1
|
Yang D, Fan Y, Xiong M, Chen Y, Zhou Y, Liu X, Yuan Y, Wang Q, Zhang Y, Petersen RB, Su H, Yue J, Zhang C, Chen H, Huang K, Zheng L. Loss of renal tubular G9a benefits acute kidney injury by lowering focal lipid accumulation via CES1. EMBO Rep 2023; 24:e56128. [PMID: 37042626 PMCID: PMC10240209 DOI: 10.15252/embr.202256128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
Surgery-induced renal ischemia and reperfusion (I/R) injury and nephrotoxic drugs like cisplatin can cause acute kidney injury (AKI), for which there is no effective therapy. Lipid accumulation is evident following AKI in renal tubules although the mechanisms and pathological effects are unclear. Here, we report that Ehmt2-encoded histone methyltransferase G9a is upregulated in patients and mouse kidneys after AKI. Renal tubular specific knockout of G9a (Ehmt2Ksp ) or pharmacological inhibition of G9a alleviates lipid accumulation associated with AKI. Mechanistically, G9a suppresses transcription of the lipolytic enzyme Ces1; moreover, G9a and farnesoid X receptor (FXR) competitively bind to the same promoter regions of Ces1. Ces1 is consistently observed to be downregulated in the kidney of AKI patients. Pharmacological inhibition of Ces1 increases lipid accumulation, exacerbates renal I/R-injury and eliminates the beneficial effects on AKI observed in Ehmt2Ksp mice. Furthermore, lipid-lowering atorvastatin and an FXR agonist alleviate AKI by activating Ces1 and reducing renal lipid accumulation. Together, our results reveal a G9a/FXR-Ces1 axis that affects the AKI outcome via regulating renal lipid accumulation.
Collapse
Affiliation(s)
- Dong Yang
- School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yu Fan
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life SciencesWuhan UniversityWuhanChina
| | - Mingrui Xiong
- School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuchen Chen
- School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yihao Zhou
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life SciencesWuhan UniversityWuhanChina
| | - Xikai Liu
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life SciencesWuhan UniversityWuhanChina
| | - Yangmian Yuan
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life SciencesWuhan UniversityWuhanChina
| | - Qing Wang
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life SciencesWuhan UniversityWuhanChina
| | - Yu Zhang
- School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Robert B Petersen
- Foundational SciencesCentral Michigan University College of MedicineMt. PleasantMIUSA
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Junqiu Yue
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hong Chen
- School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Kun Huang
- School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life SciencesWuhan UniversityWuhanChina
| |
Collapse
|
2
|
Wang X, Yang L, Wang J, Lu K, Zhou Y, Zhao L, Peng J. Silica Cross-Linked Micelle-Based Theranostic System for the Imaging and Treatment of Acute and Chronic Kidney Injury. ACS APPLIED BIO MATERIALS 2023; 6:1213-1220. [PMID: 36786440 DOI: 10.1021/acsabm.2c01077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Acute kidney injury (AKI) is a common and serious disease with high mortality and morbidity, and the persistent inflammatory environment brought about by AKI promotes its deterioration into chronic kidney disease (CKD). An efficient and timely targeted drug delivery to the renal tubules is crucial for AKI treatment. Here, we prepared silica cross-linked micelles (SCLMs) with different sizes and studied their targeting ability to the injured kidney. It is found that the SCLMs with a size of 13 nm could rapidly accumulate and remain in the damaged kidney. Immunofluorescence results confirmed that SCLMs are selectively located in the damaged tubular cells but cannot be found in healthy renal tissue. Therefore, fluorescent dye-labeled SCLMs were used for the imaging of the injured kidney, which could reflect the status of the kidney injury. Furthermore, atorvastatin, an antioxidative and anti-inflammatory drug, was loaded in SCLMs as the therapeutic agents for the treatment of ischemia/reperfusion-induced AKI and CKD. Renal function indexes, such as tubular necrosis, collagen deposition, and inflammation, were effectively improved after the treatment.
Collapse
Affiliation(s)
- Xueshen Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Lulu Yang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jian Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Keqiang Lu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yunyun Zhou
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Lingzhi Zhao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Juanjuan Peng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| |
Collapse
|
3
|
Baran M, Yay A, Onder GO, Canturk Tan F, Yalcin B, Balcioglu E, Yıldız OG. Hepatotoxicity and renal toxicity induced by radiation and the protective effect of quercetin in male albino rats. Int J Radiat Biol 2022; 98:1473-1483. [PMID: 35171756 DOI: 10.1080/09553002.2022.2033339] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Although radiation is one of the basic methods commonly used in cancer treatment, it inevitably enters the field of treatment in healthy tissues and is adversely affected by the acute and chronic side effects of radiation. This study evaluated the possible protective effects of quercetin, an antioxidant agent, against liver and kidney damage in rats exposed to a whole-body single dose of radiation (10 Gy of gamma-ray). MATERIALS AND METHODS The study groups were formed as control, sham, quercetin, radiation, quercetin + radiation and radiation + quercetin using 60 male Wistar albino (200-250 g, 3 months old) rats, including 10 rats in each group. The gamma-ray provided by the Co60 teletherapy machine was given to the whole body as external irradiation. According to the groups, quercetin was administered to rats at 50 mg/kg/day via oral gavage before or after radiation administration. The rats were sacrificed the day after irradiation and the extracted tissue samples from all groups were compared histologically and immunohistochemically. DNA damage was determined by the neutral comet assay technique. Also, malondialdehyde (MDA) and glutathione peroxidase (GSH) were evaluated in liver and kidney tissues by the ELISA method. RESULTS Histopathological changes were observed altered morphology of liver and kidney tissues in the radiation groups. Sinusoidal dilatations, vacuolization, and hepatic parenchyma necrosis in the liver, while in kidneys, glomerular shrinkage, widened Bowman's space, tubular dilatation, and inflammation were evident. TNF-α, IL1-α, HIF1-α, and caspase 3 immunoreactivities in tissues were determined by immunohistochemistry. High caspase 3 positive cell number confirmed apoptosis, the comet parameters were decreased in the quercetin + radiation group. When compared to the control group, the exposure to radiation showed a marked elevation in MDA which was accompanied by high GSH. This damage was reduced in the quercetin + radiation group. CONCLUSIONS With the results obtained from the study; Quercetin is thought to have a protective potential against radiation-induced liver and kidney damage due to its radioprotective effect.
Collapse
Affiliation(s)
- Munevver Baran
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, Kayseri, Turkey.,Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Gozde Ozge Onder
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, Kayseri, Turkey
| | - Fazile Canturk Tan
- Department of Biophysics, Erciyes University, Faculty of Medicine, Kayseri, Turkey
| | - Betul Yalcin
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, Kayseri, Turkey
| | - Esra Balcioglu
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, Kayseri, Turkey.,Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Oguz Galip Yıldız
- Department of Radiation Oncology, Erciyes University, Faculty of Medicine, Kayseri, Turkey
| |
Collapse
|
4
|
Tu B, Tang Y, Cheng Y, Yang Y, Wu C, Liu X, Qian D, Zhang Z, Zhao Y, Qin Y, He J. Association of Prior to Intensive Care Unit Statin Use With Outcomes on Patients With Acute Kidney Injury. Front Med (Lausanne) 2022; 8:810651. [PMID: 35004788 PMCID: PMC8739269 DOI: 10.3389/fmed.2021.810651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Purpose: To evaluate the association of prior to intensive care unit (ICU) statin use with the clinical outcomes in critically ill patients with acute kidney injury (AKI). Materials and Methods: Patients with AKI were selected from the Medical Information Mart for Intensive Care IV (version 1.0) database for this retrospective observational study. The primary outcome was 30-day intensive care unit (ICU) mortality. A 30-day in-hospital mortality and ICU length of stay (LOS) were considered as secondary outcomes. Comparison of mortality between pre-ICU statin users with non-users was conducted by the multivariate Cox proportional hazards model. Comparison of ICU LOS between two groups was implemented by multivariate linear model. Three propensity score methods were used to verify the results as sensitivity analyses. Stratification analyses were conducted to explore whether the association between pre-ICU statin use and mortality differed across various subgroups classified by sex and different AKI stages. Results: We identified 3,821 pre-ICU statin users and 9,690 non-users. In multivariate model, pre-ICU statin use was associated with reduced 30-day ICU mortality rate [hazard ratio (HR) 0.68 (0.59, 0.79); p < 0.001], 30-day in-hospital mortality rate [HR 0.64 (0.57, 0.72); p < 0.001] and ICU LOS [mean difference −0.51(−0.79, −0.24); p < 0.001]. The results were consistent in three propensity score methods. In subgroup analyses, pre-ICU statin use was associated with decreased 30-day ICU mortality and 30-day in-hospital mortality in both sexes and AKI stages, except for 30-day ICU mortality in AKI stage 1. Conclusion: Patients with AKI who were administered statins prior to ICU admission might have lower mortality during ICU and hospital stay and shorter ICU LOS.
Collapse
Affiliation(s)
- Boxiang Tu
- Department of Military Health Statistics, Naval Medical University, Shanghai, China
| | - Yuanjun Tang
- Department of Clinical Pharmacy, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Cheng
- Department of Military Health Statistics, Naval Medical University, Shanghai, China
| | - Yuanyuan Yang
- Big Data Research Office, Naval Healthcare Information Center, Faculty of Military Health Service, Naval Medical University, Shanghai, China
| | - Cheng Wu
- Department of Military Health Statistics, Naval Medical University, Shanghai, China
| | - Xiaobin Liu
- Burn Institute of PLA, Department of Burns, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Di Qian
- Department of Military Health Statistics, Naval Medical University, Shanghai, China
| | - Zhansai Zhang
- Department of Occupational Disease, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanfang Zhao
- Department of Military Health Statistics, Naval Medical University, Shanghai, China
| | - Yingyi Qin
- Department of Military Health Statistics, Naval Medical University, Shanghai, China
| | - Jia He
- Department of Military Health Statistics, Naval Medical University, Shanghai, China
| |
Collapse
|
5
|
Potential Alteration of Statin-Related Pharmacological Features in Diabetes Mellitus. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6698743. [PMID: 33834073 PMCID: PMC8018846 DOI: 10.1155/2021/6698743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
Objective Type 2 diabetes mellitus is a chronic metabolic disease caused by insulin resistance or insulin deficiency resulting in elevated blood glucose levels. Poorly controlled diabetes is associated with the development of cardiovascular disease and dyslipidemia. 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statin) are an important class of therapeutic agents used to control hyperlipidemia and prevent cardiovascular disease in diabetic and nondiabetic patients. Since the effect of diabetes on the pharmacokinetics and pharmacodynamics of drugs and toxins has been shown, the aim was to review previous studies on the efficacy of statins such as atorvastatin, simvastatin, pravastatin, pitavastatin, fluvastatin, and rosuvastatin in clinical and preclinical studies in both diabetic and nondiabetic groups. Method For this purpose, Web of Science, PubMed, Scopus, and Google Scholar databases were reviewed, and related English articles published until October 2020 were included in this review article. Results The findings revealed that diabetes affected statin effectiveness through changes in pharmacokinetic parameters such as clearance and biotransformation biomarkers at mRNA and protein levels. Plasma and serum concentrations of statins were accompanied by alteration in cellular activities including oxidative stress, Akt inhibition, and endothelial nitric oxide synthase (eNOS) and phosphorylation that were reflected in changes in the adverse drug reaction profile of the differing statins. Conclusion Given that dyslipidemia frequently accompanies diabetes and statin therapy is common, more clinical studies are needed regarding the effects of diabetes on the effectiveness of these drugs.
Collapse
|
6
|
Hasanein P, Rahdar A, Esmaeilzadeh Bahabadi S, Kumar A, Kyzas GZ. Manganese/cerium nanoferrites: Synthesis and toxicological effects by intraperitoneal administration in rats. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Cinar I, Halici Z, Dincer B, Sirin B, Cadirci E. The role of 5-HT7 receptors on isoproterenol-induced myocardial infarction in rats with high-fat diet exacerbated coronary endothelial dysfunction. Hum Exp Toxicol 2020; 39:1005-1018. [PMID: 32329363 DOI: 10.1177/0960327120916821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The presence of 5-HT7r's in both human and rat cardiovascular and immune tissues and their contribution to inflammatory conditions prompted us to hypothesize that these receptors contribute in acute myocardial infarction (MI) with underlying chronic endothelial dysfunction. We investigated the role of 5-HT7 receptors on heart tissue that damaged by isoproterenol (ISO)-induced MI in rats with high-fat diet (HFD). In vitro and in vivo effects of 5-HT7r agonist (LP44) and antagonist (SB269970) have been investigated on the H9C2 cell line and rats, respectively. For in vivo analyses, rats were fed with HFD for 8 weeks and after this period ISO-induced MI model has been applied to rat. To investigate the role of 5-HT7r's, two different doses of LP44 and SB269970 were evaluated and compared with standard hypolipidemic agent, atorvastatin. In vitro studies showed that LP44 has protective and proliferative effects on rat cardiomyocytes. Also in in vivo studies stimulating 5-HT7r's by LP44 improved blood lipid profile (decreased total cholesterol, low-density lipoprotein-C, and triglyceride, increased high-density lipoprotein), decreased cardiac damage markers (creatine kinase and troponin-I), and corrected inflammatory status (tumor necrosis factor-α, interleukin-6). Our results showed significant improvement in LP44 administered rats in terms of histopathologic analyses. In damaged tissues, 5-HT7 mRNA expression increased and agonist administration decreased this elevation significantly. We determined for the first time that 5-HT7r's are overexpressed in ISO-induced MI of rats with underlying HFD-induced endothelial dysfunction. Restoration of this overexpression by LP44, a 5-HT7r agonist, ameliorated heart tissue in physiopathologic, enzymatic, and molecular level, showing the cardiac role of these receptors and suggesting them as future potential therapeutic targets.
Collapse
Affiliation(s)
- I Cinar
- Department of Pharmacology, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Z Halici
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - B Dincer
- Department of Pharmacology, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - B Sirin
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - E Cadirci
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
8
|
Damiano S, Andretta E, Longobardi C, Prisco F, Paciello O, Squillacioti C, Mirabella N, Florio S, Ciarcia R. Effects of Curcumin on the Renal Toxicity Induced by Ochratoxin A in Rats. Antioxidants (Basel) 2020; 9:antiox9040332. [PMID: 32325727 PMCID: PMC7222377 DOI: 10.3390/antiox9040332] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/30/2022] Open
Abstract
Ochratoxin A (OTA) is a powerful nephrotoxin and the severity of its damage to kidneys depends on both the dose and duration of exposure. According to the scientific data currently available, the mechanism of action still is not completely clarified, but it is supposed that oxidative stress is responsible for OTA-induced nephrotoxicity. Bioactive compound use has emerged as a potential approach to reduce chronic renal failure. Therefore, curcumin (CURC), due to its therapeutic effects, has been chosen for our study to reduce the toxic renal effects induced by OTA. CURC effects are examined in Sprague Dawley rats treated with CURC (100 mg/kg), alone or in combination with OTA (0.5 mg/kg), by gavage daily for 14 days. The end result of the experiment finds rats treated with OTA show alterations in biochemical and oxidative stress parameters in the kidney, related to a decrease in the Glomerular Filtration Rate (GFR). Conversely, the administration of CURC attenuates oxidative stress and prevents glomerular hyperfiltration versus the OTA group. Furthermore, kidney histological tests show a reduction in glomerular and tubular damage, inflammation and tubulointerstitial fibrosis. This study shows that CURC can mitigate OTA-induced oxidative damage in the kidneys of rats.
Collapse
Affiliation(s)
- Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
- Correspondence: ; Tel.: +39-081-2536127
| | - Emanuela Andretta
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| | - Consiglia Longobardi
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli” Naples, Largo Madonna delle Grazie, 1, 80138 Napoli, Italy;
| | - Francesco Prisco
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| | - Caterina Squillacioti
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| | - Nicola Mirabella
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| | - Salvatore Florio
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| |
Collapse
|
9
|
Carloni S, Balduini W. Simvastatin preconditioning confers neuroprotection against hypoxia-ischemia induced brain damage in neonatal rats via autophagy and silent information regulator 1 (SIRT1) activation. Exp Neurol 2020; 324:113117. [DOI: 10.1016/j.expneurol.2019.113117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/03/2019] [Accepted: 11/14/2019] [Indexed: 10/25/2022]
|
10
|
Abdel-Magied N, Elkady AA. Possible curative role of curcumin and silymarin against nephrotoxicity induced by gamma-rays in rats. Exp Mol Pathol 2019; 111:104299. [PMID: 31442446 DOI: 10.1016/j.yexmp.2019.104299] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/05/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022]
Abstract
Curcumin (CUR) and silymarin (SLM) are powerful antioxidant and anti-inflammatory compounds with beneficial protective effects against renal diseases. The purpose of this study was to evaluate the efficacy of CUR and SLM alone or in combination on radiation (IR) induced kidney injury. The results showed that CUR and SLM alone or in combination attenuated the oxidative stress denoted by a reduction in the level of malondialdehyde (MDA), hydrogen peroxide (H2O2) and advanced oxidation protein products (AOPP) along with a marked increase of glutathione GSH content and total antioxidant capacity (TAC). Additionally, a significant decrease in the level of blood urea nitrogen (BUN), creatinine, Cystatin-C (CYT-C), neutrophil gelatinase-associated lipocalin (N-GAL) and Kidney Injury Molecule-1 (Kim-1) was recorded. Moreover, the treatment resulted in a remarkable decline in the serum levels of interleukin-18(IL-18), tumor necrosis factor- alpha (TNF-α), C reactive protein (CRP), BCL2 associated X protein (Bax), Factor-related Apoptosis (FAS) and the activity of Caspase-3 associated by an increase of B-cell CLL/lymphoma 2 (Bcl2) level. The results were confirmed with the histopathological examination. Kidney of irradiated showed glomerular atrophy, massive necrotic changes of expanded tubules with hyaline cast inside some tubules and apoptotic changes were recorded in some renal tubules. While irradiated rats treated with CUR and SLM exhibited marked preservation of the cellular structure of their kidney tissue. In conclusion, the combination of CUR and SLM could be more potent than a single agent on the biochemical and histological changes of the irradiated rat renal tissue.
Collapse
Affiliation(s)
- Nadia Abdel-Magied
- Radiation Biology Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 29, Nasr City, Cairo, Egypt.
| | - Ahmed A Elkady
- Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 29, Nasr City, Cairo, Egypt.
| |
Collapse
|