1
|
Kounatidis D, Tentolouris N, Vallianou NG, Mourouzis I, Karampela I, Stratigou T, Rebelos E, Kouveletsou M, Stamatopoulos V, Tsaroucha E, Dalamaga M. The Pleiotropic Effects of Lipid-Modifying Interventions: Exploring Traditional and Emerging Hypolipidemic Therapies. Metabolites 2024; 14:388. [PMID: 39057711 PMCID: PMC11278853 DOI: 10.3390/metabo14070388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Atherosclerotic cardiovascular disease poses a significant global health issue, with dyslipidemia standing out as a major risk factor. In recent decades, lipid-lowering therapies have evolved significantly, with statins emerging as the cornerstone treatment. These interventions play a crucial role in both primary and secondary prevention by effectively reducing cardiovascular risk through lipid profile enhancements. Beyond their primary lipid-lowering effects, extensive research indicates that these therapies exhibit pleiotropic actions, offering additional health benefits. These include anti-inflammatory properties, improvements in vascular health and glucose metabolism, and potential implications in cancer management. While statins and ezetimibe have been extensively studied, newer lipid-lowering agents also demonstrate similar pleiotropic effects, even in the absence of direct cardiovascular benefits. This narrative review explores the diverse pleiotropic properties of lipid-modifying therapies, emphasizing their non-lipid effects that contribute to reducing cardiovascular burden and exploring emerging benefits for non-cardiovascular conditions. Mechanistic insights into these actions are discussed alongside their potential therapeutic implications.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | - Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece;
| | - Iordanis Mourouzis
- Department of Pharmacology, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Theodora Stratigou
- Department of Endocrinology and Metabolism, Evangelismos General Hospital, 10676 Athens, Greece;
| | - Eleni Rebelos
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | - Marina Kouveletsou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | | | - Eleni Tsaroucha
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
2
|
Oza PP, Kashfi K. The evolving landscape of PCSK9 inhibition in cancer. Eur J Pharmacol 2023; 949:175721. [PMID: 37059376 PMCID: PMC10229316 DOI: 10.1016/j.ejphar.2023.175721] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Cancer is a disease with a significant global burden in terms of premature mortality, loss of productivity, healthcare expenditures, and impact on mental health. Recent decades have seen numerous advances in cancer research and treatment options. Recently, a new role of cholesterol-lowering PCSK9 inhibitor therapy has come to light in the context of cancer. PCSK9 is an enzyme that induces the degradation of low-density lipoprotein receptors (LDLRs), which are responsible for clearing cholesterol from the serum. Thus, PCSK9 inhibition is currently used to treat hypercholesterolemia, as it can upregulate LDLRs and enable cholesterol reduction through these receptors. The cholesterol-lowering effects of PCSK9 inhibitors have been suggested as a potential mechanism to combat cancer, as cancer cells have been found to increasingly rely on cholesterol for their growth needs. Additionally, PCSK9 inhibition has demonstrated the potential to induce cancer cell apoptosis through several pathways, increase the efficacy of a class of existing anticancer therapies, and boost the host immune response to cancer. A role in managing cancer- or cancer treatment-related development of dyslipidemia and life-threatening sepsis has also been suggested. This review examines the current evidence regarding the effects of PCSK9 inhibition in the context of different cancers and cancer-associated complications.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, 10091, USA.
| |
Collapse
|
3
|
PCSK9 Inhibitors Reduce PCSK9 and Early Atherogenic Biomarkers in Stimulated Human Coronary Artery Endothelial Cells. Int J Mol Sci 2023; 24:ijms24065098. [PMID: 36982171 PMCID: PMC10049668 DOI: 10.3390/ijms24065098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 03/11/2023] Open
Abstract
Despite reports on the efficacy of proprotein convertase subtilisin-Kexin type 9 (PCSK9) inhibitors as a potent lipid-lowering agent in various large-scale clinical trials, the anti-atherogenic properties of PCSK9 inhibitors in reducing PCSK9 and atherogenesis biomarkers via the NF-ĸB and eNOS pathway has yet to be established. This study aimed to investigate the effects of PCSK9 inhibitors on PCSK9, targeted early atherogenesis biomarkers, and monocyte binding in stimulated human coronary artery endothelial cells (HCAEC). HCAEC were stimulated with lipopolysaccharides (LPS) and incubated with evolocumab and alirocumab. The protein and gene expression of PCSK9, interleukin-6 (IL-6), E-selectin, intercellular adhesion molecule 1 (ICAM-1), nuclear factor kappa B (NF-ĸB) p65, and endothelial nitric oxide synthase (eNOS) were measured using ELISA and QuantiGene plex, respectively. The binding of U937 monocytes to endothelial cell capacity was measured by the Rose Bengal method. The anti-atherogenic effects of evolocumab and alirocumab were contributed to by the downregulation of PCSK9, early atherogenesis biomarkers, and the significant inhibition of monocyte adhesion to the endothelial cells via the NF-ĸB and eNOS pathways. These suggest the beyond cholesterol-lowering beneficial effects of PCSK9 inhibitors in impeding atherogenesis during the initial phase of atherosclerotic plaque development, hence their potential role in preventing atherosclerosis-related complications.
Collapse
|
4
|
Shen Y, Wang XQ, Dai Y, Wang YX, Zhang RY, Lu L, Ding FH, Shen WF. Diabetic dyslipidemia impairs coronary collateral formation: An update. Front Cardiovasc Med 2022; 9:956086. [PMID: 36072863 PMCID: PMC9441638 DOI: 10.3389/fcvm.2022.956086] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Coronary collateralization is substantially impaired in patients with type 2 diabetes and occlusive coronary artery disease, which leads to aggravated myocardial ischemia and a more dismal prognosis. In a diabetic setting, altered serum lipid profiles and profound glycoxidative modification of lipoprotein particles induce endothelial dysfunction, blunt endothelial progenitor cell response, and severely hamper growth and maturation of collateral vessels. The impact of dyslipidemia and lipid-lowering treatments on coronary collateral formation has become a topic of heightened interest. In this review, we summarized the association of triglyceride-based integrative indexes, hypercholesterolemia, increased Lp(a) with its glycoxidative modification, as well as quantity and quality abnormalities of high-density lipoprotein with impaired collateral formation. We also analyzed the influence of innovative lipid-modifying strategies on coronary collateral development. Therefore, clinical management of diabetic dyslipidemia should take into account of its effect on coronary collateralization in patients with occlusive coronary artery disease.
Collapse
Affiliation(s)
- Ying Shen
- Department of Cardiovascular Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Qun Wang
- Department of Cardiovascular Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Dai
- Department of Cardiovascular Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Xuan Wang
- Department of Cardiovascular Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Yan Zhang
- Department of Cardiovascular Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Lin Lu
- Department of Cardiovascular Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
- Institute of Cardiovascular Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Hua Ding
- Department of Cardiovascular Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Feng Hua Ding,
| | - Wei Feng Shen
- Department of Cardiovascular Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
- Institute of Cardiovascular Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Wei Feng Shen,
| |
Collapse
|
5
|
Short-Term Treatment with Alirocumab, Flow-Dependent Dilatation of the Brachial Artery and Use of Magnetic Resonance Diffusion Tensor Imaging to Evaluate Vascular Structure: An Exploratory Pilot Study. Biomedicines 2022; 10:biomedicines10010152. [PMID: 35052831 PMCID: PMC8773704 DOI: 10.3390/biomedicines10010152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Short-term effects of alirocumab on vascular function have hardly been investigated. Moreover, there is a scarce of reliable non-invasive methods to evaluate atherosclerotic changes of the vasculature. The ALIROCKS trial was performed to address these issues using standard ultrasound-based procedures and a completely novel magnetic resonance-based imaging technique. Methods: A total of 24 patients with an indication for treatment with PCSK9 antibodies were recruited. There were 2 visits to the study site, the first before initiation of treatment with alirocumab and the second after 10 weeks of treatment. The key outcome measures included the change of carotid vessel wall fractional anisotropy, a novel magnetic resonance-based measure of vascular integrity, and the changes of carotid intima-media thickness and flow-dependent dilatation of the brachial artery measured with ultrasound. Results: A total of 19 patients completed the trial, 2 patients stopped treatment, 3 patients did not undergo the second visit due to the COVID pandemic. All of them had atherosclerotic vascular disease. Their mean (standard deviation) LDL-cholesterol concentration was 154 (85) mg/dL at baseline and was reduced by 76 (44) mg/dL in response to alirocumab treatment (p < 0.001, n = 19). P-selectin and vascular endothelial growth factors remained unchanged. Flow-dependent dilatation of the brachial artery (+41%, p = 0.241, n = 18), carotid intima-media thickness (p = 0.914, n = 18), and fractional anisotropy of the carotid artery (p = 0.358, n = 13) also did not significantly change. Conclusion: Despite a nominal amelioration for flow-dependent dilatation, significant effects of short-term treatment with alirocumab on vascular function were not detectable. More work would be needed to evaluate, whether fractional anisotropy may be useful in clinical atherosclerosis research.
Collapse
|
6
|
Ji J, Feng M, Niu X, Zhang X, Wang Y. Liraglutide blocks the proliferation, migration and phenotypic switching of Homocysteine (Hcy)-induced vascular smooth muscle cells (VSMCs) by suppressing proprotein convertase subtilisin kexin9 (PCSK9)/ low-density lipoprotein receptor (LDLR). Bioengineered 2021; 12:8057-8066. [PMID: 34666623 PMCID: PMC8806487 DOI: 10.1080/21655979.2021.1982304] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Liraglutide, a glucagon-like peptide 1 (GLP1) receptor agonist, is known to inhibit the atherosclerosis of apoE mice and suppress the cellular behaviors of VSMCs induced by AngII. This study aimed to explore whether liraglutide can reduce the proliferation, invasion and phenotypic transformation of VSMCs induced by Hcy and the underlying mechanism. Hcy was used to induce the proliferation of VSMCs, and liraglutide was then used to expose the cells for assessing cell proliferation. Afterward, the cell migration and phenotypic switch were evaluated to observe the effects of liraglutide. Meanwhile, the expression of PCSK9 and LDLR was detected. After overexpressing PCSK9, the changes in proliferation, cell migration and phenotypic switch were estimated again. Hcy promoted cell proliferation of VSMCs, whereas liraglutide blocked the proliferation, migration and phenotypic switch of Hcy-induced VSMCs. Furthermore, the expression of PCSK9 was downregulated and LDLR expression was upregulated after liraglutide administration in Hcy-induced VSMCs. After overexpressing PCSK9, the proliferation, migration and phenotypic switch of Hcy-induced VSMCs were enhanced. Liraglutide blocked the proliferation, migration and phenotypic switching of Hcy-induced VSMCs by suppressing PCSK9/LDLR. This finding provided the basis for the future application of liraglutide as an effective drug for therapeutic strategy in targeting AS.
Collapse
Affiliation(s)
- Jingquan Ji
- Department of Pathophysiology, Changzhi Medical College, Changzhi, Shanxi, China
| | - Ming Feng
- Department of Neurosurgery,Changzhi People's Hospital, Changzhi, Shanxi, China
| | - Xiaohong Niu
- Department of Endocrinology, The Heji Affiliated Hospital of Changzhi Medical College, Changzhi, Shanxi, China
| | - Xinyu Zhang
- Department of Basic Medicine, Changzhi Medical College, Changzhi, Shanxi, China
| | - Yilei Wang
- Department of Basic Medicine, Changzhi Medical College, Changzhi, Shanxi, China
| |
Collapse
|
7
|
Use of Human Umbilical Vein Endothelial Cells (HUVEC) as a Model to Study Cardiovascular Disease: A Review. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030938] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, and extensive research has been performed to understand this disease better, using various experimental models. The endothelium plays a crucial role in the development of CVD, since it is an interface between bloodstream components, such as monocytes and platelets, and other arterial wall components. Human umbilical vein endothelial cell (HUVEC) isolation from umbilical cord was first described in 1973. To date, this model is still widely used because of the high HUVEC isolation success rate, and because HUVEC are an excellent model to study a broad array of diseases, including cardiovascular and metabolic diseases. We here review the history of HUVEC isolation, the HUVEC model over time, HUVEC culture characteristics and conditions, advantages and disadvantages of this model and finally, its applications in the area of cardiovascular diseases.
Collapse
|