM, XRD, TGA, and EDX. It was noted that the synthesized nanocomposites displayed remarkable enhancement in cytotoxicity as well as antibacterial activity. Nanocomposite DC–ZnO NRs exhibited cytotoxicity with IC50 values of 16.4 ± 4 (HepG2) and 29.07 ± 2.7 μg/mL (HCT-116) and JM–ZnO NRs with IC50 values of 12.2 ± 10.27 (HepG2) and 24.1 ± 3.0 μg/mL (HCT-116). In addition, nanocomposites of DC (i.e., DC–ZnO NRs) and JM (i.e., JM–ZnO NRs) displayed excellent antimicrobial activity against Staphylococcus aureus with MICs of 2.5 and 1.25 μg/mL, respectively. Moreover, these fractions and nanocomposites were tested for cytotoxicity against normal fibroblasts and were found to be non-toxic. GC-MS analysis of the active fractions were also carried out to discover the possible phytochemicals that are responsible for these activities.
Collapse
Affiliation(s)
- Maha D. Alghamdi
- Chemistry Department, Faculty of Science, Albaha University, P.O. Box 1988, Albaha 65799, Saudi Arabia; (M.D.A.); (N.M.A.)
| | - Syed Nazreen
- Chemistry Department, Faculty of Science, Albaha University, P.O. Box 1988, Albaha 65799, Saudi Arabia; (M.D.A.); (N.M.A.)
- Correspondence: (S.N.); (T.A.)
| | - Nada M. Ali
- Chemistry Department, Faculty of Science, Albaha University, P.O. Box 1988, Albaha 65799, Saudi Arabia; (M.D.A.); (N.M.A.)
| | - Touseef Amna
- Department of Biology, Faculty of Science, Albaha University, P.O. Box 1988, Albaha 65799, Saudi Arabia
- Correspondence: (S.N.); (T.A.)
| |
Collapse
|
23
|
Synergistic inhibitory effect of α-humulene and sclareol on human pancreatic cancer cells. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Determination of the chemical composition and antioxidant, anticancer, and antibacterial properties of essential oil of Pulicaria crispa from Saudi Arabia. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Béchon N, Ghigo JM. Gut biofilms: Bacteroides as model symbionts to study biofilm formation by intestinal anaerobes. FEMS Microbiol Rev 2021; 46:6440158. [PMID: 34849798 DOI: 10.1093/femsre/fuab054] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
Bacterial biofilms are communities of adhering bacteria that express distinct properties compared to their free-living counterparts, including increased antibiotic tolerance and original metabolic capabilities. Despite the potential impact of the biofilm lifestyle on the stability and function of the dense community of micro-organisms constituting the mammalian gut microbiota, the overwhelming majority of studies performed on biofilm formation by gut bacteria focused either on minor and often aerobic members of the community or on pathogenic bacteria. In this review, we discuss the reported evidence for biofilm-like structures formed by gut bacteria, the importance of considering the anaerobic nature of gut biofilms and we present the most recent advances on biofilm formation by Bacteroides, one of the most abundant genera of the human gut microbiota. Bacteroides species can be found attached to food particles and colonizing the mucus layer and we propose that Bacteroides symbionts are relevant models to probe the physiology of gut microbiota biofilms.
Collapse
Affiliation(s)
- Nathalie Béchon
- Institut Pasteur, Université de Paris, UMR CNRS2001, Genetics of Biofilms Laboratory 75015 Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université de Paris, UMR CNRS2001, Genetics of Biofilms Laboratory 75015 Paris, France
| |
Collapse
|
26
|
de Jesús Calva-Cruz O, Badillo-Larios NS, De León-Rodríguez A, Espitia-Rangel E, González-García R, Turrubiartes-Martinez EA, Castro-Gallardo A, Barba de la Rosa AP. Lippia graveolens HBK oleoresins, extracted by supercritical fluids, showed bactericidal activity against multidrug resistance Enterococcus faecalis and Staphylococcus aureus strains. Drug Dev Ind Pharm 2021; 47:1546-1555. [PMID: 34791982 DOI: 10.1080/03639045.2021.2008417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The aim of this work was to characterize Lippia graveolens oleoresins, obtained by Supercritical Fluid Extraction (SFE), from crops collected at different locations in Mexico. The antimicrobial effect of oleoresins was tested in reference strains and clinical isolates of susceptible and multidrug resistant (MDR) strains of Enterococcus faecalis and Staphylococcus aureus. SIGNIFICANCE The increasing of MDR strains is becoming a global public health problem that has led to the search for new treatments, and essential oils have resurged as a source of compounds with bactericidal functions. Oregano essential oil has attracted attention recently, however, this oil is mainly obtained by hydro-distillation (uses large amounts of water) or solvents extraction (potential contaminant). SFE has gained popularity as it represents an environmentally friendly technology. METHODS L. graveolens oleoresins were obtained by SFE, total phenol contents were quantified by Folin-Ciocalteu method, the identification of compounds and thymol and carvacrol quantification was carried out by GC-MS. The antimicrobial activity was tested by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). RESULTS SFE showed higher yields compared with the hydro-distillation process. L. graveolens grown in different Mexican locations showed differences in oleoresin composition and a slightly different antimicrobial capacity against clinical isolates. CONCLUSIONS It was demonstrated that SFE is an efficient technology for extracting L. graveolens oleoresins. Additionally, the solvent-free extraction method and the observed antimicrobial effect, increases the applications of these oleoresins in fields such as cosmetics, food industry, medicine, amongst others.
Collapse
Affiliation(s)
- Oscar de Jesús Calva-Cruz
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, San Luis Potosí, S.L.P., C.P. 78216, México
| | - Nallely S Badillo-Larios
- CICSaB, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autonoma de San Luis Potosí, Av. Sierra Leona 550, San Luis Potosí, S.L.P., C.P. 78212, México
| | - Antonio De León-Rodríguez
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, San Luis Potosí, S.L.P., C.P. 78216, México
| | - Eduardo Espitia-Rangel
- INIFAP, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Campo Experimental Valle de México, km 13.5 Carr. Los Reyes-Texcoco, Coatlinchán, Texcoco Estado de México, C.P. 56250, México
| | - Raúl González-García
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, S.L.P., C.P. 78210, México
| | - Edgar Alejandro Turrubiartes-Martinez
- CICSaB, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autonoma de San Luis Potosí, Av. Sierra Leona 550, San Luis Potosí, S.L.P., C.P. 78212, México.,Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, S.L.P., C.P. 78210, México
| | - Arnulfo Castro-Gallardo
- Centro de Investigación para los Recursos Naturales, Antigua Normal Rural de Salaices, Municipio de López, Chihuahua, C.P. 33943, México
| | - Ana Paulina Barba de la Rosa
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, San Luis Potosí, S.L.P., C.P. 78216, México
| |
Collapse
|
27
|
Hashiesh HM, Sharma C, Goyal SN, Sadek B, Jha NK, Kaabi JA, Ojha S. A focused review on CB2 receptor-selective pharmacological properties and therapeutic potential of β-caryophyllene, a dietary cannabinoid. Biomed Pharmacother 2021; 140:111639. [PMID: 34091179 DOI: 10.1016/j.biopha.2021.111639] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
The endocannabinoid system (ECS), a conserved physiological system emerged as a novel pharmacological target for its significant role and potential therapeutic benefits ranging from neurological diseases to cancer. Among both, CB1 and CB2R types, CB2R have received attention for its pharmacological effects as antioxidant, anti-inflammatory, immunomodulatory and antiapoptotic that can be achieved without causing psychotropic adverse effects through CB1R. The ligands activate CB2R are of endogenous, synthetic and plant origin. In recent years, β-caryophyllene (BCP), a natural bicyclic sesquiterpene in cannabis as well as non-cannabis plants, has received attention due to its selective agonist property on CB2R. BCP has been well studied in a variety of pathological conditions mediating CB2R selective agonist property. The focus of the present manuscript is to represent the CB2R selective agonist mediated pharmacological mechanisms and therapeutic potential of BCP. The present narrative review summarizes insights into the CB2R-selective pharmacological properties and therapeutic potential of BCP such as cardioprotective, hepatoprotective, neuroprotective, nephroprotective, gastroprotective, chemopreventive, antioxidant, anti-inflammatory, and immunomodulator. The available evidences suggest that BCP, can be an important candidate of plant origin endowed with CB2R selective properties that may provide a pharmacological rationale for its pharmacotherapeutic application and pharmaceutical development like a drug. Additionally, given the wide availability in edible plants and dietary use, with safety, and no toxicity, BCP can be promoted as a nutraceutical and functional food for general health and well-being. Further, studies are needed to explore pharmacological and pharmaceutical opportunities for therapeutic and preventive applications of use of BCP in human diseases.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Sameer N Goyal
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Juma Al Kaabi
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates; Zayed Bin Sultan Al Nahyan Center for Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
28
|
Humulene Inhibits Acute Gastric Mucosal Injury by Enhancing Mucosal Integrity. Antioxidants (Basel) 2021; 10:antiox10050761. [PMID: 34064830 PMCID: PMC8150829 DOI: 10.3390/antiox10050761] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
This study was designed to determine whether α-humulene, a major constituent in many plants used in fragrances, has a protective role against gastric injury in vivo and in vitro. A rat model of hydrochloric acid (HCl)/ethanol-induced gastritis and human mast cells (HMC-1) were used to investigate the mucosal protective effect of α-humulene. α-Humulene significantly inhibited gastric lesions in HCl/ethanol-induced acute gastritis and decreased gastric acid secretion pyloric ligation-induced gastric ulcers in vivo. In addition, α-humulene reduced the amount of reactive oxygen species and malondialdehyde through upregulation of prostaglandin E2 (PGE2) and superoxide dismutase (SOD). In HMC-1 cells, α-humulene decreased intracellular calcium and increased intracellular cyclic adenosine monophosphate (cAMP) levels, resulting in low histamine levels. α-Humulene also reduced the expression levels of cytokine genes such as interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF) by downregulating nuclear factor-κB (NF-κB) nuclear translocation. Finally, α-humulene upregulated the expression levels of mucin 5AC (Muc5ac), Muc6, trefoil factor 1 (Tff1), trefoil factor 2 (Tff2), and polymeric immunoglobulin receptor (pigr). α-Humulene may attenuate HCl/ethanol-induced gastritis by inhibiting histamine release and NF-κB activation and stimulating antioxidants and mucosal protective factors, particularly Muc5ac and Muc6. Therefore, these data suggest that α-humulene is a potential drug candidate for the treatment of stress-induced or alcoholic gastritis.
Collapse
|
29
|
Di Sotto A, Mancinelli R, Gullì M, Eufemi M, Mammola CL, Mazzanti G, Di Giacomo S. Chemopreventive Potential of Caryophyllane Sesquiterpenes: An Overview of Preliminary Evidence. Cancers (Basel) 2020; 12:E3034. [PMID: 33081075 PMCID: PMC7603190 DOI: 10.3390/cancers12103034] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Chemoprevention is referred to as a strategy to inhibit, suppress, or reverse tumor development and progression in healthy people along with high-risk subjects and oncologic patients through using pharmacological or natural substances. Numerous phytochemicals have been widely described in the literature to possess chemopreventive properties, although their clinical usefulness remains to be defined. Among them, caryophyllane sesquiterpenes are natural compounds widely occurring in nature kingdoms, especially in plants, fungi, and marine environments. Several structures, characterized by a common caryophyllane skeleton with further rearrangements, have been identified, but those isolated from plant essential oils, including β-caryophyllene, β-caryophyllene oxide, α-humulene, and isocaryophyllene, have attracted the greatest pharmacological attention. Emerging evidence has outlined a complex polypharmacological profile of caryophyllane sesquiterpenes characterized by blocking, suppressing, chemosensitizing, and cytoprotective properties, which suggests a possible usefulness of these natural substances in cancer chemoprevention for both preventive and adjuvant purposes. In the present review, the scientific knowledge about the chemopreventive properties of caryophyllane sesquiterpenes and the mechanisms involved have been collected and discussed; moreover, possible structure-activity relationships have been highlighted. Although further high-quality studies are required, the promising preclinical findings and the safe pharmacological profile encourage further studies to define a clinical usefulness of caryophyllane sesquiterpenes in primary, secondary, or tertiary chemoprevention.
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (M.G.); (S.D.G.)
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (R.M.); (C.L.M.)
| | - Marco Gullì
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (M.G.); (S.D.G.)
| | - Margherita Eufemi
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy;
| | - Caterina Loredana Mammola
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (R.M.); (C.L.M.)
| | - Gabriela Mazzanti
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (M.G.); (S.D.G.)
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (M.G.); (S.D.G.)
| |
Collapse
|
30
|
Targeting Gut Microbial Biofilms-A Key to Hinder Colon Carcinogenesis? Cancers (Basel) 2020; 12:cancers12082272. [PMID: 32823729 PMCID: PMC7465663 DOI: 10.3390/cancers12082272] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is a global public health issue which poses a substantial humanistic and economic burden on patients, healthcare systems and society. In recent years, intestinal dysbiosis has been suggested to be involved in the pathogenesis of CRC, with specific pathogens exhibiting oncogenic potentials such as Fusobacterium nucleatum, Escherichia coli and enterotoxigenic Bacteroides fragilis having been found to contribute to CRC development. More recently, it has been shown that initiation of CRC development by these microorganisms requires the formation of biofilms. Gut microbial biofilm forms in the inner colonic mucus layer and is composed of polymicrobial communities. Biofilm results in the redistribution of colonic epithelial cell E-cadherin, increases permeability of the gut and causes a loss of function of the intestinal barrier, all of which enhance intestinal dysbiosis. This literature review aims to compile the various strategies that target these pathogenic biofilms and could potentially play a role in the prevention of CRC. We explore the potential use of natural products, silver nanoparticles, upconverting nanoparticles, thiosalicylate complexes, anti-rheumatic agent (Auranofin), probiotics and quorum-sensing inhibitors as strategies to hinder colon carcinogenesis via targeting colon-associated biofilms.
Collapse
|
31
|
Hanuš LO, Hod Y. Terpenes/Terpenoids in Cannabis: Are They Important? Med Cannabis Cannabinoids 2020; 3:25-60. [PMID: 34676339 PMCID: PMC8489319 DOI: 10.1159/000509733] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/26/2020] [Indexed: 11/19/2022] Open
Abstract
Cannabis sativa plant has not only cannabinoids as crucial compounds but also the other compounds that play important role as synergistic and/or entourage compound. Cannabis/hemp plant materials and essential oils were analyzed with the help of gas chromatography/mass spectrometry detector for the content of terpenes and terpenoids. The main terpenes/terpenoids and their abundance in the samples were evaluated. Results of this study will be helpful in the next evaluation of these compound in mixture with cannabinoids and their importance in medical treatment.
Collapse
Affiliation(s)
- Lumír Ondřej Hanuš
- Lumir Lab, Asana Bio Group Ltd., The Hadassah Medical Center, Hebrew University Biotechnology Park, Ein Kerem, Jerusalem, Israel
| | | |
Collapse
|
32
|
Řebíčková K, Bajer T, Šilha D, Houdková M, Ventura K, Bajerová P. Chemical Composition and Determination of the Antibacterial Activity of Essential Oils in Liquid and Vapor Phases Extracted from Two Different Southeast Asian Herbs- Houttuynia cordata (Saururaceae) and Persicaria odorata (Polygonaceae). Molecules 2020; 25:molecules25102432. [PMID: 32456033 PMCID: PMC7287994 DOI: 10.3390/molecules25102432] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Essential oils obtained via the hydrodistillation of two Asian herbs (Houttuynia cordata and Persicaria odorata) were analyzed by gas chromatography coupled to mass spectrometry (GC–MS) and gas chromatography with flame ionization detector (GC–FID). Additionally, both the liquid and vapor phase of essential oil were tested on antimicrobial activity using the broth microdilution volatilization method. Antimicrobial activity was tested on Gram-negative and Gram-positive bacteria—Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecalis, Streptococcus pyogenes, Klebsiella pneumoniae, Seratia marcescense and Bacillus subtilis. Hydrodistillation produced a yield of 0.34% (Houttuynia cordata) and 0.40% (Persicaria odorata). 41 compounds were identified in both essential oils. Essential oils contained monoterpenes and their oxidized forms, sesquiterpenes and their oxidized forms, oxidized diterpenes, derivates of phenylpropene and other groups, such as, for example, aldehydes, alcohols or fatty acids. Both essential oils were antimicrobial active in both vapor and liquid phases at least in case of one bacterium. They expressed various antimicrobial activity in the range of 128–1024 μg∙mL−1, 512–1024 μg∙mL−1 in broth and 1024 μg∙mL−1, 512–1024 μg∙mL−1 in agar, respectively. Research showed new interesting information about P. odorata and H. cordata essential oils and demonstrated that both essential oils could be possibly used in the field of natural medicine or natural food preservation.
Collapse
Affiliation(s)
- Kristýna Řebíčková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (K.Ř.); (T.B.); (K.V.)
| | - Tomáš Bajer
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (K.Ř.); (T.B.); (K.V.)
| | - David Šilha
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic;
| | - Markéta Houdková
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Kamýcká 129, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic;
| | - Karel Ventura
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (K.Ř.); (T.B.); (K.V.)
| | - Petra Bajerová
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (K.Ř.); (T.B.); (K.V.)
- Correspondence: ; Tel.: +420-466-037-078
| |
Collapse
|