1
|
Mehrtabar E, Khalaji A, Pandeh M, Farhoudian A, Shafiee N, Shafiee A, Ojaghlou F, Mahdavi P, Soleymani-Goloujeh M. Impact of microRNA variants on PI3K/AKT signaling in triple-negative breast cancer: comprehensive review. Med Oncol 2024; 41:222. [PMID: 39120634 DOI: 10.1007/s12032-024-02469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Breast cancer (BC) is a significant cause of cancer-related mortality, and triple-negative breast cancer (TNBC) is a particularly aggressive subtype associated with high mortality rates, especially among younger females. TNBC poses a considerable clinical challenge due to its aggressive tumor behavior and limited therapeutic options. Aberrations within the PI3K/AKT pathway are prevalent in TNBC and correlate with increased therapeutic intervention resistance and poor outcomes. MicroRNAs (miRs) have emerged as crucial PI3K/AKT pathway regulators influencing various cellular processes involved in TNBC pathogenesis. The levels of miRs, including miR-193, miR-4649-5p, and miR-449a, undergo notable changes in TNBC tumor tissues, emphasizing their significance in cancer biology. This review explored the intricate interplay between miR variants and PI3K/AKT signaling in TNBC. The review focused on the molecular mechanisms underlying miR-mediated dysregulation of this pathway and highlighted specific miRs and their targets. In addition, we explore the clinical implications of miR dysregulation in TNBC, particularly its correlation with TNBC prognosis and therapeutic resistance. Elucidating the roles of miRs in modulating the PI3K/AKT signaling pathway will enhance our understanding of TNBC biology and unveil potential therapeutic targets. This comprehensive review aims to discuss current knowledge and open promising avenues for future research, ultimately facilitating the development of precise and effective treatments for patients with TNBC.
Collapse
Affiliation(s)
- Ehsan Mehrtabar
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Amirreza Khalaji
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Pandeh
- School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Aram Farhoudian
- School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Nadia Shafiee
- Children's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Atefe Shafiee
- Board-Certified Cardiologist, Rajaie Cardiovascular Medical and Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ojaghlou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parinaz Mahdavi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Mehdi Soleymani-Goloujeh
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
Guo S, Mao X, Liu J. Multi-faceted roles of C1q/TNF-related proteins family in atherosclerosis. Front Immunol 2023; 14:1253433. [PMID: 37901246 PMCID: PMC10611500 DOI: 10.3389/fimmu.2023.1253433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Purpose of review C1q/TNF-related proteins (CTRPs) are involved in the modulation of the development and prognosis of atherosclerosis (AS). Here, we summarizes the pathophysiological roles of individual members of the CTRP superfamily in the development of AS. Currently, there is no specific efficacious treatment for AS-related diseases, therefore it is urgent to develop novel therapeutic strategies aiming to target key molecules involved in AS. Recent findings Recently, mounting studies verified the critical roles of the CTRP family, including CTRP1-7, CTRP9 and CTRP11-15, in the development and progression of AS by influencing inflammatory response, modulating glucose and lipid metabolism, regulating endothelial functions and the proliferation of vascular smooth muscle cells (VSMCs). Conclusions CTRP family regulate different pathophysiology stages of AS. CTRP3, CTRP9, CTRP12, CTRP13 and CTRP15 play a clear protective role in AS, while CTRP5 and CTRP7 play a pro-atherosclerotic role in AS. The remarkable progress in our understanding of CTRPs' role in AS will provide an attractive therapeutic target for AS.
Collapse
Affiliation(s)
- Shuren Guo
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaohuan Mao
- Department of Clinical Laboratory, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jun Liu
- College of Life Science and Technology, Xinjiang University, Xinjiang, China
| |
Collapse
|
3
|
Greenbaum S, Averbukh I, Soon E, Rizzuto G, Baranski A, Greenwald NF, Kagel A, Bosse M, Jaswa EG, Khair Z, Kwok S, Warshawsky S, Piyadasa H, Goldston M, Spence A, Miller G, Schwartz M, Graf W, Van Valen D, Winn VD, Hollmann T, Keren L, van de Rijn M, Angelo M. A spatially resolved timeline of the human maternal-fetal interface. Nature 2023; 619:595-605. [PMID: 37468587 PMCID: PMC10356615 DOI: 10.1038/s41586-023-06298-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 06/08/2023] [Indexed: 07/21/2023]
Abstract
Beginning in the first trimester, fetally derived extravillous trophoblasts (EVTs) invade the uterus and remodel its spiral arteries, transforming them into large, dilated blood vessels. Several mechanisms have been proposed to explain how EVTs coordinate with the maternal decidua to promote a tissue microenvironment conducive to spiral artery remodelling (SAR)1-3. However, it remains a matter of debate regarding which immune and stromal cells participate in these interactions and how this evolves with respect to gestational age. Here we used a multiomics approach, combining the strengths of spatial proteomics and transcriptomics, to construct a spatiotemporal atlas of the human maternal-fetal interface in the first half of pregnancy. We used multiplexed ion beam imaging by time-of-flight and a 37-plex antibody panel to analyse around 500,000 cells and 588 arteries within intact decidua from 66 individuals between 6 and 20 weeks of gestation, integrating this dataset with co-registered transcriptomics profiles. Gestational age substantially influenced the frequency of maternal immune and stromal cells, with tolerogenic subsets expressing CD206, CD163, TIM-3, galectin-9 and IDO-1 becoming increasingly enriched and colocalized at later time points. By contrast, SAR progression preferentially correlated with EVT invasion and was transcriptionally defined by 78 gene ontology pathways exhibiting distinct monotonic and biphasic trends. Last, we developed an integrated model of SAR whereby invasion is accompanied by the upregulation of pro-angiogenic, immunoregulatory EVT programmes that promote interactions with the vascular endothelium while avoiding the activation of maternal immune cells.
Collapse
Affiliation(s)
- Shirley Greenbaum
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | - Inna Averbukh
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Erin Soon
- Department of Pathology, Stanford University, Stanford, CA, USA
- Immunology Program, Stanford University, Stanford, CA, USA
| | - Gabrielle Rizzuto
- Department of Pathology, University of Californica San Francisco, San Francisco, CA, USA
| | - Alex Baranski
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Noah F Greenwald
- Department of Pathology, Stanford University, Stanford, CA, USA
- Cancer Biology Program, Stanford University, Stanford, CA, USA
| | - Adam Kagel
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Marc Bosse
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Eleni G Jaswa
- Department of Obstetrics Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Zumana Khair
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Shirley Kwok
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | | | - Mako Goldston
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Angie Spence
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Geneva Miller
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Morgan Schwartz
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Will Graf
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - David Van Valen
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Virginia D Winn
- Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
| | - Travis Hollmann
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Leeat Keren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Michael Angelo
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Zhao B, Yu J, Luo Y, Xie M, Qu C, Shi Q, Wang X, Zhao X, Kong L, Zhao Y, Guo Y. Deficiency of S100 calcium binding protein A9 attenuates vascular dysfunction in aged mice. Redox Biol 2023; 63:102721. [PMID: 37163872 DOI: 10.1016/j.redox.2023.102721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND S100 calcium-binding protein A9 (S100A9) is a danger-associated molecular pattern molecule that mediates the inflammatory response. Inflammation is essential in aging-related cardiovascular diseases. However, less is known regarding the role of S100A9 in vascular aging. METHODS S100A9 null mice were used to investigate the role of S100A9 in aging-related pathologies. Artery rings were used to measure the functional characteristics of vascular with a pressurized myograph. Telomere length, Sirtuin activity, oxidative stress, and endothelial nitric oxide synthetase (eNOS) activity were used to elevate vascular senescence. Intraperitoneal glucose tolerance (IPGTT) and insulin sensitivity test (IST) were employed to investigate the effects of S100A9 on insulin resistance. Inflammation response was reflected by the concentration of inflammatory cytokines. The Toll-like receptor 4 (TLR4) and receptor for advanced glycation end products (RAGE) inhibitors were used to identify the downstream molecular mechanisms of S100A9 in aging-induced senescence in endothelial cells. RESULTS S100A9 expression in vascular increased with aging in mice and humans. Deficiency of S100A9 alleviated vascular senescence in aged mice, as evidenced by increased telomere length, Sirtuin activity, and eNOS activity. Meanwhile, S100A9 knockout improved endothelium-dependent vasodilatation and endothelial continuity in aged mice. Moreover, the increased insulin resistance, oxidative stress, and inflammation were mitigated by S100A9 deletion in aged mice. In vitro, S100A9 induced senescence in endothelial cells, and that effect was blunted by TLR4 but not RAGE inhibitors. CONCLUSION The present study suggested that S100A9 may contribute to aging-related pathologies and endothelial dysfunction via the TLR4 pathway. Therefore, targeting S100A9/TLR4 signaling pathway may represent a crucial therapeutic strategy to prevent age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Boying Zhao
- Vascular Surgery Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Department of Cardiothoracic Surgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, 400010, China
| | - Jiang Yu
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yuan Luo
- Department of Cardiothoracic Surgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, 400010, China
| | - Ming Xie
- Department of Cardiothoracic Surgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, 400010, China
| | - Can Qu
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qiong Shi
- The Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medical Diagnostics, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaowen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xingji Zhao
- Department of Cardiothoracic Surgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, 400010, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, 400010, China
| | - Lingwen Kong
- Department of Cardiothoracic Surgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, 400010, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, 400010, China
| | - Yu Zhao
- Vascular Surgery Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Yongzheng Guo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
5
|
Wiedmann MK, Steinsvåg IV, Dinh T, Vigeland MD, Larsson PG, Hjorthaug H, Sheng Y, Mero IL, Selmer KK. Whole-exome sequencing in moyamoya patients of Northern-European origin identifies gene variants involved in Nitric Oxide metabolism: A pilot study. BRAIN & SPINE 2023; 3:101745. [PMID: 37383439 PMCID: PMC10293314 DOI: 10.1016/j.bas.2023.101745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 06/30/2023]
Abstract
Introduction Moyamoya disease (MMD) is a chronic cerebrovascular steno-occlusive disease of largely unknown etiology. Variants in the RNF213 gene are strongly associated with MMD in East-Asia. In MMD patients of Northern-European origin, no predominant susceptibility variants have been identified so far. Research question Are there specific candidate genes associated with MMD of Northern-European origin, including the known RNF213 gene? Can we establish a hypothesis for MMD phenotype and associated genetic variants identified for further research? Material and methods Adult patients of Northern-European origin, treated surgically for MMD at Oslo University Hospital between October 2018 to January 2019 were asked to participate. WES was performed, with subsequent bioinformatic analysis and variant filtering. The selected candidate genes were either previously reported in MMD or known to be involved in angiogenesis. The variant filtering was based on variant type, location, population frequency, and predicted impact on protein function. Results Analysis of WES data revealed nine variants of interest in eight genes. Five of those encode proteins involved in nitric oxide (NO) metabolism: NOS3, NR4A3, ITGAV, GRB7 and AGXT2. In the AGXT2 gene, a de novo variant was detected, not previously described in MMD. None harboured the p.R4810K missense variant in the RNF213 gene known to be associated with MMD in East-Asian patients. Discussion and conclusion Our findings suggest a role for NO regulation pathways in Northern-European MMD and introduce AGXT2 as a new susceptibility gene. This pilot study warrants replication in larger patient cohorts and further functional investigations.
Collapse
Affiliation(s)
- Markus K.H. Wiedmann
- Department of Neurosurgery, The National Hospital, Oslo University Hospital, Oslo, Norway
| | - Ingunn V. Steinsvåg
- Department of Medical Genetics, Oslo University Hospital and the University of Oslo, Oslo, Norway
| | - Tovy Dinh
- Department of Neurosurgery, The National Hospital, Oslo University Hospital, Oslo, Norway
| | - Magnus D. Vigeland
- Department of Medical Genetics, Oslo University Hospital and the University of Oslo, Oslo, Norway
| | - Pål G. Larsson
- Department of Neurosurgery, The National Hospital, Oslo University Hospital, Oslo, Norway
| | - Hanne Hjorthaug
- Department of Medical Genetics, Oslo University Hospital and the University of Oslo, Oslo, Norway
| | - Ying Sheng
- Department of Medical Genetics, Oslo University Hospital and the University of Oslo, Oslo, Norway
| | - Inger-Lise Mero
- Department of Medical Genetics, Oslo University Hospital and the University of Oslo, Oslo, Norway
| | - Kaja K. Selmer
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Bkaily G, Jacques D. Morphological and Functional Remodeling of Vascular Endothelium in Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24031998. [PMID: 36768314 PMCID: PMC9916505 DOI: 10.3390/ijms24031998] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/21/2023] Open
Abstract
The vascular endothelium plays a vital role during embryogenesis and aging and is a cell monolayer that lines the blood vessels. The immune system recognizes the endothelium as its own. Therefore, an abnormality of the endothelium exposes the tissues to the immune system and provokes inflammation and vascular diseases such as atherosclerosis. Its secretory role allows it to release vasoconstrictors and vasorelaxants as well as cardio-modulatory factors that maintain the proper functioning of the circulatory system. The sealing of the monolayer provided by adhesion molecules plays an important role in cardiovascular physiology and pathology.
Collapse
|
7
|
Senescence-Associated Secretory Phenotype of Cardiovascular System Cells and Inflammaging: Perspectives of Peptide Regulation. Cells 2022; 12:cells12010106. [PMID: 36611900 PMCID: PMC9818427 DOI: 10.3390/cells12010106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
A senescence-associated secretory phenotype (SASP) and a mild inflammatory response characteristic of senescent cells (inflammaging) form the conditions for the development of cardiovascular diseases: atherosclerosis, coronary heart disease, and myocardial infarction. The purpose of the review is to analyze the pool of signaling molecules that form SASP and inflammaging in cells of the cardiovascular system and to search for targets for the action of vasoprotective peptides. The SASP of cells of the cardiovascular system is characterized by a change in the synthesis of anti-proliferative proteins (p16, p19, p21, p38, p53), cytokines characteristic of inflammaging (IL-1α,β, IL-4, IL-6, IL-8, IL-18, TNFα, TGFβ1, NF-κB, MCP), matrix metalloproteinases, adhesion molecules, and sirtuins. It has been established that peptides are physiological regulators of body functions. Vasoprotective polypeptides (liraglutide, atrial natriuretic peptide, mimetics of relaxin, Ucn1, and adropin), KED tripeptide, and AEDR tetrapeptide regulate the synthesis of molecules involved in inflammaging and SASP-forming cells of the cardiovascular system. This indicates the prospects for the development of drugs based on peptides for the treatment of age-associated cardiovascular pathology.
Collapse
|
8
|
Wang H, Tang Y, Wang M, Zhao J, Ding C, Yang X, Han P, Liu P. Low expression of MEOX2 is associated with poor survival in patients with breast cancer. Biomark Med 2022; 16:1161-1170. [PMID: 36625258 DOI: 10.2217/bmm-2022-0468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Aim: To investigate associations of MEOX2 expression with clinicopathological features and survival of breast cancer patients. Materials & methods: We used a breast cancer tissue microarray for immunohistochemistry. Associations between MEOX2 expression and clinicopathological features were analyzed using the χ-square test. Survival analysis was determined using a Kaplan-Meier curve. Multivariate Cox regression was used to determine associations of MEOX2 expression with overall survival. Results: We found that 74.1% of patients (100/135) had expression of MEOX2 at varying levels. MEOX2 was associated with histological grade and negatively correlated with Ki67 expression. Lower MEOX2 expression was significantly associated with decreased overall survival (p = 0.0011). Conclusion: MEOX2 expression could be a novel diagnostic and prognostic biomarker of breast cancer.
Collapse
Affiliation(s)
- Huxia Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.,Department of Mammary, Shaanxi Provincial Cancer Hospital, Xi'an, 710061, China
| | - Yanan Tang
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Meixia Wang
- Department of Health Examination, Shenmu Hospital, Yulin, 719300, China
| | - Jing Zhao
- Department of Mammary, Shaanxi Provincial Cancer Hospital, Xi'an, 710061, China
| | - Caixia Ding
- Department of Pathology, Shaanxi Provincial Cancer Hospital, Xi'an, 710061, China
| | - Xiaomin Yang
- Department of Mammary, Shaanxi Provincial Cancer Hospital, Xi'an, 710061, China
| | - Pihua Han
- Department of Mammary, Shaanxi Provincial Cancer Hospital, Xi'an, 710061, China
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
9
|
Jiang JF, Zhou ZY, Liu YZ, Wu L, Nie BB, Huang L, Zhang C. Role of Sp1 in atherosclerosis. Mol Biol Rep 2022; 49:9893-9902. [PMID: 35715606 DOI: 10.1007/s11033-022-07516-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/12/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
Specificity protein (Sp) is a famous family of transcription factors including Sp1, Sp2 and Sp3. Sp1 is the first one of Sp family proteins to be characterized and cloned in mammalian. It has been proposed that Sp1 acts as a modulator of the expression of target gene through interacting with a series of proteins, especially with transcriptional factors, and thereby contributes to the regulation of diverse biological processes. Notably, growing evidence indicates that Sp1 is involved in the main events in the development of atherosclerosis (AS), such as inflammation, lipid metabolism, plaque stability, vascular smooth muscle cells (VSMCs) proliferation and endothelial dysfunction. This review is designed to provide useful clues to further understanding roles of Sp1 in the pathogenesis of AS, and may be helpful for the design of novel efficacious therapeutics agents targeting Sp1.
Collapse
Affiliation(s)
- Jie-Feng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, 421001, Hengyang, Hunan, People's Republic of China
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Zheng-Yang Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, 421001, Hengyang, Hunan, People's Republic of China
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Yi-Zhang Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, 421001, Hengyang, Hunan, People's Republic of China
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Li Wu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, 421001, Hengyang, Hunan, People's Republic of China
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Bin-Bin Nie
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, 421001, Hengyang, Hunan, People's Republic of China
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Liang Huang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China.
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, 421001, Hengyang, Hunan, People's Republic of China.
| |
Collapse
|
10
|
Wang H, Tang Y, Yang X, Wang W, Han P, Zhao J, He S, Liu P. A Crucial Angiogenesis-Associated Gene MEOX2 Could Be a Promising Biomarker Candidate for Breast Cancer. Front Oncol 2022; 12:759300. [PMID: 35615155 PMCID: PMC9124839 DOI: 10.3389/fonc.2022.759300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAngiogenesis plays a critical role in the growth and metastasis of breast cancer and angiogenesis inhibition has become an effective strategy for cancer therapy. Our study aimed to clarify the key candidate genes and pathways related to breast cancer angiogenesis.MethodsDifferentially expressed genes (DEGs) in the raw breast cancer (BRCA) gene dataset from the Cancer Genome Atlas (TCGA) database were identified and gene ontology analysis of the DEGs was performed. Hub genes were subsequently determined using the Gene Expression Omnibus database. The expression of the mesenchyme homeobox 2 (MEOX2) in breast cancer cells and tissues was assessed by quantification real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC), respectively. The prognostic value of the MEOX2 gene in breast cancer tissue was evaluated with the Kaplan-Meier plotter.ResultsA total of 61 angiogenesis-related DEGs were identified in the TCGA dataset, among which the gene MEOX2 was significantly down-regulated. GO functional annotation and pathway enrichment analyses showed that MEOX2 was significantly enriched in the regulation of vasculature development. The IHC results confirmed that MEOX2 expression was repressed in breast cancer tissues and the relatively low level indicated the tissue was densely vascularized. Moreover, MEOX2 expression was significantly elevated in breast cancer cells after treatment with cisplatin (DDP) and epirubicin (EPI). Finally, the Kaplan-Meier plotter confirmed that higher expression levels of MEOX2 were related to better overall survival.ConclusionOur study revealed that the angiogenesis-associated gene MEOX2 can be used as a novel biomarker for breast cancer diagnosis and clinical therapy.
Collapse
Affiliation(s)
- Huxia Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Mammary Department, Shaanxi Provincial Cancer Hospital, Xi’an, China
| | - Yanan Tang
- Vascular Surgery Department, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaomin Yang
- Mammary Department, Shaanxi Provincial Cancer Hospital, Xi’an, China
| | - Weiyi Wang
- Vascular Surgery Department, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Pihua Han
- Mammary Department, Shaanxi Provincial Cancer Hospital, Xi’an, China
| | - Jing Zhao
- Mammary Department, Shaanxi Provincial Cancer Hospital, Xi’an, China
| | - Sai He
- Mammary Department, Shaanxi Provincial Cancer Hospital, Xi’an, China
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Peijun Liu,
| |
Collapse
|
11
|
Wu Y, Li YJ, Shi LL, Liu Y, Wang Y, Bao X, Xu W, Yao LY, Mbadhi MN, Chen L, Li S, Li XY, Zhang ZF, Zhao S, Zhang RN, Chen SY, Zhang JX, Jun-mingTang. Spatio-temporal model of Meox1 expression control involvement of Sca-1-positive stem cells in neointima formation through the synergistic effect of Rho/CDC42 and SDF-1α/CXCR4. Stem Cell Res Ther 2021; 12:387. [PMID: 34233723 PMCID: PMC8262022 DOI: 10.1186/s13287-021-02466-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/19/2021] [Indexed: 08/30/2023] Open
Abstract
AIMS Neointimal hyperplasia remains a major obstacle in vascular regeneration. Sca-1-positive progenitor cells residing within the vascular adventitia play a crucial role in the assemblage of vascular smooth muscle cell (VSMC) and the formation of the intimal lesion. However, the underlying mechanisms during vascular injury are still unknown. METHODS AND RESULTS Aneointimal formation rat model was prepared by carotid artery injury using 2F-Forgaty. After vascular injury, Meox1 expressions time-dependently increased during the neointima formation, with its levels concurrently increasing in the adventitia, media, and neointima. Meox1 was highly expressed in the adventitia on the first day after vascular injury compared to the expression levels in the media. Conversely, by the 14th day post-injury, Meox1 was extensively expressed more in the media and neointima than the adventitia. Analogous to the change of Meox1 in injured artery, Sca-1+ progenitor cells increased in the adventitia wall in a time-dependent manner and reached peak levels on the 7th day after injury. More importantly, this effect was abolished by Meox1 knockdown with shRNA. The enhanced expression of SDF-1α after vascular injury was associated with the markedly enhanced expression levels of Sca1+ progenitor cell, and these levels were relatively synchronously increased within neointima by the 7th day after vascular injury. These special effects were abolished by the knockdown of Meox1 with shRNA and inhibition of CXCR4 by its inhibitor, AMD3100. Finally, Meox1 concurrently regulated SDF-1α expressions in VSMC via activating CDC42, and CDC42 inhibition abolished these effects by its inhibitor, ZCL278. Also, Meox1 was involved in activation of the CXCR4 expression of Sca-1+ progenitor cells by CDC42. CONCLUSIONS Spatio-temporal model of Meox1 expression regulates theSca-1+progenitor cell migration during the formation of the neointima through the synergistic effect of Rho/CDC42 and SDF-1α/CXCR4.
Collapse
Affiliation(s)
- Yan Wu
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
| | - Yuan-Jin Li
- Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China.
| | - Liu-Liu Shi
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
| | - Yun Liu
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Yan Wang
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Xin Bao
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Wei Xu
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Lu-Yuan Yao
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Magdaleena Naemi Mbadhi
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Long Chen
- Cental Lab, Guoyao-Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Shan Li
- Department of Biochemistry, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Xing-Yuan Li
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Zhi-Feng Zhang
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.,Faculty of Basic Medical Sciences, Institute of Biomedicine, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Sen Zhao
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Ruo-Nan Zhang
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Shi-You Chen
- The Department of Surgery, University of Missouri, Columbia, USA
| | - Jing-Xuan Zhang
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China. .,Faculty of Basic Medical Sciences, Institute of Biomedicine, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
| | - Jun-mingTang
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China. .,Faculty of Basic Medical Sciences, Institute of Biomedicine, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
| |
Collapse
|
12
|
Si H, Lai CQ, Liu D. Dietary Epicatechin, A Novel Anti-aging Bioactive Small Molecule. Curr Med Chem 2021; 28:3-18. [PMID: 31886745 DOI: 10.2174/0929867327666191230104958] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/13/2019] [Accepted: 09/26/2019] [Indexed: 11/22/2022]
Abstract
Epicatechin (EC), a flavonoid present in various foods including cocoa, dark chocolate, berries, and tea, has recently been reported to promote general health and survival of old mice fed a standard chow diet. This is considered a novel discovery in the field of identifying natural compounds to extend lifespan, given that presumably popular anti-aging natural agents including resveratrol, green tea extract, and curcumin had failed in extending the lifespan of standard chow-diet-fed mice. However, the anti-aging mechanism of EC is not fully understood, thus impeding the potential application of this natural compound in improving a healthy lifespan in humans. In this review, we first summarized the main dietary sources that contain a significant amount of EC and recent research regarding the absorption, metabolism and distribution of EC in humans and rodents. The review is then focused on the anti-aging effects of EC in cultured cells, animals and humans with the possible physiological, cellular and molecular mechanisms underlying its lifespan-extending effects.
Collapse
Affiliation(s)
- Hongwei Si
- Department of Human Sciences, Tennessee State University, Nashville, TN, United States
| | - Chao-Qiang Lai
- USDA Agricultural Research Service, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
13
|
Reduced expression of microRNA-130a promotes endothelial cell senescence and age-dependent impairment of neovascularization. Aging (Albany NY) 2020; 12:10180-10193. [PMID: 32457253 PMCID: PMC7346016 DOI: 10.18632/aging.103340] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 05/18/2020] [Indexed: 12/30/2022]
Abstract
Aging is associated with impaired neovascularization in response to ischemia. MicroRNAs are small noncoding RNAs emerging as key regulators of physiological and pathological processes. Here we investigated the potential role of microRNAs in endothelial cell senescence and age-dependent impairment of neovascularization. Next generation sequencing and qRT-PCR analyses identified miR-130a as a pro-angiogenic microRNA which expression is significantly reduced in old mouse aortic endothelial cells (ECs). Transfection of young ECs with a miR-130a inhibitor leads to accelerated senescence and reduced angiogenic functions. Conversely, forced expression of miR-130a in old ECs reduces senescence and improves angiogenesis. In a mouse model of hindlimb ischemia, intramuscular injection of miR-130a mimic in older mice restores blood flow recovery and vascular densities in ischemic muscles, improves mobility and reduces tissue damage. miR-130a directly targets antiangiogenic homeobox genes MEOX2 and HOXA5. MEOX2 and HOXA5 are significantly increased in the ischemic muscles of aging mice, but forced expression of miR-130a reduces the expression of these factors. miR-130a treatment after ischemia is also associated with increased number and improved functional activities of pro-angiogenic cells (PACs). Forced expression of miR-130a could constitute a novel strategy to improve blood flow recovery and reduce ischemia in older patients with ischemic vascular diseases.
Collapse
|
14
|
Dipeptidyl peptidase-4 inhibition improves endothelial senescence by activating AMPK/SIRT1/Nrf2 signaling pathway. Biochem Pharmacol 2020; 177:113951. [PMID: 32251672 DOI: 10.1016/j.bcp.2020.113951] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
Dipeptidyl peptidase-4 (DPP4) is elevated in numerous cardiovascular pathological processes and DPP4 inhibition is associated with reduced inflammation and oxidative stress. The aim of this study was to examine the role of DPP4 in endothelial senescence. Sprague-Dawley rats (24 months) were orally administrated saxagliptin (10 mg·kg-1·d-1), a DPP4 inhibitor, for 12 weeks in drinking water. Body weight, heart rate, blood glucose, and blood pressure were measured and vascular histological experiments were performed. In vitro studies were performed using H2O2-induced senescent human umbilical vein endothelial cells. Both in vivo and in vitro studies confirmed the elevation of DPP4 in senescent vascular endothelium, and inhibition or knockdown of DPP4 ameliorated endothelial senescence. In addition, DPP4 inhibition or silencing reduced endothelial oxidative stress levels in aging vasculature and senescent endothelial cells. Moreover, DPP4 inhibition or knockdown normalized the expression and phosphorylation of AMP-activated protein kinase-α (AMPKα) and sirtuin 1 (SIRT1) expression. Furthermore, the beneficial effects of DPP4 inhibition or knockdown on endothelial cell senescence were at least partly dependent on SIRT1 and Nrf2 activation. In conclusion, our study demonstrated that DPP4 inhibition or silencing ameliorated endothelial senescence both in vivo and in vitro by regulating AMPK/SIRT1/Nrf2. DPP4 may be a new therapeutic target to combat endothelial senescence.
Collapse
|
15
|
Mijit M, Caracciolo V, Melillo A, Amicarelli F, Giordano A. Role of p53 in the Regulation of Cellular Senescence. Biomolecules 2020; 10:biom10030420. [PMID: 32182711 PMCID: PMC7175209 DOI: 10.3390/biom10030420] [Citation(s) in RCA: 258] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
The p53 transcription factor plays a critical role in cellular responses to stress. Its activation in response to DNA damage leads to cell growth arrest, allowing for DNA repair, or directs cellular senescence or apoptosis, thereby maintaining genome integrity. Senescence is a permanent cell-cycle arrest that has a crucial role in aging, and it also represents a robust physiological antitumor response, which counteracts oncogenic insults. In addition, senescent cells can also negatively impact the surrounding tissue microenvironment and the neighboring cells by secreting pro-inflammatory cytokines, ultimately triggering tissue dysfunction and/or unfavorable outcomes. This review focuses on the characteristics of senescence and on the recent advances in the contribution of p53 to cellular senescence. Moreover, we also discuss the p53-mediated regulation of several pathophysiological microenvironments that could be associated with senescence and its development.
Collapse
Affiliation(s)
- Mahmut Mijit
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Medical Biotechnologies, University of Siena, 67100 Siena, Italy
| | - Valentina Caracciolo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Antonio Melillo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Fernanda Amicarelli
- Department of Medical Biotechnologies, University of Siena, 67100 Siena, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 53100 L’Aquila, Italy
- Correspondence:
| |
Collapse
|
16
|
Yu J, Sun H, Shang F, Wu H, Shi H, Ren L, He Y, Zhang M, Peng H. Association Between Glucose Metabolism And Vascular Aging In Chinese Adults: A Cross-Sectional Analysis In The Tianning Cohort Study. Clin Interv Aging 2019; 14:1937-1946. [PMID: 31806949 PMCID: PMC6842737 DOI: 10.2147/cia.s223690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/28/2019] [Indexed: 12/31/2022] Open
Abstract
Aim Fasting glucose has been associated with vascular aging, but the association between HbA1c and vascular aging has been limitedly studied in Chinese and other ethnic populations. We aimed to examine this association in a large sample of Chinese adults. Methods In the Tianning Cohort (N=5142), fasting glucose, HbA1c, carotid-femoral pulse wave velocity (cfPWV), and pulse pressure (PP) were measured. Vascular aging was defined as having the highest quartile level of cfPWV or PP. We applied quantile regression models to examine the association between glucose metabolism and vascular aging. Results The median cfPWV was significantly increased as increasing quintiles of fasting glucose (β=0.14, P<0.001) and HbA1c (β=0.07, P=0.0056), respectively. Per 1-mmol/L increment of fasting glucose was significantly associated with a higher risk of having vascular aging defined by cfPWV (OR=1.05, P=0.022), PP (OR=1.06, P=0.048), or either (OR=1.08, P=0.002). Similarly, per 1% increment of HbA1c was significantly associated with a higher risk of having vascular aging defined by cfPWV (OR=1.06, P=0.044), PP (OR=1.10, P=0.012), or either (OR=1.12, P=0.042). Conclusion Glucose metabolism was significantly and positively associated with vascular aging in Chinese adults, but the causality is uncertain.
Collapse
Affiliation(s)
- Jia Yu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Hongyan Sun
- Center for Disease Prevention and Control of Tianning District, Changzhou, People's Republic of China
| | - Fei Shang
- Center for Disease Prevention and Control of Tianning District, Changzhou, People's Republic of China
| | - Haishu Wu
- Center for Disease Prevention and Control of Tianning District, Changzhou, People's Republic of China
| | - Hongfei Shi
- Center for Disease Prevention and Control of Tianning District, Changzhou, People's Republic of China
| | - Liyun Ren
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Yan He
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Mingzhi Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Hao Peng
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
17
|
Cheng Q, Huang C, Cao H, Lin J, Gong X, Li J, Chen Y, Tian Z, Fang Z, Huang J. A Novel Prognostic Signature of Transcription Factors for the Prediction in Patients With GBM. Front Genet 2019; 10:906. [PMID: 31632439 PMCID: PMC6779830 DOI: 10.3389/fgene.2019.00906] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Although the diagnosis and treatment of glioblastoma (GBM) is significantly improved with recent progresses, there is still a large heterogeneity in therapeutic effects and overall survival. The aim of this study is to analyze gene expressions of transcription factors (TFs) in GBM so as to discover new tumor markers. Methods: Differentially expressed TFs are identified by data mining using public databases. The GBM transcriptome profile is downloaded from The Cancer Genome Atlas (TCGA). The nonnegative matrix factorization (NMF) method is used to cluster the differentially expressed genes to discover hub genes and signal pathways. The TFs affecting the prognosis of GBM are screened by univariate and multivariate COX regression analysis, and the receiver operating characteristic (ROC) curve is determined. The GBM hazard model and nomogram map are constructed by integrating the clinical data. Finally, the TFs involving potential signaling pathways in GBM are screened by Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Results: There are 68 differentially expressed TFs in GBM, of which 43 genes are upregulated and 25 genes are downregulated. NMF clustering analysis suggested that GBM patients are divided into three groups: Clusters A, B, and C. LHX2, MEOX2, SNAI2, and ZNF22 are identified from the above differential genes by univariate/multivariate regression analysis. The risk score of those four genes are calculated based on the beta coefficient of each gene, and we found that the predictive ability of the risk score gradually increased with the prolonged predicted termination time by time-dependent ROC curve analysis. The nomogram results have showed that the integration of risk score, age, gender, chemotherapy, radiotherapy, and 1p/19q can further improve predictive ability towards the survival of GBM. The pathways in cancer, phosphoinositide 3-kinases (PI3K)–Akt signaling, Hippo signaling, and proteoglycans, are highly enriched in high-risk groups by GSEA. These genes are mainly involved in cell migration, cell adhesion, epithelial–mesenchymal transition (EMT), cell cycle, and other signaling pathways by GO and KEGG analysis. Conclusion: The four-factor combined scoring model of LHX2, MEOX2, SNAI2, and ZNF22 can precisely predict the prognosis of patients with GBM.
Collapse
Affiliation(s)
- Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Chunhai Huang
- Department of Neurosurgery, First Affiliated Hospital of Jishou University, Jishou, China
| | - Hui Cao
- Clinical Medical Research Center of Hunan Provincial Mental Behavioral Disorder, Clinical Medical School of Hunan University of Chinese Medicine, Hunan Provincial Brain Hospital, Changsha, China
| | - Jinhu Lin
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Gong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanbing Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Tian
- Department of Neurosurgery, First Affiliated Hospital of Jishou University, Jishou, China
| | - Zhenyu Fang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Hot Water Extract of Loliolus beka Meat Attenuates H 2O 2-Induced Damage in Human Umbilical Vein Endothelial Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31468441 DOI: 10.1007/978-981-13-8023-5_61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Blood vessels become less flexible with senescence; arteries narrow and become less flexible, disturbing blood circulation in aging and other vascular diseases. Mechanistically, vascular senescence plays an important role in the pathogenesis of normal aging and age-related vascular diseases. Vascular senescence also causes vascular dysfunction, resulting in damage to the vessel wall. Vascular aging involves the senescence of endothelial cells. Hydrogen peroxide is widely used to achieve oxidative stress-induced premature senescence. Here, we investigated the protective effects of a hot water extract of Loliolus beka meat (LBM) against H2O2-exposed HUVECs, a human umbilical vein endothelial cells line. The hot water extract of LBM protected cells against H2O2-induced cytotoxicity while reducing the expression of senescence markers, including β-galactosidase, p53, and p21. In addition, the hot water extract of LBM protected against H2O2-induced DNA damage. These findings suggest that the hot water extract of LBM protects HUVECs from H2O2-induced senescence by preventing cellular damage. LBM serve as a supplement or natural food with benefits against vascular disease.
Collapse
|
19
|
Zhang W, Zhao T, Zhao Y, Gui D, Xu Y. Advanced Glycation End Products in Chinese Medicine Mediated Aging Diseases: A Review. Curr Vasc Pharmacol 2019; 18:322-333. [PMID: 31060489 DOI: 10.2174/1570161117666190507112157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022]
Abstract
Aging has become a worldwide problem. During this process, the incidence of related diseases such as diabetes and atherosclerosis increases dramatically. Studies within the most recent two decades suggest a pivotal role of Advanced Glycation End Products (AGEs) in the aging process. This review aims to systemically summarize the effects and potential mechanism of Chinese Medicines on inhibiting AGEs-related aging diseases.
Collapse
Affiliation(s)
- Wenqian Zhang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China
| | - Tingting Zhao
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China
| | - Yonghua Zhao
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China
| | - Dingkun Gui
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China
| |
Collapse
|
20
|
Artichoke Polyphenols Produce Skin Anti-Age Effects by Improving Endothelial Cell Integrity and Functionality. Molecules 2018; 23:molecules23112729. [PMID: 30360471 PMCID: PMC6278506 DOI: 10.3390/molecules23112729] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 11/29/2022] Open
Abstract
Artichoke is a characteristic crop of the Mediterranean area, recognized for its nutritional value and therapeutic properties due to the presence of bioactive components such as polyphenols, inulin, vitamins and minerals. Artichoke is mainly consumed after home and/or industrial processing, and the undersized heads, not suitable for the market, can be used for the recovery of bioactive compounds, such as polyphenols, for cosmetic applications. In this paper, the potential skin anti-age effect of a polyphenolic artichoke extract on endothelial cells was investigated. The methodology used was addressed to evaluate the antioxidant and anti-inflammatory activities and the improvement of gene expression of some youth markers. The results showed that the artichoke extract was constituted by 87% of chlorogenic, 3,5-O-dicaffeoylquinic, and 1,5-O-dicaffeoylquinic acids. The extract induced important molecular markers responsible for the microcirculation and vasodilatation of endothelial cells, acted as a potential anti-inflammatory agent, protected the lymphatic vessels from oxidative damage by ROS formation, and enhanced the cellular cohesion by reinforcing the tight junction complex. In addition, the artichoke extract, through the modulation of molecular pathways, improved the expression of genes involved in anti-ageing mechanisms. Finally, clinical testing on human subjects highlighted the enhancement by 19.74% of roughness and 11.45% of elasticity from using an artichoke extract cosmetic formulation compared to placebo cream.
Collapse
|